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Preface 

The word “Perception” is synonymous with the act of perceiving. However, perception 

has a wiser meaning in cognitive neuroscience. It refers to the biological process of 

acquiring information from the external world using our sense organs and also 

understanding the message carried therein. Perception, in general, is a vast and 

unexplored research arena, and there exists ample scope of research opportunity for its 

underlying importance.   

    The current research on perception revolves around the structural and functional 

aspects of different brain modules and their interconnections. Apparently, a perceptual 

process, such as olfaction, is localized as it involves only the pre-frontal and temporal 

lobes of the brain. The localized activity involved in a perceptual process offers primitive 

interpretation carried by the percept. For instance, the pre-frontal lobe processes the 

olfactory stimuli to recognize the stimuli. However, if the aroma perceived is associated 

with one or more additional events, such as association of a person with a perfume, the 

brain employs multiple lobes to understand the true meaning (here, the presence of the 

person carrying the aroma) of the stimulus.  Thus, perception in a bigger sense includes 

higher level cognition, triggered with external stimuli. 

    The thesis aims at understanding the biological basis of perception by analyzing the 

brain signals acquired from the scalp of the subjects during excitation of the brain with 

external stimuli. Electroencephalography (EEG) offers the temporal activity of the human 

brain during stimuli acquisition and understanding. This inspires researchers to 

understand the biological processes involved in perception from the time-domain, 

frequency-domain and time-frequency correlated characteristics of the acquired brain 

signals.  Although there are several brain-signaling and imaging techniques to uncover 

the mystery behind the underlying perceptual processes, EEG is preferred to its 

competitors for its spontaneous (having good temporal resolution) response, portability 

and non-invasive characteristics. This justifies our choice of EEG for the present 

research. 

     Although there is an immense scope of research on understanding the biological basis 

of perception using EEG signal analysis, we have restricted our research into three main 

heads. The restriction is apparent due to limited time duration of the Ph.D. research and 

non-availability of the suitable subjects in a non-hospital environment. The first problem 

is concerned with subjective perceptual-ability detection and ranking when stimulated 

with aromatic substance. The problem has importance in diverse domains of applications, 
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including selection of tea-tasters from a list of candidates, testing perceptual-ability of the 

early Alzheimer’s patients and determining the degree of Alzheimer from the estimation 

of their perceptual-ability etc. The second problem deals with a very interesting subject 

concerning cognitive-failure detection in driving. The importance of the second problem 

is apparent for its application in safety-critical driving. The third problem is targeted to 

detect the tactile perceptual-ability of psychologically retarded people and/or patients 

suffering from Schizophrenia and other brain-related diseases.   

     The thesis includes five chapters. Chapter 1 provides a thorough review of the EEG-

based research undertaken on perception. It begins with a definition of perception and 

perceptual-ability and also explores different brain signalling/imaging techniques 

including EEG, Positron Emission Tomography (PET), functional Magnetic Resonance 

Imaging (fMRI) and functional Near-Infrared Spectroscopy (fNIRs). The later part of the 

chapter covers well-known brain signals and their association with different cognitive 

processes. Special emphasis is given to single and multi-modal BCI problems.  The Later 

part of the chapter deals with standard techniques of problem-solving, such as pre-

processing and artifact removal, feature extraction, feature selection and classification. 

Next, the chapter provides a discussion on the current research directions associated with 

the problems undertaken in the thesis. The scope of the thesis is also appended at the end 

of the chapter. 

     Chapter 2, 3 and 4 are original contributions of the thesis. Here, the candidate provides 

three distinct problems in perception engineering and offers solutions to these problems 

by extending the traditional techniques of pattern recognition. Although the problems 

have their own diversity, the commonality of the problems lies in utilizing and extending 

computational intelligence techniques adopted for pattern recognition. The other common 

aspect of the problems undertaken and the approaches adopted include that the analysis 

of all the problems are performed in real time. Naturally, time required for execution of 

the algorithms here play a vital role for their amenability in real world systems. 

      Chapter 2 addresses one interesting problem on olfactory perceptual-ability detection 

of human subjects, where the motivation is to detect the individual perceptual-ability of 

the subject and rank them in descending order. These subjective ranks offer the user the 

relative merits in decoding aromatic substance. Traditional supervised learning 

techniques, such as support vector machines (SVMs), back-propagation learning etc. 

could have been used to solve the problem. However, the existing techniques are 

appropriate for small class size and thus unsuitable for the present application, requiring 

large (equals to 10) class-size, and that too in real time. To alleviate the present problem, 
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we employed a Hopfield-like recurrent neural classifier, the stability of which is ensured 

at multiple optima of a selected Lyapunov energy surface. In the classification of 

aromatic stimuli from the pre-frontal EEG response of a subject, we first need to map the 

EEG-features of the individual olfactory stimulus to one of the local optima in the 

Lyapunov energy function of the energy-surface. This mapping is done automatically by 

the selection of the weight matrix of the Hopfield-like dynamics with an aim to minimize 

the selected Lyapunov energy function for the dynamics. In the present context, we 

develop an alternative formulation, where a multi-modal high dimensional Rastrigin 

function is used as the Lyapunov energy surface. Thus for the selected energy surface, we 

construct a Hopfield-like dynamics, which essentially ensures mapping of the olfactory 

stimuli to the local optima.  

      Once the weight matrix of the Hopfield dynamics is ready, we can use it as a 

classifier.   This is done in a tricky way.  Suppose we measure the feature vector of an 

unknown olfactory stimulus. The feature vector is mapped onto the Lypunov energy 

surface. We initialize the Hopfield-like dynamics at the mapped location of the energy 

surface, and solve the differential equation until it converges at one of the nearest optima. 

Since each optimum is earmarked with one smell class, we declare the smell class 

associated with the optimum as the target class.   Experiments undertaken confirm that 

the proposed technique of classifying olfactory perceptual-ability of subjects outperforms 

traditional techniques by a good margin.  

      Existing literature in driving primarily focuses attention to physiological aspects of 

the drivers and the failures related to gestural/postural aspects in driving. However, 

online detection of cognitive failures from the brain signals is yet a virgin arena of 

research in traffic engineering. The thesis introduced an interesting approach to design a 

set-up for on-line cognitive failure detection of the drivers from three fundamental 

aspects. These are i) visual alertness failure detection, ii) motor planning failure detection 

and iii) motor-execution failure detection. 

 In Chapter 3, the candidate proposes a novel scheme of cognitive failure detection in 

driving using brain signals. Although there exist different types of cognitive inability 

responsible for driving failures, we here adopt three possible cognitive failures, called 

visual attention failures (VAF), motor planning failures (MPF) and motor execution 

failures (MEF). VAF refers to cognitive failures due to lack of visual perception. 

Primarily, in driving context, visual attention failure takes place when the driver is not 

visually attentive. In case the driver is visually attentive, we test any possible failure in 

motor planning by the subject. The failures involved in motor planning include possible 



x 

 

mistakes in executing braking, acceleration and/or steering control. Occasionally it is 

noticed that the driver planned his motor activities correctly and timely but failed in 

executing the planned task. This is generally due to muscle fatigue and/or poor health 

condition and/or stray situations on part of the driver. The third test adopted is detection 

of cognitive failures in motor execution.  

Testing of cognitive failures has been accomplished by acquiring the EEG signals 

from three distinct brain lobes. To detect VAF, we acquire EEG signal from the pre-

frontal, frontal and occipital lobes. MPF detection requires examining brain signals from 

the parietal lobe and motor cortex, while MEF is detected from the EEG acquired from 

the motor cortex region only. These electrical signals are pre-processed using 

Independent Component Analysis (ICA) to eliminate artifacts, and then passed through 

band-pass filters of specific frequency bands for individual cognitive tasks. For instance, 

the EEG acquired for VAF detection is filtered in the alpha band (8-13 Hz), while the 

EEG signal acquired in motor planning and execution is filtered in the mu-beta bands (8-

30 Hz). Next the filtered signals are processed to extract certain signal features. For the 

VAF detection problem, we extract adaptive autoregressive (AAR) parameters and for 

MPF and MEF detection we extract power spectral density (PSD) and discrete wavelet 

transform (DWT). The feature dimension, usually being moderately high (of dimension = 

78) for MPF and MEF, we reduce it by a novel evolutionary feature selection algorithm. 

The algorithm autonomously generates a set of   fixed dimensional features from the total 

list of features, and examines the best set of features for which the intra-class distance is 

minimized and inter-class distance is maximized. This is done by measuring fitness of the 

individual trial solutions, where the fitness measure indicates the degree of maximization 

of inter-class distance and minimization of intra-class distance jointly. The evolutionary 

process generates expectedly improved trial solutions over the program iterations, and 

thus when the terminating condition is reached, the best-fit candidate solution represents 

the highest degree of satisfaction of both the said criteria. 

The main research component of the work lies in designing a suitable classifier, 

capable of classifying VAF into two classes: visually attentive or non-attentive, MPF into 

four classes: braking failure, acceleration failure, steering control failure and no failure, 

and MEF into three classes: braking, acceleration and steering control execution failures. 

Each of the above three classes is again classified into two sub-classes: brake pressed or 

not pressed and the like.  The classifiers are supplied with extracted features for the 

respective cognitive failure, and the classifier response is the detected class. Apparently, 

any traditional supervised learning classifiers could serve the purpose. However, because 
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of parallel brain activations and stochastic noise associated with eye blinking and other 

muscle movements, the features are often found noisy. The creeping of noise in the 

features makes the traditional classifiers unsuitable for the MPF detection. For the VAF 

and MEF, however, support vector machine (SVM) classifier has acceptable 

performance. 

The fundamental problem in the present research thus is to design a classifier 

worthwhile for classification of motor planning classes in presence of stochastic noise in 

the EEG features.  Fuzzy sets, in general, and type-2 fuzzy sets in particular, have 

inherent characteristics to take precise decisions in presence of noisy measurements. 

While classical (type-1) fuzzy sets can capture the noise due to the randomness of the 

measurement, type-2 fuzzy sets can capture intra- and inter-personal level uncertainty 

that might appear in a decision-making system because of the randomness in the 

assignment of memberships within and across experimental subjects respectively. Here, 

we propose two distinct models of type-2 fuzzy classification, one realized with interval 

type-2 fuzzy sets (IT2FS) and the other with general type-2 fuzzy sets (GT2FS).  The 

IT2FS-induced classifier determines the average degree of membership of a data point 

(by taking the average of the upper and lower membership functions at the given 

measurement point) in a given class, and declares the class with the highest membership 

as the class for the given data point. The GT2FS-induced classification employs 

secondary grades as additional input to tune the primary membership function in each 

class to determine the degree of membership of a data point in a given class. The class 

with the highest secondary grade induced primary membership for a given data point is 

declared as the winning class. A thorough comparison of the IT2FS- and GT2FS-induced 

classifiers is provided in the chapter to examine the relative merits of GT2FS-based 

classifier over its counterpart. 

The fourth chapter is concerned with touch perception, where the motivation is to 

classify the touch nourishment received by psychological patients from different nurses 

in a hospital environment. The objective is to select the right nurse by individual patient 

for their highest degree of pleasure during the phase of mental treatment. Touch 

perception is primarily active in the somato-sensory cortex. The nearest electrodes 

available are frontal and parietal electrodes and the motor cortex region. EEG signals 

acquired   from the above electrodes of the patients are first pre-processed and filtered 

from artifacts. The processed signals are then fed to a classifier to recognize the pleasure 

levels received by the patients.    
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      The classifier design is given primary consideration in the present work. We adopted 

radial basis function (RBF induced back-propagation neural networks to classify the 

pleasure level of the patients. The RBF-neural network selects specific touch 

nourishments, such as soft touch, rubbing, messaging and embracing. Next, for a given 

touch nourishment we select a back-propagation neural network to classify the individual 

touch nourishment into three classes: pleasant, acceptable and unpleasant. Experiment 

undertaken reveals that the proposed neural architecture outperforms its competitors with 

respect to classification accuracy. To test statistical validation of the proposed classifier 

performance, McNemar’s test is employed. The proposed scheme has successfully been 

realized to select appropriate nurses by Schizophrenic patients based on the degree of 

qualitative touch perceived by them across nurses. 

The thesis ends with a concluding chapter dealing with the self-review of the works 

undertaken in chapters 2, 3 and 4 and also possible future research directions.  
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Chapter 1 

  

 

An Introduction to EEG Analysis in 

Decoding Human Perception 
 

 

 

 

This chapter provides a general introduction to EEG signal analysis to understand 

the biological basis of perception. It also aims at classifying the perceptual stimuli 

based on the characteristics of the acquired EEG signal. The chapter begins with the 

definition of perception, and gradually progresses through different modalities of 

brain signaling/imaging techniques. The next part of the chapter includes major brain 

signals including P300 event-related potential, event-related de-

synchronization/synchronization, slow cortical potential, steady-state visual evoked 

potential, olfactory event-related potential and error-related potential. Special 

emphasis is given to problem solving schemes for the selection of single and mixed 

signals. The later part of the chapter gives an overview of EEG signal processing, 

such as filtering, artifact removal, and low level feature extraction, such as discrete 

wavelet transforms, power-spectral density, adaptive autoregressive parameters, 

Hjorth parameters, and common spatial patterns. The chapter provides a discussion 

on EEG signal classification to decode cognitive activities. The list of classifiers 

includes Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Multi-

layer Perceptron (MLP), Hidden Markov Model (HMM), k-nearest neighbor (kNN) 

algorithm and Naïve Bayes’ classifier. An outline to well-known performance analysis 

metrics is also included. The chapter comes to an end with a brief review of current 

research directions and the scope of EEG signals in sensory-motor perception and 

decoding of motor imagery and alertness. 
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1.1 DEFINING PERCEPTION 

Perception refers to the process of acquisition and understanding of external stimuli. Humans 

use their sense organs to acquire information from the external world and utilize their brain to 

understand the stimuli. Depending on the sensory modality used, perception can be broadly 

divided into five categories: visual, auditory, tactile and olfactory/taste. Among the above 

modalities, the olfactory and tactile perceptions are considered as primitive as these are 

extensively used by animals in their daily lives. Animals normally use olfactory perception 

for hunting, food-source localization and also mate-selection. Tactile perceptual modality is 

generally used by animals/humans to have ideas about object shape and size, texture, and 

elastic/deformable characteristics. Visual and auditory perceptions generally require higher 

cognitive functionalities and thus are limitedly used by lower class animals. For instance, 

most of the animals do not have 3D perception of their world like the human being. Further, 

animals cannot recognize natural languages like the humans.  

    The phrase “cognition” is sometimes synonymously used with “perception”. However, 

cognition involves almost all mental processes at different levels of functionality. At the 

lowest level, cognition includes perception, memory and attention. At higher levels, it deals 

with reasoning, learning, planning, motor control and sensory-motor coordination. Thus 

perception is treated as a basic cognitive process and in that sense it appears as a subset of 

cognition.  

    Human nervous (and also endocrine) systems play a major role in sensory perception. 

Sensory stimuli received by our sense organs are transferred to the sensory-motor cortex 

through a complex process of chemical modulation and demodulation. For example, olfactory 

stimuli acquired by the nose are passed on to the olfactory epithelium, where the receptor 

proteins interact with the molecules of the aromatic substance to form a protein-complex. This 

is referred to as biological modulation. Unique set of protein-complexes is formed for 

encoding a particular olfactory stimulus while odor is sensed by one (or fewer) of several 

hundred receptor neurons. Neurons responsible for sensing similar protein-complex are 

distributed across a specific epithelium cortex [1], from where response of the fired neurons is 

collected by one of several glomeruli of olfactory bulbs [2]. In this manner, composite signal 

is synthesized to get transferred to the piriform cortex, which is then transferred to the 

sensory-motor cortex for decoding. Similarly, the visual stimuli acquired by our eyes are 

processed at different layers inside the eyes and the electrical response to visual stimuli is 

collected by the optic nerve from the retina for transfer to the visual cortex. Complete 

understanding of the biology of the perceptual processes still remains a mystery.  

     The thesis is primarily concerned with olfactory and tactile perception with little 

indigenous experiments on visual perception, particularly in subjective alertness detection. It 
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includes interesting experiments to detect visual alertness in driving environments, olfactory 

perceptual-ability of human subjects in tea-taster selection and tactile perceptual-ability of 

patients in the selection of nurses based on their quality of touch-nourishments.   

 

1.2 BRAIN MAP AND BRAIN-IMAGING TECHNIQUES 

The human brain comprises several 100 billions of nerve cells, called neurons, which 

individually/in groups are responsible for executing complex mental tasks like interpretation 

of stimuli, memory encoding and recall, motor planning /execution and coordination of multi-

sensory/sensory-motor interactions.  Apart from this, the human brain is also involved to 

control most of our biological activities, including respiration rate, cardiac activity, muscular 

activity, and many others.  The neurons in the brain and also in the rest of our nervous system 

act partly electrically and partly chemically for stimuli processing, signal transduction and 

motor activity. A look inside the neuron reveals that the cell-body of the neuron yields a 

linear combination of the received electrical stimuli for transfer to the pre-synaptic region. 

The accumulated electrical stimuli next trigger the synapse to synthesize the neurotransmitters 

for transfer of information from the pre-synaptic region to the post-synaptic region. Thus 

communication of information inside a neuron is performed by both electrical and chemical 

means.     

    The brain is divided into three main modules, called cerebrum, cerebellum and Pons. The 

cerebrum is the largest part of the human brain with highest functionality. The second part of 

the brain, called cerebellum is the area of the hindbrain. The third part called pones is the 

portion of brain stem, which is located above the medulla oblongata and below the midbrain.  

The cerebrum is covered with a cortical layer having convoluted topography, called the 

cerebral cortex. It looks like a sheet of neural tissue that includes a large surface area within 

the skull by folding itself. Cerebral cortex is divided into almost symmetrical right and left 

hemispheres. Each hemisphere consists of different lobes such as frontal, parietal, temporal 

and occipital lobes. Besides the four lobes, neocortical areas of the brain including primary 

motor and sensorimotor cortices play major role during motor-planning/execution and tactile 

perception respectively. Figure 1.1 shows the different brain lobes and their association with 

their cognitive abilities, which is briefly described in this section.  

1. The frontal lobe is one of the important lobes of cerebral hemisphere. It is located in the 

frontal part of the brain. Central sulcus separates the frontal lobe from the parietal lobe 

whereas sylvian sulcus separates the frontal lobe from the temporal lobe. The frontal lobe 

and its pre-frontal region are responsible for problem solving tasks, physical reaction, 

abstract thinking, planning, short term memory task and motivation [3]. The anterior 
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portion of frontal lobe is known as pre-frontal area, which is associated with olfaction 

recognition [4], [5] and emotion recognition [6], [7]. 

 

 

Fig. 1.1 Different brain lobes and their association with their cognitive abilities 

2. The parietal lobe extends from the central sulcus nearly to the occipital lobe and is 

situated on the postcentral gyrus, which is responsible for processing all tactile and 

proprioceptive sensory information from the contralateral side of the body [8]. This lobe 

is also used for planning/navigation and spatial sense. 

3. The temporal lobe, which is the largest brain lobe (containing approximately 17% of the 

cerebral cortex) [9], is situated below the frontal lobe, and is separated from the frontal 

lobe by sylvian sulcus [10]. The temporal lobe controls auditory and olfactory 

information processing, semantic memory, and perception of spoken or written language 

[10].   

4. The occipital lobe is the smallest lobe in the brain. It is situated behind the parietal lobe. 

The main function of this lobe is visual reception, colour recognition and visuo-spatial 

processing [11].  

1.2.1 Brain-Imaging Techniques 

Over the last two decades, communications between humans and machines through brain 

signals have been the most fascinating topic in brain compute interfacing (BCI). The large 

amount of research work in cognitive neuroscience has resulted in serious progress to make 

direct interfacing with the human brain by means of various sensors. The sensors measure 
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electrical impulses due to neuronal firing inside the brain and relate to the specific action that 

reflects users’ intent. The above process provides an alternative channel of communication 

between the humans and external environment by analyzing the brain rhythms in a number of 

cognitive tasks such as cursor control [12], wheelchair movement control [13], alphabet 

selection [14], prosthetic limb movement [15], drowsiness [16] and fatigue detection [17] of 

drivers, emotion recognition [18], haptic perception [19], computer gaming [20], olfactory 

perception [21] and so on. To perform these cognitive tasks, communication between the 

human brain and a computer is necessary with an aim to control brain-states using artificially 

generated stimuli and/or to decode brain-states involving attention, perception, motor 

imagination or any other cognitive functioning. Decoding of brain states requires the analysis 

of brain rhythms either by invasive or non-invasive means.  

The invasive way of recording brain signals includes the implementation of single or 

multi-electrode array directly on or within the brain, whereas the non-invasive technique 

offers the measurement of brain activity with the help of externally placed electrodes over the 

scalp. Electrocorticogram (ECoG), being an invasive recording technology, provides wider 

frequency range, higher topographical resolution and better signal quality than non-invasive 

technologies. However, it often covers very small regions of the brain and once implanted, it 

cannot be moved to measure different regions of the brain. Furthermore, it requires some 

surgical procedures that often lead to medical complications including risk of tissue damage 

and injection [22], [23]. Among the lists of non-invasive technologies, 

electroencephalography (EEG), magneto-encephalography (MEG), functional magnetic 

resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) are few of the 

well-known methods required for measuring brain activities [24]-[29]. EEG measures the 

weak (5-100µV) electrical potentials generated due to neuronal firing inside the brain. The 

Ag-AgCl electrodes are carefully placed over the scalp to record the brain activity and 

provide superior temporal resolution (tens or hundreds of milliseconds). EEG is the preferred 

technique for most BCI researchers because of its superior temporal resolution [30], non-

invasiveness [31], [32] portability, cost effectiveness and easy availability, and also the main 

concern of our present study. MEG measures magnetic fields generated by electrical activity 

of the brain, which is proven to be more sensitive than EEG. It offers higher spatial resolution 

than EEG [33] and has been used in rehabilitation of stroke patient [34], [35]. fMRI deals 

with magnetic properties of blood to measure blood oxygenation from blood oxygen level 

dependent (BOLD) response, which has been found in correlation with neural activity inside 

the brain [36], [37]. fMRI provides high spatial resolution (approx. 1millimeter-1centimeter) 

and produces satisfactory result in real-time robotic arm control through motor imagery task 

[38], [39]. However, MEG and fMRIs are bulky and expensive due to presence for 

superconducting magnets. On the other hand, portable brain imaging instrument such as 
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fNIRs works by projecting near infra red light having the range of 700-1000 nanometer [40] 

into the brain from the surface of the scalp to determine changes in tissue oxygenation and by 

measuring optical changes at various wavelengths when the light is reflected back. Unlike 

MEG and fMRI, fNIRs is inexpensive and portable along with the merit of non-invasiveness 

[41] and is considered to be a promising tool in near-future use. A brief overview of EEG 

acquisition device is provided below. 

      EEG acquisition device noninvasively records the signals from human scalp by using 

metal electrodes, preferably made of Ag/Ag-Cl. The amplitude of the recorded signal is found 

100 µV when measured on the scalp. The sampling rate at which EEG captures brain signal 

lies between 200 and 2000 Hz for clinical and research purposes; however, modern EEG 

devices are capable of recording at sampling rates above 20,000 Hz if desired. EEG signal can 

be further sub-divided into a number of specific frequency bands including i) delta (1-4Hz), 

ii) theta (4-7Hz), iii) alpha (8-12Hz), iv) mu (8-13Hz), v) beta (12-30Hz) and vi) gamma 

bands (25-100Hz) [42]. Table 1.1 provides source of origin, bands of frequency and cognitive 

tasks associated with different sub-bands.  

Table 1.1 Frequency bands with their associated brain regions and cognitive activities 

Band Name Frequency Source of Origin Cognitive Activity/task 

Delta 1-4 Hz Deep cortex Analysis of sleep stages 

Theta 4-7 Hz Thalamus Deep meditation, emotion recognition, 

olfactory perception 

Alpha 8-12 Hz Visual cortex  Drowsiness detection, determination of 

eye-closed relax condition 

Mu 8-13 Hz Sensorimotor cortex Determination of physically rest condition  

Beta 12-30 Hz Motor cortex Motor activity 

Gamma 25-100 Hz Somatosensory 

cortex 

Visual perception, learning, attention, 

memory 

In this thesis, we have used two different kinds of EEG acquisition devices. The first one is 

the expandable EEG-1200 model from NIHON KOHDEN, which is well-equipped for all in-

patient/human-subject EEG-diagnostic applications, and the second is 14-channel wireless 

EEG headset, called EMOTIV. EEG-1200 provides the ideal customized configuration, which 

is applicable for both the collection of routine EEG data and long-term monitoring of 

intracranial activities. This particular model consists of 32 channel amplifier, of which 24 

channels are dedicated to measure EEG signals and the remaining 8 channels are dedicated 

for SpO2, EtCO2 and DC. This device has successfully been utilized in the experimental 
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procedures involved in cognitive failure detection of the vehicle drivers (described in chapter 

3) and tactile perception of human subjects (described in chapter 4). EMOTIV is a wireless 

headset version of the stand-alone device, which is used to decode olfactory perceptual-ability 

of human subjects (described in chapter 2). Fig. 1.2 (a) and (b) present both the 24-channel 

EEG data acquisition system and the wireless 14-channel EEG headset, which are available in 

the Artificial Intelligence Laboratory, Jadavpur University. 

 

1.2.2 EEG Electrodes 

Accurate decoding of EEG signals for different cognitive tasks requires the correct placement 

of EEG electrodes or channels on the human scalp. The possible use of EEG electrodes for 

both stand-alone and wireless EEG systems and associated brain lobes/regions for different 

cognitive functionalities are presented in Table 1.2. The placement of EEG electrodes at the 

corresponding brain regions/lobes (as referred to the Table 1.2) is followed by internationally 

standardized 10-20 electrode placement system [43]. This system is based on the relationship 

between the location of an electrode and the underlying area of cerebral cortex. The “10” and 

“20” refer to the fact that the actual distances between adjacent electrodes are either 10% or 

20% of the total span between the nasion to the inion regions over the scalp. Nasion is the 

intersection between the forehead and the nose, and the inion is the lowest point of the skull 

on the back just above the neck.  

              

(a)                                                                                 (b) 

Fig. 1.2(a)-(b) EEG devices used for the experiments performed for decoding cognitive tasks 

from brain signals. (a): 24-channel EEG data acquisition system, (b): 14-channel wireless EEG 

headset 

(a) 

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Inion
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Fig. 1.3 shows the International 10-20 electrode placement system on the cerebral cortex, 

where the first letter of each brain region refers to identify the lobe of electrode placement and 

a number to identify the hemisphere location. The “C” letter is only used for identification 

purposes only, since no central lobe exists.  Usually, electrodes positions in 10-20 system are 

encoded in decimal number, where even numbers are assigned to electrodes in the right 

hemisphere and odd numbers in the left hemisphere. It is important to mention here, among 

24 electrodes used in our present (Nihon-Cohden) EEG stand-alone system, two reference and 

one ground electrode are reserved for placement on the ear-lobe or mastoid, and hence only 

21 channels are distributed across the scalp to acquire brain signals. 

 

1.3 BRAIN SIGNALS  

During execution of different cognitive tasks, EEG signals released by the brain indicate certain special 

characteristics, which can be detected from the temporal changes in signal wave shapes. An EEG 

signal, if elicited in response to specific events or stimuli is referred to as Event-related Potential 

(ERP) [44]. Certain ERPs liberated in response to sensory stimuli with relevant discrete phase-locked 

events are referred to as Evoked potential (EP) [45]. EPs are best described by their polarity (positive or 

negative) and latency counted from the onset of stimuli. 

Table 1.2 EEG channels and associated brain regions for different cognitive functionalities 

 

Cognitive Functionalities 

Brain 

Lobes/ 

Regions 

EEG Electrode Positions from 

21-Channel EEG 

System 

14-Channel 

EEG System 

Emotion, olfactory recognition Pre-frontal Fp1, Fp2 AF3, AF4 

Thinking, problem solving, reasoning, 

planning, higher level cognition 

Frontal F3, F4, Fz, F7, F8 F7, F8, F3, F4 

 

Understanding spatial relationship, 

verbal memory, processing tactile and 

sensory information 

Parietal P3, P4, Pz P7, P8 

Vision Occipital O1, O2 O1, O2 

Motor imagery and motor-execution Motor 

cortex 

C3, C4, Cz FC5, FC6 

Language skills, speech perception, 

behavior, memory, hearing 

Temporal T1, T2, T3, T4, T5, 

T6 

T7, T8 
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Among the EPs, N100, P200, N200, P300 [46], [47], Slow cortical potential (SCP) [48] and 

Error-related potential (ErrP) [49] need special mention. One special type of EP, which 

exhibits natural responses to visual stimulations at specific frequencies, is referred to as 

Steady-state visual-evoked (SSVEP) [48] response. Besides, certain EEG signals are induced 

spontaneously as a response to specific cognitive tasks without any stimuli. These ERPs 

liberated in absence of any stimuli represent frequency-specific changes and are generally 

referred to as non-phase locked ERPs [50]. A well-known example of such ERPs is Event-

related de-synchronization/synchronization (ERD/ERS) [51], where an event-related decrease 

in power is noticed at the onset of motor imagery/execution. This phase of the signal is 

referred to as Event Related De-synchronization (ERD). After the motor 

imagination/execution is over, the signal-power continues increasing until the original signal 

power is restored. The latter phase of the signal is referred to as ERS. This section provides a 

detailed description of P300 and ERD/ERS signals, which play significant roles in this thesis 

and also a brief overview of other well-known EEG signals popularly used in decoding 

cognitive tasks.   

1.3.1 P300 Event-Related Potential 

The most extensively studied ERP is the P300 wave, which is characterized by a positive 

deflection after 300 millisecond counted from the onset of the stimulus (Fig. 1.4). It 

 

Fig. 1.3 10-20 electrode placement system for 21-channel EEG device. 

F: Frontal, Fp: Pre-frontal, C: Motor cortex, T: Temporal, P: Parietal and O: Occipital 
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represents the transfer of information to consciousness. P300 wave is generated as a response 

to recognition of rarely occurring/meaningful oddball stimuli [52]. In most BCI studies 

concerning P300, the subject is asked to recognize a “target” stimulus from a regular set of 

stimuli.  

P300 is a positive going wave with an expected large amplitude (possibly the largest 

amplitude) at the Pz electrode (of the parietal lobe), a very small amplitude at the Fz electrode 

(of the frontal lobe) and of moderate amplitude at the Cz electrode (of the motor cortex 

region) [53]. The functional areas of the brain related to P300 generation and their 

corresponding EEG electrode locations are shown in Fig. 1.4.  

 

During the dual task performance, it has been observed that the amplitude of the P300 is 

sensitive to the amount of attention-related resources [46], in fact, it decreases with the 

increase in difficulty involved in primary task, regardless of the other factors related to the 

primary task [54], [55]. For cognitively impaired individuals, the amplitude of the P300 wave 

is smaller than for age-matched healthy subjects. 

1.3.2 Event-Related De-synchronization/Synchronization (ERD/ERS) 

The ERD/ERS signal carries a typical signature of motor imagery (MI) and/or motor 

execution (ME) tasks, and hence this signature can be used to recognize the movement-related 

cognitive activity performed by the subject. It has been experimentally been found that there 

is association between ERD/ERS signals with motor imagery, active and passive 

proprioception (with and without muscle contraction) as well as active and passive motor 

movement (with and without voluntary effort) [56]. The ERD represents a decrease in EEG 

 

Fig. 1.4 The origin and nature of P300 signal 
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power while the ERS represents an increase in EEG power [51]. It is apparent from Fig. 1.5 

that at the onset of MI/ME, there is a drastic negative going change in signal amplitude 

representing de-synchronization, with a subsequent synchronization with original EEG.  

 

In [57], Pfurtscheller and Neuper confirmed that a voluntary movement experiment may 

experience the existence of three different types of ERD oscillation at the same electrode 

position over the sensorimotor (SMR) area. The mu-rhythm ERD, having frequency ranges 

from 10Hz to 12Hz, starts 2.5sec before the onset of movement, reaches maximum de-

synchronization shortly after the onset of the movement and finally attains the baseline level 

after few seconds. The central beta-rhythm ERD (14-18 Hz), in contrast, displays a shorter 

lasting ERD during the initiation of movement followed by a maximum ERS with post 

movement. Lastly, gamma-rhythm ERD, which has frequency ranges from 36Hz to 40Hz and 

rarely exists in human EEG-related experiment, exhibits sharp power increase shortly before   

the onset of the movement. Pfurtscheller, further along with Lopes Da Silva [58] and Neuper 

[59], also categorized the association of various ERD/ERS pattern with active or self-paced 

movement-related task in the following way: i) pre-movement ERD, which appears as contra-

lateral SMR rhythm in the alpha and beta ERD, ii) ERD during motor execution, which 

appears as bilateral symmetrical alpha and beta ERD, and iii) post-movement ERD, which 

appears as contra-lateral-dominant beta-rebound or beta-ERS within the first second after the 

offset of the movement.   

 

 

Fig. 1.5 The origin and nature of ERD/ERS signal 
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1.3.3 Other Signals 

Besides P300 and ERD/ERS, a few more signals that need special mention are outlined 

below. SCP is used to modulate ERPs with electrically positive or negative shifts that last 

from a few hundred milliseconds up to several seconds [60]. During active or self-paced 

movements, two independent components of SCP can be observed: i) potential occurring 

while the subjects intend or anticipate an upcoming movement [61], and ii) potential 

occurring at the time of motor execution [62]. Another unique brain signal that is available in 

literature [63]-[65], is acquired by EEG system to detect errors while either a BCI delivers 

erroneous feedback [66], [67] or human subjects recognize that error [68]. This pattern is 

observed while the brain elicits a sharp negative-going signal (Error-related negativity or 

ERN), followed by a small positivity, followed by a  negativity again from fronto-central and 

centro-parietal lobes, referred to as ErrP, which is also further utilized to correct the erroneous 

action [64], [69]. The frontal and central EEG electrode locations exhibit the largest ERN 

response and it is sensitive to the intention and motivation of the participant. ERN latencies 

can also be manipulated through rapid feedback where subjects show shorter ERN peak 

latencies during incorrect responses. This signature can provide a clear indication of errors 

during the motor-imagery BCI experiments and hence can be employed in the BCI control 

system as an error feedback [63]-[69]. Unlike P300, an increase in EEG response, termed as 

SSVEP is visible around the frequency of a visual stimulus when the stimulus is modulated 

periodically as a function of time [70] at that frequency. It is observed that in most research 

associated with SSVEP, the frequency of the stimulus is considered above 8-10Hz because of 

the nearly sinusoidal nature of SSVEP signal above 10Hz. Besides the above well-known 

signals, we need to draw readers’ attention to a special kind of ERP, called olfactory event-

related potentials (OERP), which offers high sensitivity to olfactory function in cortical 

response to olfactory stimuli [71]. It has also been reported that patients suffering from 

multiple sclerosis or Alzheimer’s disease usually experience olfactory disorder [72], [73]. 

Table 1.3 summarizes the list of the origin, latency and use of the well-known EEG signals 

that have been mentioned in this section.  
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1.4 REAL-WORLD PROBLEM-SOLVING USING EEG SIGNALS 

Design of a BCI problem to reach a fixed target using standard brain signals is of great 

interest to the BCI-research community. The challenge here lies in optimal formulation of the 

problem to solve the target objective accurately within a given time limit. Until now, there is 

no well-known approach to address the above issues. We here illustrate the problem 

formulation strategies for a few selected target problems. 

1.4.1 Problem-Solving with Single EEG Signal  

We here address two problems. The first one is concerned with BCI speller, while the second 

one deals with cursor position control with a single BCI signal. 

A. P300/SSVEP Signal-based BCI-Speller  

BCI spellers are useful media of communication for people with neuromuscular disability. 

Here, the subject can perform mental selection of letters/numbers from a two-dimensional 

array of alphanumeric characters in sequence to construct words/sentences for communication 

to a computer [91], [92]. The BCI signals that are popularly used for BCI speller are SSVEP 

or P300. 

    To utilize the oddball paradigm of P300, four different techniques of BCI design are 

popularly used. The most popular approach, called the Row-Column (RC) selection approach 

involves flashing individual rows/columns, so that a row/column containing the target 

character can be selected [92] from P300 evoked response. The second alternative but tedious 

approach is to allow users to select single character (SC) with a delay between flashes [93] by 

oddball paradigm, perhaps, is to flash individual characters randomly on the array [94]. The 

third approach, called region-based (RB) approach [94] flashes a region of same characters 

jointly to help users easily apply oddball paradigm without mistake to select the flashing 

character. The last approach, called checkerboard (CB) speller [93], [95] is an extension of 

the RC approach, to eliminate possible ambiguity in selecting two consecutive flashing 

characters on the same row/column by fixing them on consecutive black and white tiles as in 

a checkerboard. In this way, CB speller reduces the inherent noise due to row/column 

association [93] as well as enhances information transfer rate (ITR) [96]. 

    The principle of selecting characters in SSVEP based BCI speller is similar to SC/RC-

based BCI, except the fact that the characters or row/columns are flickered at specific 

frequency to elicit SSVEP. When the periodic presentation (flicker) of a character or 

row/column is significantly high (>6 Hz), a steady-state signal, called SSVEP is elicited that 

resonates at the flickering rate of the character or row/column and its multipliers. 

Now, to select the right EEG signal for BCI-speller, a user needs to compare the relative 

merits of BCI design using P300 and SSVEP and the user-friendliness of the individual 

modalities as well. We here introduce three metrics to examine the relative merits of the two 
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signals. These are i) training time (TT), ii) classification accuracy (CA) and iii) information 

transfer rate (ITR). TT is a measure of absolute training time required to enable the subject to 

use the BCI-speller. ITR of a BCI system, as given by (1.1) [97], depends on i) the number of 

cognitive samples recognized per second, ii) number of cognitive trials and iii) classification 

accuracy. 

                                    






 


1-N

C
logC)-(1ClogCΝlogΝΙΤR 222t

1
                                     

where, tΝ  
is number of cognitive samples/second, Ν is number of cognitive trials and C is 

classification accuracy. 

      Table 1.4 offers a comparative framework of SSVEP and P300 based BCI speller. 

Table 1.4 Basis of selection of EEG signals for BCI speller 

Problem EEG 

Signals 

Use of EEG 

Signals 

TT in 

Month 

%CA   ITR in 

bits/min 

Basis of selection 

of EEG Signal 

 

BCI 

Speller 

P300 Oddball 

paradigm 

No 

training 

86 ~35/10-25 

(for healthy/ 

disabled )  

 

SSVEP, because of 

higher %CA and 

ITR  SSVEP Brain signal 

modulation  

No 

training  

91.35 58-166 

TT fortunately is zero for both the signals. The average classification accuracy (CA) of P300-

RC speller using linear discriminant analysis (LDA) classifier varies from 86% for healthy 

person in dynamic environment, whereas the average accuracy is dropped to 62% when 

experiments conducted on persons having motor impairments and suffering from locked-in 

syndrome [98]. In another study [99], mean classification accuracy of P300 speller using a list 

of standard classifiers including LDA and its variants, support vector machines (SVMs) and 

its variant, and neural network is found 62% to 72%, when experiments performed on 

disabled persons, particularly amyotrophic lateral sclerosis (ALS), middle cerebral artery 

stroke, and hemorrhage patients, who are suffering from motor and speech disabilities. 

Besides P300 speller, depending on i) stimulus preparation, ii) multiple target coding, and iii) 

target identification, mean classification accuracy of the SSVEP speller is found 91.35% 

[100] using canonical correlation analysis (CCA). According to ITR analysis, SSVEP 

outperforms P300 with an average ITR up to 58 bits/min [101] and can reach up to of ~166 

bits/min [100], whereas P300 provides much lower ITR of ~35 bits/min [100], which is 

further reduced to 10-25 bits/min for disabled subjects [102]. Therefore, it can be concluded 

that SSVEP proves to be better modality for using BCI spelling in terms of CA and high ITR, 

if proper design strategies will be implemented to make the system more familiar to the 

patients suffering from multiple sclerosis.   
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B. SCP or ERD/ERS (Sensorimotor) signal-based Cursor Control 

Cursor control is a well-known BCI application, where users suffering from multiple sclerosis 

intend to move a cursor only by means of brain activity towards a target appeared on the 

monitor. To accomplish this, different types of control strategies are considered: one-

dimensional, two-dimensional and four-dimensional. However, one- and two-dimensional 

cursor control problems are more popular than their four-dimensional counterpart because of 

its low average classification accuracy (51-60%) [103]. One-dimensional control strategy 

provides cursor movement in either vertical or horizontal direction, whereas two-dimensional 

control strategy includes the both. The cursor control employs the use of well-known BCI 

signals including ERD/ERS or sensorimotor (SMR) rhythm and SCP. ERD/ERS response is 

elicited when users perform left/right/forward/backward hand motor imagery in association 

with left/right/top/bottom cursor movement. A clear discrimination between low-amplitude 

beta-ERD and high-amplitude beta-ERS responses is utilized to identify successful 

completion of cursor movement. The distance between cursor and the target is divided into 

predefined steps, where in each step users perform the above motor imagery task to bring the 

cursor closer to the target. As soon as the cursor reaches the target, users stop to plan the 

intended motor imagery for cursor movement, and hence no further beta-ERS is generated.  

    Besides ERD/ERS or SMR rhythm, SCP is used to control the movement of a cursor using 

user‘s amplitude shifts. Positive shifts in amplitude ensure the cursor movement into the 

upper half, whereas negative shifts provide the direction of cursor in lower half of the 

computer screen. A trial is rejected (regarded as invalid), if either SCP changes remain below 

0.5 µV (no response) or the SCP shift exceeds 200 µV (artifact caused by involuntary 

movements). Here, in both the cases, subjects are instructed to self-regulate or control the 

amplitude of their SCP or ERD/ERS (SMR rhythm) to control the movement of the cursor 

either at the top or the bottom of the computer screen (for one-dimensional control), where the 

vertical movement is controlled by the amplitude of SCP or SMR.     

    Here too, selection of right signal for cursor control is performed by comparing their 

performances across the three metrics, as mentioned before. Successful completion of target 

reach is reinforced by an animated face on the computer screen and a chime, which helps to 

evaluate the classifier performance. TT for both is significantly high, especially from several 

months to 1 year. The classification accuracy (CA) of controlling the cursor in one dimension, 

such as either vertical or horizontal by using SCP is found around 70-80% [104]. On the other 

hand, control of the cursor movement using SMR or ERD/ERS is achieved with average 

classification accuracies of ~81% [105] (for one-dimensional control) and 80% [103], [106] 

(for two-dimensional control). There. Too exists mention of higher classification accuracy 

(>95%) for one-dimensional cursor movement by controlling SMR rhythm [107], [108]. From 

the system realization point of view, processing of SCP response makes the system relatively 
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slower, which is by ITR of 15-20 bits/min [105], as given in Table 1.5. Besides, ERD/ERS 

attains a higher ITR of 20-25 bits/min [109]. Although both modalities need significant 

training time, we conclude that ERD/ERS serves better online control for cursor movement 

because of its relatively higher ITR. 

Table 1.5 Basis of selection of EEG signals for cursor control 

Problem EEG 

Signals 

Use of EEG 

Signals 

TT in 

Month 

%CA ITR in 

bits/min 

Basis of 

selection of 

EEG Signal 

 

Cursor 

Control 

SCP Slow 

positive/negative 

amplitude shifts 

Several 

months to 

1 year 

70-80 15-20   

ERD/ERS for 

its higher CA 

and ITR ERD/ 

ERS 

(SMR) 

High amplitude 

beta-ERS 

synchronized to 

motor imagination    

Several 

months to 

1 year 

80- >95 20-25  

1.4.2 Problem Solving with Mixed EEG Signals 

The limitations in using single EEG signal are eliminated by incorporating two or more 

signals jointly in order to perform a specific cognitive task. BCI system using mixed signals is 

known as multi-modal or hybrid BCI system. This section provides some well-known BCI 

applications using mixed signals that are already prevalent in the existing literature.  

A. Multi-modal BCI speller 

The use of P300 and SSVEP in BCI speller single-handedly includes few limitations, which 

has already been discussed in this section. By keeping this in mind, an attempt has been taken 

to design an asynchronous BCI speller by combining SSVEP with P300 potential in order to 

reduce the error exhibited by P300 in presence of target character at the same row or column 

[110]. The random flashes and flickers of P300 and SSVEP respectively, in general, are 

utilized to select row/column and target characters. In a particular speller [110], row/column-

wise target selection using P300 can be performed once control state is detected by SSVEP. 

Control state detection is achieved by eliciting SSVEP response when the user gazes at the 

screen, thus confirming that the user intends to send a command. Besides row/column 

selection, sub-area wise target selection by 2-D coordinate is also an alternative choice [111], 

where SSVEP response, after elicited by a particular flickering frequency is used to select a 

sub-area of user‘s choice. P300 here is used to select the target character present on the 

chosen area by superimposing the character onto the periodic flickering. The blocking state of 

SSVEP, called SSVEP-blocking response is proven equally useful, in which change in 



19 

 

luminance of target character from light to dark state during target selection dismisses the 

natural SSVEP response. In contrast to P300-SSVEP BCI, ErrP can be used in conjunction 

with the P300 speller to automatically detect the error during spelling task [112], [113], [69]. 

In this scheme, user utilizes the elicited ErrP to cancel a character selected by his P300 

response, or alternatively, to select the second most possible character according to the 

elicited P300 response [92].    

    Like single signal selection, here too, selection of composite/mixed signals for a hybrid-

BCI is an important issue. Sometimes, BCI researchers evaluate some pre-defined metrics for 

both unimodal and multi-modal BCI for determining whether hybrid BCI outperforms its 

single-modal counterparts. For both P300-SSVEP and P300-ErrP-based hybrid BCI speller, 

the previous three aspects need to be discussed again: i) training time (TT), ii) classification 

accuracy (CA) and ii) information transfer rate (ITR). The former hybrid BCI speller has the 

advantage of high ITR and almost no or zero training time, which is already proven merits of 

both P300 and SSVEP independently. It is observed that use of SSVEP signals to evoke P300 

potentials enhances overall speed and accuracy of the hybrid speller [111], [114], [115], when 

compared with that of the speller using P300 or SSVEP only. The hybrid P300-SSVEP 

speller, as specified earlier, is capable of transferring information at a rate of 30.81 bits/min 

with an average classification accuracy of 94.44% [110]. Although the ITR of the hybrid 

P300-SSVEP speller is not quite impressive in comparison to its unimodal counterpart, it has 

been improved by changing the pattern of SSVEP stimulus. In particular, with the changed 

SSVEP stimulus, the corresponding ITR of sub-area/location (SL) mode speller and row-

column (RC) mode speller have been increased to 44.70 bits/min and 53.06 bits/min 

respectively [111].  

      On the other hand, for P300-ErrP hybrid speller, user requires more training time because 

of the liberation of ErrP signal correctly when needed. Well-known evolutionary approach, 

such as, genetic algorithm (GA) is utilized to detect P300 and ErrP online and at the 

preliminary level,  the average classification accuracy has been found roughly 90% and 60% 

respectively [112]. Literature [116] also reveals that P300-ErrP provides the ITR of 19.56 

bits/min, when multi-dimensional Gaussian classifier is used for classification with mean and 

standard deviation of each of the two Gaussians as model parameters. From the above 

discussion, it may be suggested to select P300-SSVEP mixed signal for hybrid BCI speller 

because of no training time, and higher classification accuracy and ITR, as compared with 

P300-ErrP speller.  Fig. 1.6 provides a general scheme of P300-SSVEP speller during the row 

and character selection using SSVEP and P300 responses respectively. 
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B. Multi-modal Cursor Control  

The use of mixed modality in 2-D BCI cursor control is of four kinds: i) P300 and ERD/ERS, 

ii) P300 and SSVEP, and iii) ERD/ERS and SSVEP, iii), and iv) ERD/ERS and ErrP. 

Initially, in the first case [117], vertical movement of the cursor is controlled by user‘s P300 

response, by utilizing which user can select any of the given vertical movements including a) 

moving upward, b) moving downward or c) no vertical movement. On the other hand, 

ERD/ERS, as elicited from the scalp of the user, is translated into a continuous value that 

determines the direction and velocity of the horizontal movement. This system not only 

provides two independent control signals that are based on P300 and ERD/ERS, but also 

offers cursor movement from any arbitrary position to an arbitrary target position. Later, the 

earlier work is extended by hybrid task-based approach for target selection [118]. Here, once 

the cursor hits the target, user gets a chance to decide whether the target is correct or 

incorrect. The correct or incorrect target appears on the computer screen as green or blue 

squares respectively. The user has a choice of focusing on a pre-defined flashing button if the 

target is corrected one, otherwise performing left/right hand motor imagery (MI) without 

focusing on any button to ensure the rejection of the target. The user maintains an idle state of 

MI while focusing on the flashing button in order to select the correct target, and thus 

belonging to one class: the idle state of MI with P300. The second class of this two-class 

classification problem is MI without P300 during the rejection of target.   

    The second hybrid BCI paradigm provides a novel 2-D cursor control system by using 

SSVEP and P300 to the users, who are unable to liberate ERD/ERS well, but can generate 

SSVEP and P300. In this case [119], users are instructed to utilize their EEG response to 

control the direction and speed of the cursor instead of controlling horizontal and vertical 

movement of the cursor. Here, an SSVEP response corresponding to a specific direction 

 

Fig. 1.6 Hybrid BCI speller using P300 and SSVEP signals jointly 
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(left/right) is recognized by users‘ attention, which results in turning of the cursor either 

counterclockwise or clockwise. Similarly, the cursor gets accelerated or decelerated when 

P300 potential in association with top or bottom flashing stimulus is elicited by counting its 

flashing time. A novel use of SSVEP response in cursor control includes the confirmation of 

reach to the target by the cursor. This is estimated by calculating the distance between the 

center of the cursor and the center of any target. The reach is confirmed if the above distance 

is shorter than ½ times the sum of the diagonal side lengths of the target and cursor plus a 

preset threshold.  

     The third kind, the SSVEP-ERD/ERS-based cursor control follows similar approach like 

P300-ERD/ERS based cursor control, such as, utilizing SSVEP to control one dimension of 

movement, while ERD/ERS to control another dimension [120]. In general, SSVEP and ERD 

responses are simultaneously elicited, when the users keep their visual attention for 

controlling cursor movement in the horizontal direction and simultaneously perform motor 

imagery for controlling the vertical position of a virtual ball.  

     In the last multi-modal BCI approach, ERD/ERS and ErrP signals are jointly used to 

control one-dimensional step-wise movement of a cursor [67], [121]. Here, ERD/ERS 

potential evoked by cursor movement is decoded to indicate correct or erroneous movement. 

The cursor is returned to the previous position if the movement is found erroneous.   

      Now, to select right combination of mixed signal for cursor control is a challenging one, 

since the performance of cursor control depends on the task assigned to the subjects, where 

the task combinations, as designed in different literature [117]-[121], vary across the subjects. 

Besides, the performance also depends on various factors including training time, literacy 

rate, timeout interval, number of electrodes, target size as percent of workspace and 

movement time [67]. Based on these factors, existing literature refer a number of metrics to 

evaluate the performance of their control algorithms. Success rate or hit rate in terms of 

average percentage classification accuracy and the average control time to complete each trial 

are the two most important measures among these. The success rate is usually referred to 

describe the degree of accomplishment of the task (here, cursor control), and in the present 

case, is calculated by the number of the targets hit successfully over the number of all targets 

required to finish. The average control time or task completion time is often referred to the 

time taken from the cursor getting moved to hitting the desired target, including the 

confirmation time.  

The average success rate of P300-ERD/ERS based cursor control scheme is 90.75%, 

whereas average control time of each trial is 28 sec, when Fisher‘s linear discriminant (FLD), 

step-wise linear discriminant analysis (SWLDA) and linear support vector machines (L-

SVMs) are considered as classifiers. The reason behind the large control time is relatively 

small-sized cursor and target, and large time consumed for triggering and detecting P300 
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response [117]. In [118], the average success rate is increased to 93.99%, whereas, task 

completion time also reduces to 18.19 sec, when experimented using L-SVM classifier with 

common spatial pattern (CSP) features. For P300-SSVEP-based cursor control [119], the 

performance of the paradigm depends on the success rate for three control schemes: (i) 

average success rate of turning the cursor in clockwise and anti-clockwise direction using 

SSVEP (direction control), (ii) average success rate of non-turning command for the cursor, 

and only changing speed of the cursor using P300 (speed control), and (iii) average success 

rate of acceptance and rejection of the final target position using SSVEP (confirmation of 

reach). It is found that the average success rates for (i), (ii) and (iii) are 95%, 70% and >96%, 

whereas the over-all average success rate of cursor control across all subjects is 95.88% with 

a clear indication that direction control and confirmation of reach using SSVEP outperforms 

the speed control using P300. It is also indicated in [119] that the average task completion 

time is 36.53 sec, which is quite larger because of the inclusion of three control schemes. For 

ERD-SSVEP-based and ErrP-ERD/ERS-based cursor control, average success rate is found 

quite lower than the previous two paradigms, and is reported as 60% [120] and 73.1% [121] 

respectively. During ERD-SSVEP based cursor control, motor imagery (MI) using ERD is 

classified by selecting CSP and LDA as feature-classifier combination, whereas, SSVEP 

classification is done by taking logarithmic band power as feature in conjunction with LDA. 

On the contrary, EEG electrodes and frequency are considered as features for controlling 

cursor movement using ErrP and ERD/ERS [121]. This discussion comes to an end with a 

special mention that higher classification accuracy of 80% is reported for ErrP recognition in 

[121], when used to indicate correct or erroneous trial, and also reduces MI decoding error 

from about 30% to less than 9%. 

C. Multi-modal Wheelchair/Vehicle Destination Control 

Wheelchair/vehicle destination control is another well-known BCI application, which 

provides an interface for severely disabled individuals to move their wheelchair or vehicle at a 

desired destination. Two types of mixed signals including i) P300 and Mu-Beta and ii) P300 

and SSVEP can be used to serve the above purpose. Usually in the first case, discrete 

decisions, such as, selection of one out of different control options are made by using P300 

response, whereas, continuous decisions including control of the movement of the wheelchair 

are performed by using mu-beta rhythm [122]. Therefore, wheelchair control includes various 

control commands: i) destination selection, iii) navigation and iii) stopping command [123]. 

The destination of the wheelchair motion, as mentioned earlier, is fixed by selecting one of 

the items among a list of destinations using P300 modality. Once the destination is selected, 

an autonomous motion control is introduced. During navigation, the motion of the wheelchair 

is followed by virtual guiding paths, where a proximity sensor, mounted in front of the 

wheelchair protects the wheelchair from any frontal collision [123], [124]. The controller 

automatically stops the wheelchair in presence of any obstacle within 50cm. Now, to generate 
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stopping command on the reach of wheelchair at the destination, two approaches are available 

in the literature [123], [124]. One approach considers a fast P300 algorithm instead of the 

regular P300 response, since the regular P300 response, as elicited from the same panel where 

other command buttons are present fails to stop the wheelchair in a decent time [124]. 

Therefore, an improved algorithm is designed to make the users to concentrate on one single 

button, labeled ―STOP‖ to generate faster P300 response. Although it reduces the reaction 

time, however, generates very high false acceptance (around 2.5%), which makes this 

approach inapplicable. The second approach implements mu-beta rhythm, which is liberated 

from the imagination of arm movement [123]. To accomplish this, a cursor movement is 

controlled on the screen by performing arm motor imagery and the position of the cursor is 

considered for presenting visual feedback for mu-beta-based system. This approach holds 

same response time as the previous approach, however, a rate of zero false acceptance is also 

occurred, which makes the second approach is more reliable for wheelchair control 

application. In [125], navigation of the wheelchair is controlled using left and right hand 

motor imagery (MI), and the stopping command is generated by using P300 response. Every 

time when the navigation command updates the current position of the wheelchair, this 

update, in turn, triggers a detector, which detects whether the current position falls into areas 

corresponding to device control state. If detected, then controller stops MI detection and 

switches to the device control state. In this state, the control panel is presented to the subject 

to elicit P300 response as oddball paradigm. The system again reverts to the navigation state 

once the subject selects the ‗quit‘ command from the control panel, and the loop continues. It 

is important to mention here that the controller automatically switches the system state if 

‗quit‘ is not detected even after six commands.   

      Although the response of MI-based stopping command is fast, it is often used to control 

direction of the wheelchair [125, 126]. This motivates the researchers to develop a new hybrid 

system for wheelchair control using P300 and SSVEP [127], [128]. In [127], four groups of 

buttons, one large button in the middle and eight small buttons surrounding it, are displayed 

on computer screen, where, all buttons in each group flicker at a fixed frequency. For 

example, 6.0Hz, 6.67Hz, 7.5Hz and 8.75Hz frequencies are selected for the four groups and 

SSVEP is evoked at frequency related the given frequency of a particular group. At the same 

time, four large buttons of the four groups flashes randomly to evoke P300 response. The 

system detects the target group if both SSVEP and P300 occur in the same group of buttons, 

thereby enabling the user to elicit SSVEP and P300 simultaneously while focusing on one 

group of buttons. This approach is utilized to produce ―go/stop‖ command for controlling 

wheelchair movement. A slightly different approach is found in [128], which includes two 

components: one is selection components based on P300 response, and the other is 

confirmation component based on SSVEP response. Here, the desired destination of a vehicle 

is selected using P300 response from a 3×3 matrix of characters, each character representing a 
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predefined destination. Once the selection is over, SSVEP response associated to two 

flickering checkerboards confirms the acceptance (12Hz)/rejection (13Hz) of the desired 

destination.       

Selection of right composite signals for wheelchair/vehicle destination control here 

depends on a number of performance metrics including average percentage classification 

accuracy and control time. Study [125] reveals that the average classification accuracy as well 

the control time for MI (P300) varies from around 81-88% (around 76-84%) and around 40-

71secs (around 48-78secs) respectively across all subjects when the wheelchair navigates 90°, 

180° and 360°, which is presented in Table 1.6. 

Table 1.6 Average classification accuracy and control time for MI-P300 wheelchair control [125] 

Degree of 

Navigation 

Average Classification Accuracy (%) Control time (seconds) 

Hybrid Control 

using MI 

Hybrid Control 

using P300 

Hybrid Control 

using MI 

Hybrid Control 

using P300 

90° in the left 81.07% 84.67% 40.3 50 

180° in the 

right 

84.47% 76.25% 71.3 48.8 

360° 88.09% 84.13% 64.5 78.8 

 On the other hand, using P300 and SSVEP signals, the average classification accuracies of 

vehicle control in the laboratory and real driving environment are found 99.07% and 98.93% 

respectively, with average control time of ~24secs and ~25secs respectively [128]. The 

proposed scheme, as compared to previous study [129], improves the accuracy of destination 

selection in comparison to the P300-based selection system, particularly for those participants 

who may have a relative low accuracy in using P300 BCI. Furthermore, it is more useful than 

other motor-imagery based selection system for those persons who suffered from severe 

neuromuscular disorders such as the ALS, multiple sclerosis, brainstem stroke and cerebral 

palsy. In [a hybrid bci], there is also an indication of improved response time (5.28secs) to 

generate a ‗go/stop‘ command in motion-condition, which is quite significant.  It is also 

important to mention that this hybrid system outperforms its competitors [130], [14] by 

attaining comparatively lower false acceptance rate of 0.52/min and a higher ITR of 

22.11bits/min. Based on the existing results, it can be concluded that P300-SSVEP-based 

hybrid control is more advantageous for its higher average classification accuracy, lesser 

command time, and a high ITR, if efforts are taken by the researchers to reduce its false 

positive rate.   
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D. Multi-modal Artificial Limb Control 

Artificial limb control using mixed signals includes three combinations of composite signals: 

i) ERD/ERS and SSVEP, ii) MI, P300 and ErrP and iii) MI and ErrP. Each modality has its 

merits and limitations. Here, we discuss each hybrid modality and its performance one by 

one. There exist ample amount of use of ERD/ERS and SSVEP for controlling the movement 

of artificial limb/prosthetic arm and is available in [131]-[137]. In [131], authors use a hybrid 

interfacing system to control a two-degree of freedom robotic arm, where SSVEP is applied 

to control the elbow function using a binary classification, while ERD/ERS using imagined 

brisk feet movement for opening and closing of a gripper. The authors have made intelligent 

use of the SSVEP/ERD combination by using imagined feet movement rather than left/right 

hand movement, because hand movement (real or imagined) causes activation mainly in the 

contralateral hemisphere of the brain, but still causes activity in the lateral hemisphere, which 

can lead to increase in false positive rates. Furthermore, using ERDs from feet movement 

only creates two possible states (movement/idle), which when compared to the three states for 

hand movement (left/right/idle) also increases the chance of false positive rates. The overall 

offline accuracy of MI and SSVEP is found around 87% and 91% respectively, which is a 

good result however average time needed to complete SSVEP control during online is 

~14.7secs.  

In [136], authors propose a hybrid interfacing system using ERD-SSVEP as composite 

modality for hand-orthosis control. During the ERD-based task, two arrows appear on the 

screen. When the left arrow appears, subjects are instructed to imagine opening and closing 

their left hand. For the right arrow, subjects are instructed to imagine opening and closing the 

corresponding hand. In the SSVEP task, subjects are instructed to gaze at either left (8Hz) or 

right (13Hz) LED depending on which cue appeared. In the hybrid task, when the left arrow is 

showed, subjects are instructed to imagine the left hand opening and closing while gazing at 

the left LED simultaneously. The task is similar for the right arrow. Result shows that the 

average accuracy of ~87.9% for hybrid feedback paradigm, which is quite higher than the 

normal feedback paradigm, as reported by ~71.4%. 

An inverse approach is considered [137] for orthosis control application, where, SSVEP-

based BCI has been utilized for opening the orthosis at the activating stage and an ERS-based 

BCI has been used as a switch to deactivate the LEDs that were mounted on the orthosis for 

SSVEP generation in the resting stage. The SSVEP-based stage entails four steps for opening 

and closing the orthosis completely. Frequencies 8 and 13Hz LEDs are used for the opening 

and closing tasks, respectively. During training sessions, subjects are instructed to close the 

brain switch. Then, they are instructed to open and close the orthosis by gazing at the LEDs 

mounted on the orthosis. In the next stage, the SSVEP-based BCI is turned off by opening the 

brain switch. This switch is kept open during the resting period. At the end of the resting 
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period, the brain switch is closed, and SSVEP task is repeated. During the activity period, the 

true positive rate and false positive rates are measured, whereas during resting period, the 

false positive rate is measured. It has been shown that false positive rate is reduced by more 

than 50% when hybrid BCI is utilized and the average classification accuracy is found 85%. 

Besides, the trial time during control experiment is obtained 292secs, whereas, the trial time 

during brain-switch and SSVEP experiment is reported 430secs, which is slightly higher. A 

general overview of artificial limb control using well-known SSVEP and MI-based hybrid 

approach is presented in Fig. 1.7. 

 

       In [138], motor imagery (MI), P300 and ErRP signals are used to control the movement 

of a robotic arm. This scheme aims at position control of a robot arm by decoding motor 

imagery signals to control the direction of movement of the robot. After reaching the target 

position, the subject stops the movement of the robot arm by eliciting P300 response. Here, 

the errors may exist for two reasons: i) due to misinterpretation of brain signal by the 

classifier, and ii) because of crossing the target by the robot arm and then it stops. On 

detection of the first form of error, the movement of the robot arm is stopped immediately and 

it is made travel back to its previous position. On detection of the second form of error, the 

robot arm is re-aligned to the target by an offset which is experimentally determined during 

the training of the subjects. The average classification accuracy for hybrid MI, P300 and ErrP 

are found 71.2%, 89.5% and 80.1% respectively with average ITR of 22.12 bits/min, 23.83 

bits/min and 23.47bits/min. 

In [139], the movement of each link of the robot arm is controlled in a fixed pre-defined 

order by using MI and ErrP signals. This scheme is much simpler than the scheme described 

in [138]; however, it requires a considerable switching effort between activation of two links. 

This scheme controls the movement of each link by using motor imagery signals and each 

links are activated at a fixed interval of time. The motor imagination detector for an individual 

 

Fig. 1.7 Artificial limb control using ERD/ERS and SSVEP signals jointly 
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link classifies the desired movement of the link and the decoded task concerning the desired 

movement is executed until a visually inspired positional error is detected by an error-related 

potential classifier. The error-related potential signal is generated after the robotic link crosses 

the desired target position. Naturally, after the error is decoded, the actuator is commanded to 

stop further movement, and the robotic link is turned in reverse direction by a fixed 

experimentally determined offset before to commence planning for the movement of the next 

link in sequence. The process is repeated for each link in a fixed order to align the robot end-

affecter with the desired target position. Adaptive autoregressive parameters and moving 

averages are extracted as features for motor imagery and ErRP signals respectively. A support 

vector machine classifier is used for decoding of motor imagination and error-related potential 

with high classification accuracy above 80% for all the decoders with average ITR of 

21.65bits/min (for link 1), 14.94bits/min (for link 2 and 3) and 22.65bits/min (for ErrP 

detection). The average time taken by the proposed scheme for decoding and execution of 

control intentions for the complete movement of three links of a robot is above 50 seconds.  

1.5 COMPONENTS OF A BRAIN-COMPUTER INTERFACING SYSTEM 

The main aim of an electroencephalographic-brain computer interfacing (EEG-BCI) system is 

to create a communication channel between the user‘s intention and an external device (e.g. 

computers, prosthesis) without any muscular intervention. Unfortunately, while executing an 

assigned task, the human brain occasionally undertakes parallel thoughts, which might appear 

as the cross-talk to the acquired EEG signals recorded to examine the targeted task. In case, 

the frequency band of the EEG signals for the non-targeted parallel tasks do not overlap with 

those of the targeted task, the frequency band for the targeted task can be separated from the 

parallel thoughts by filtering. The EEG signal being of very low frequency and pass bands for 

individual tasks being too narrow, we go for digital filtering rather than conventional analog 

filtering. Fig. 1.8 presents all steps of BCI.  

 

 

Fig. 1.8 Components of a brain-computer interfacing system 
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The next step that follows digital filtering is feature extraction. Feature extraction involves 

determining the most appropriate features of the acquired EEG that best resembles the EEG 

signal for a given task. In other words, true features of an EEG signal are those, which 

directly/indirectly can help in reconstruction of the EEG signal. Unfortunately, there is no 

standard technique to extract the true features of an EEG for a given task. The usual practice 

thus is to determine a set of standard features that can capture one or more characteristics of 

the EEG signal.  If the list of features is too long, we need to select a fewer of the features. In 

fact, there is an extensive literature on feature selection. A few of these that deserve 

mentioning includes forward search, backward search, and evolutionary search algorithms 

[140], [141]. The motivation of these algorithms is to identify a subset of features from its 

entirety so that they best represent the EEG signals at the sampled time-points. Most of BCI 

techniques terminate with a classification algorithm that aims at classifying the target 

task/class from the rest. Usually, most of the BCI problems are formulated as a two-class 

classification problem, unless the problem by nature is a multi-class classification problem. In 

a two-class classification task, the classifier produces a binary output, one for the target class 

and zero for the rest. A multi-class classification problem, such as classification of aroma 

from EEG signatures, is again solved usually as a sequence of two-class classification 

problem. For example, A, B and C are three classes. We use binary classifiers to classify the 

features into A and non-A. Then the non-A class is again classified into class B and C. Had 

there been more than three classes, the classification tree would have a longer length but that 

too has to follow the above principle. 

     Occasionally, a few BCI systems require additional steps to realize a controller to execute 

specific control tasks based on the results of classification. For example, suppose, if the 

classifier response is class A, we may need to turn a motor on. If it is class B, we may turn it 

off. More sophisticated control logic is also adopted in recent BCI systems [140], where the 

motor is activated based on the classification of subjective motor imagery, and stopped based 

on the occurrence of error when the motor-shaft passes the fixed target position. 

1.5.1 EEG Signal Preprocessing 

In this step of the BCI system, the raw EEG signals are filtered in the desired frequency 

bands, where the information pertaining to the user intention is dominant. It also serves the 

purpose of eliminating noise emerging from the environment, muscle movement and power 

line interference (in 50 or 60 Hz). The filters implemented in BCI research is broadly 

classified into two categories: a) Spectral filters, and b) Spatial filters. 

Spectral filter consists of Finite and Infinite Impulse Response Filter (FIR and IIR) [142] 

and Fourier Filters [143]. Researchers have widely used Butterworth [144], Chebyshev [144] 

and elliptical filters [144] to extract information in a given frequency range. IIR filters 
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produce a steeper slope for a much lower order than FIR filters but the former filter tends to 

be more unstable than the latter one. 

Spatial filters are used to get a more localized signals corresponding to a single source. 

Bipolar filters [145], Common Average Referencing filters [146] and Laplacian Filters [145] 

are commonly used spatial filters found in BCI literature. Bipolar filters determine the voltage 

difference between two electrode pairs, such as C3-C4. This technique reduces the effect of 

spatial smearing and emphasizes on local activity while attenuating the effect of distant 

sources. In common average referencing, the mean of all EEG electrodes is subtracted from 

each individual electrodes which reduces the influence of far field sources but may contribute 

to spatial smearing. More localized signals are determined from Laplacian filtering which 

removes the influence of neighboring electrodes from an individual one.  

Sometimes special techniques such as principal component analysis (PCA) [147], 

independent component analysis (ICA) [148], common spatial patterns (CSP) [149] and 

adaptive filters [150] are designed by researchers to perform noise removal from the raw EEG 

data. 

1.5.2 EEG Feature Extraction Techniques 

After the brain signals are pre-processed, these are subjected to further processing involving 

one or more than one feature extraction methods. This step aims at extracting relevant 

characteristics of the signals corresponding to the different mental states of the user. Feature 

extraction methods include processing in the time-domain (such as Hjorth parameter [151], 

Auto-regressive parameter [152]), frequency-domain (such as Power Spectral Density 

Estimates [153]), spatial-domain (such as Common Spatial Patterns [149]), non-linear-domain 

(such as Fractal Dimensions [154], Approximate Entropy [155]) and time-frequency-

correlated domain (like Discrete Wavelet Transforms [156] and Adaptive Autoregressive 

Parameters [157]). 

Among the conventional techniques, discrete wavelet transforms and common spatial 

patterns (CSP) are the most widely used feature extraction techniques employed by BCI 

researchers across the globe. Several variants, such as, Common Sparse Spectral Spatial 

Pattern [158], Sub-band CSP (SBCSP) [158], Filter bank CSP (FBCSP) [159], Discriminative 

FBCSP (DFBCSP) [160], Sliding Window Discriminative CSP [160] are designed to improve 

the discrimination-ability among various mental states. 

Because of the intrinsic non-stationarity of EEG, the discriminative capability of statistical 

or non-linear features like Hjorth parameter, Auto-regressive parameters are not efficient. On 

the contrary, non-linear features like Empirical Mode Decomposition [161], Common Spatial 

Patterns [149], Multi-fractal Detrended Fluctuation Analysis [162] yield good results at the 

expense of the high computational cost. Thus, researchers are attempting to design an optimal 
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feature extractor which would exhibit high discriminative capability and low computational 

complexity. Some of these features are Adaptive Auto-regressive Parameters, time-varying 

Hjorth Parameters, Extreme Energy Ratio [163] and Extreme Energy Difference [164].  

A. Discrete Wavelet Transform 

In the past several years, wavelet transform is proven as one of the well-known feature 

extraction methods for classifying different cognitive tasks from the acquired EEG signals. 

Discrete Wavelet Transform (DWT) [156] has its proven merits over techniques based on 

time-domain (such as, Time domain parameters) or frequency-domain (like Fourier 

transforms). Standard Frequency based techniques lack the ability to deal with non-stationary 

signals because of their inability to deal with non-stationary signals. Time-domain parameters 

are also unable to quantify frequency related information, whereas, Fourier transform is unable 

to quantify time related information. Besides, Fourier transform misses to identify the local 

changes in high frequency components since it considers the whole time domain. All the 

drawbacks are overcome by using discrete wavelet transforms (DWT) by providing localized 

frequency related information at a given time. The discrete wavelet transforms (DWT) 

analyzes the signals by decomposing the signal into coarse approximation and detail 

information. Each level includes two digital filters and two down-samplers by 2. The down-

sampled outputs of the first high-pass and low-pass filters provide the detail D1 and 

approximation A1, respectively. The first approximation is further decomposed and the process 

is continued, until the desired level of decomposition is obtained. Fig. 1.9 provides the 

generation of approximation and detail coefficients by DWT, where the detail coefficient 

indicates alpha and low beta band (8-16 Hz) and the approximation coefficient indicates delta 

and theta band (0-8 Hz).  

 

 

     Fig. 1.9 Generation of approximation and detail coefficients by Discrete Wavelet Transform 
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B. Power Spectral Density 

Power spectral density (PSD) [165], one of the most popular time-domain features, is defined 

as a mode of describing the power distribution contained in the signal. PSD is used to 

evaluate the power density for filtered EEG recordings. Typically, a band pass infinite 

impulse response (IIR) filter having pass band of 0.5-70 Hz (depending of the activation of 

EEG in the frequency spectrum) is used for pre-processing the raw data before the application 

of PSD extraction algorithms. PSD finds signal power contained in these frequency ranges by 

computing Fourier Transform of the autocorrelation sequence of the time series eeg(t), which 

is given in (1.2) and (1.3). 
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where, time segment (t2-t1) is the duration over which EEG is acquired. 

C. Adaptive Autoregressive Parameters 

The time-varying characteristics of autoregressive (AR) parameters can be classically 

estimated with the help of segmentation based approach [152]. In this approach, the 

information is divided into short segments and the AR parameters are predicted from each 

segment. The segment length determines the accuracy of the estimated parameters. Therefore, 

for the AR model, the shorter the segment length, the higher is the time resolution. However, 

this may increase error of the AR estimates. To overcome this problem, adaptive 

autoregressive (AAR) algorithm is used which has the advantage of less computational effort 

and no buffering. This model has the following form, as given in (1.4): 

1, , .k k k p k k p ky a y a y                                                       

Here, ky  is EEG time series, 1, ,, ,k p ka a  are time-variant autoregressive parameters, p is 

the model order and k  is a noise process. Least mean squares (LMS) [166] and recursive 

least squares (RLS) [167] are the two popular approaches for estimating AAR parameters.  

These algorithms are well suited for online analysis due to the advantages of AAR model. 

AAR models often utilize a Kalman filter algorithm for feature extraction process from the 

raw EEG data [168], [169]. Usually, two types of evaluation schemes are generally used. 

First, a cross-validation procedure is implemented on each of the two sessions available for 

each subject. Second, analysis of the session-to-session transfer process is performed by 

observing the results from unseen data.  
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D. Hjorth Parameter 

The parameters introduced by Hjorth are popularly known as Hjorth parameters, which are 

time domain parameters, having three features [151], and is defined in (1.5), (1.6) and (1.7). 
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The merit of Hjorth parameters lies in checking whether different number of derivatives of the 

signal can enhance the classification performance and hence, the number of derivatives 

calculated, p is needed as parameter of ip . 
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E. Common Spatial Pattern  

Common spatial pattern (CSP) is applied to extract useful features from each channel by 

using a unique projection matrix. CSP aims at finding a linear subspace for which the 

variance of one projected class is maximized while the variance of the other class is 

minimized, the rows of the transformed matrix being the indication of the weights of each 

channel. The formation of the above matrix is made possible by combined diagonalization of 

two covariance matrices obtained from the two classes of the EEG signals. The normalized 

covariance matrix of a single trial EEG signal is given by (1.9): 

)Xtrace(X

XX
R




 .                                      

Here, X is represented as an n×d matrix, n being the number of channels and d being the 

number of samples in the time interval of interest. The average of covariance matrices from 

trials within two classes, i.e., from class a and class b is summed to produce a composite 

covariance matrix, given by (1.10): 

Rc = Ra + Rb= 
T
egeg U U .                                                   

Here, egU is the matrix comprising few chosen Eigenvectors ( egneg U,,U 1 ) such that when 

class a and b are both projected onto the first Eigenvector 1egU , then class a yields the 

maximal variance and class b the minimal variance, and when the classes are projected onto 

the last Eigenvector egnU , then class a yields the minimal variance and class b the maximal 

variance. Σ is the diagonal matrix. The final projection matrix is given by (1.11): 
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with average transformed matrices (from Ra and Rb respectively): 

 T
aa PPRS     and     T

bb PPRS  .                                                          

These two matrices  aS  and bS  shares common Eigenvectors so that the diagonal matrices 

 a  and   b  of corresponding matrices are always one.  

The projection matrix W is given as: 

PUW T                                                                        

where, U is a common orthogonal Eigenvectors, and EEG trial is transformed as: 

.WXZ                                                                           

From Eq. 1.14, we extract CSP features as the variance of Z, given as: 

)Zvar(F mm                                                                    

where, m )2,,1( p m  is the reduced dimension of the original signal. 

1.5.3 EEG Feature and Data-point Selection  

The features, sometimes extracted from the filtered EEG, may have high dimensionality, which 

may result in two major drawbacks: (a) increase in computational overhead of the classifier 

[170], and (b) poor signal-to-noise ratio [171] of the EEG signal.  During the past few decades, 

researchers have included a feature selection stage before the classification stage [172]-[174]. 

This stage selects a subset of features from the original feature set having an enhanced 

discriminative power. Principal Component Analysis (PCA), Maximum Relevance Minimum 

Redundancy (mRmR) [175], Sequential Forward Search (SFS) [176], Sequential Floating 

Forward Search (SFFS) [176] are few of the well-known statistical feature selectors used by 

BCI researchers.  

Existing approaches in feature selection suffer from a few major drawbacks. First, 

sometimes, even if the variances are found good among components, they still provide low 

classification performance. It may be due to the fact that the feature selection algorithm failed 

to remove the redundant features. Determination and removal of redundant features is not 

possible simply by inspection of the feature set. Second, many of the popular feature extraction 

techniques perform a linear transformation of the original feature set to a vector of low 

dimensionality for consideration in the classifier stage, because of which the reduced features 

in most cases become a linear transformation of the original feature set. Therefore, even if the 

feature set used in the classifier stage is reduced, the original features still need to be measured. 

Lastly, the optimal number of reduced features to be considered in the classifier stage after 

dimensions reduction is determined by cumbersome experimental validations. The above 

problems can be solved by designing an algorithm to choose an optimal set of features from the 
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original feature set itself and thus cumbersome experimental validations are avoided. For this, 

a simple run of the optimizer is sufficient, which also optimizes the classifier performance. 

Selectors based on Differential Evolution (DE) [177], Particle Swarm Optimization (PSO) 

[178] and Genetic Algorithms (GE) [179] are few of the most frequently used evolutionary 

techniques in brain-computer interfacing research. Here in subsequent chapters, we design 

novel feature selection techniques using DE to classify several stimuli or cognitive 

actions/tasks performed by subject and validate their better performances with respect to 

traditional feature selection technique.  

Besides feature selection, sometimes it is necessary to select one representative data-point 

or trial from a large set of data-points (trials) in a particular class in order to find stable 

optimum of that class. For example, in chapter 2, we select class-representatives for various 

olfactory stimuli to find the stable optima of different smell classes, where input stimuli is fed 

to a recurrent neural network classifier for olfactory recognition. One way to achieve this is the 

novel use of traditional feature selection algorithm for data-point selection instead of feature 

selection.  

1.5.4 EEG Classification 

Classification of the acquired brain signals is the most important step in 

electroencephalographic-based brain computer interfacing (EEG-BCI) system. The output of 

a classifier is used as control signals to operate an external device. In BCI research, the 

classification algorithms are used to identify the different brain activity based on their 

signature features. Before applying the BCI system in the real world, the classifier of the 

system needs to be trained on the required mental states. Thus, for optimal functioning of the 

BCI system, the training of the classifier must be optimal. The different types of classifier are 

available which can be used for BCI research. 

i. Generative and Discriminative: Generative classifiers (like Bayes Quadratic) compute 

the likelihood of each class and select the most likely one based on a criterion. 

Discriminative classifier (such as, Support Vector Machines) learns the class membership 

of each class to decode a feature vector directly. 

ii. Static and Dynamic: Static classifiers (like Multilayer Perceptrons) classify only a 

single feature vector and cannot take into the temporal information of the incoming signal. 

Dynamic classifiers (such as, Hidden Markov Model) can work on the temporal dynamics 

of the system and thus, can classify a sequence of feature vectors. 

iii. Stable and Unstable: Stable classifiers (like Linear Discriminant Analysis) are those 

whose performances are not affected small variation in the training set and thus, they have 

low complexity. Unstable classifiers (such as, Multilayer Perceptron) have high 

complexity and their performance is affected by small variations in the training set.  
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iv. Regularized: Regularized classifier control the complexity of the classifier and thus, 

prevents overtraining in the process. It has a good generalization performance and is more 

robust as compared to the standard classifiers.  

A number of classifiers have been used in BCI research and. In practice, we are more 

familiar in selecting suitable classifiers for classifying EEG features in two or more classes 

that are linear or non-linearly separable. Linear two-class classification can be best explained 

from Fig. 1.10 as shown below.   

 

Fig. 1.10(a) shows basic building block of two-class classification problem, where, F is the 

input feature vector and Y is the output score. The decision boundary between two classes 

here forms a hyper-plane in the high-dimensional input space, where points (in blue squares) 

lying in the positive side of hyper-plane are classified as class 1, while points (in blue dots) 

lying in the negative side are classified as class 2 (Fig. 1.10(b)). In fig. 1.10(c), discriminator 

)( 21 f,fg clearly separates both the classes (i.e., points in blue dots and points in blue squares) 

at its furthest. 

      On the contrary, linear multiclass classification (See fig. 1.11(a)) involves a classification 

problem with more than two classes, where each sample lies in one and only one class. Linear 

multiclass classification forms a hyper-plane or set of hyper-planes in a high dimensional 

space (Fig. 1.11(b)), whereas better separation is achieved by the hyper-plane that has the 

largest distance to the nearest training data-point of any class. Some popular linear multi-class 

classification techniques are linear Discriminant analysis, multivariate linear regression 

analysis, multiple logistic regression, support vector machines, and perceptron model. 

Besides linear classification of two or more class classification, non-linear classification 

involves classification of data-points that are not linearly separable. Fig 1.12 (a) and (b) 

presents the basic architecture of non-linear classifiers and its non-linear decision boundaries 

 

Fig. 1.10 Linear two-class classification scheme 
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for a three-class classification problem. Now, this section provides a brief summary of few 

linear and non-linear classifiers often used for cognitive task classification in subsequent 

chapters. 

 

 

A. Fisher’s Linear Discriminant Analysis (FLDA) 

Linear discriminant analysis (LDA) [180] aims at separating the data representing different 

classes by constructing a hyperplane. The class of an observation depends on which side of 

the hyperplane the feature vector falls. The separating hyperplane is a projection that 

maximizes the distance between two class means and minimizes the inter-class variance by 

 

Fig. 1.11 Linear multi-class classification scheme 

 

Fig. 1.12 Non-linear multi-class classification scheme 
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assuming normal distribution of a data with equal covariance matrix for all classes.  

This technique is suitable for an online BCI system for its simplicity in algorithm and low 

computational speed. It is successfully used several motor imagery based BCI problems and 

BCI speller. The main disadvantage of LDA classifier lies in poor while dealing with non-

stationary nature of the EEG signal. 

         For FLDA classification technique, let, } ,,,{ 21 ni X  XXX   be the set of n data-points 

having m dimensions for i-th trial, representing a specific cognitive task and iμ  be the mean 

of the data-points for the same task. For two-class classification, Fisher‘s criterion, as given in 

(1.16) for an unknown weight vector W needs to be maximized. 
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Here, T
2121 )()( μμ μμSb   is between-class scatter matrix and 

             21 CovCovSw   is within-class scatter matrix. 

It is important to mention here that scatter matrices are proportional to covariance matrices, 

which are given in (1.17) and (1.18). 

Covariance matrices ])()[( T
11111 μX μX ECov                                                             

                          and ])()[( T
22222 μX μX ECov                                                         

Solving the above equations using linear algebra, we obtain optimal solution of W, as given 

in (1.19). 

)( 21
1 μμ Sw  

W                                                                         

B. Quadratic Discriminant Analysis (QDA) 

QDA classifier is referred to as the closest cousin of the well-known FLDA [181]. The only 

difference between these two is FLDA can learn only linear boundaries, whereas QDA can 

learn quadratic boundaries, and hence much more flexible, which is presented in Fig. 1.13. 

For QDA, separate covariance matrix needs to be estimated for different classes. Although 

QDA minimizes the misclassification rate, it is not as widely used as LDA. The requirement 

of much larger training sets may be one of the reasons. The quadratic discriminant function is 

given by (1.20). 

0

T)( wFwFFFg  W                                                    
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C. Suport Vector Machine (SVM) 

An SVM [182], similar to FLDA is one of the most widely used classifiers in BCI research. 

To classify EEG features using SVM, along with the construction of an optimized hyperplane, 

two separate margins are also required on both sides of the hyperplane (Fig. 1.14) from the 

nearest training points, which is known as support vectors. Maximizing this margin increases 

the generalization capability of the classifier and a regularization parameter allows error on 

the training set. Literature reveals that the performance of SVM classifier is insensitive to 

overtraining and curse-of-dimensionality for its good generalization property. Usually, a 

linear decision boundary enables the SVM to perform classification and it provides good 

performance while decoding mental states in BCI problem. For any two data-points 

1X and 2X , SVM holds the relation, which is given in (1.21) and (1.22).  
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                                            or, 0)( 21
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Eqn. (1.22) indicates the condition for W to be orthogonal to the hyper-plane as 

     

(a)                                                                              (b) 

Fig. 1.14 (a) Design of hyper-plane for Support vector machine classifier (b) Estimation of 

weight vector W  

 

 

 

Fig. 1.13 Design of hyper-plane for Quadratic discriminant 

analysis classifier 
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)( 21 XX   is along the plane. Our goal in SVM classifier is to determine its weights so as to 

maximize the margin. This is done to obtain W so as to: 

Minimize 
1 2( , ) || ||0
2

J w W W , subject to 

                 
T( X ) 1 , 1,  2.0y w ii i  W  

where, 

         yi =1 for data point lying above the hyper-plane 

             = -1 for data points below the hyper-plane. 

This can be solved using Lagrange multiplier technique [183]. 

One can also employ non-linear decision boundaries by using kernel functions such as, 

Radial Basis Function (RBF), Multi-layered Perceptron (MLP), Polynomial and Quadratic 

functions. In Kernelized SVM, a Kernel function is used to map linearly non-separable data 

points into a high dimension using a Kernel function to make the mapped data points linearly 

separable, which is depicted in Fig. 1.15. For a mapping function )(X , it can be shown that, 

),,()()( TT

jiji XXKX X  where, K being the kernel. In this way, the computation 

involved in )()( TT

ji X X  is reduced. 

 

D. k-Nearest Neighbor (k-NN) 

k-NN [184] is a non-parametric classifier, which refers to one of the simplest classifiers 

available in pattern recognition, machine learning and BCI research. 

 

 

Fig. 1.15 Mapping of linearly non-separable data-points using Kernel function 
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     Here, all feature vectors from the training set are plotted in a feature space. A feature 

vector belonging to the test data is classified according to the class of majority of k-nearest 

neighbors located in the feature space. The performance of this classifier depends on the 

distance metric and the k-parameter, which controls the volume of the neighborhood. 

Euclidean distance metric is the most common distance function among the BCI researchers. 

Fig. 1.16 provides an example of k-NN classification of EEG features, where, number of 

classes is three.  

 

The algorithm of k-NN classifier is presented below. 

1. Identifying k-nearest neighbors of the unknown data-point U (training instance) out 

of N data-points, regardless of the class labels. 

2. Identifying the number of nearest neighbors ik  falling in class i, for i=1 to M classes 

(here, M=3). 

3. Assigning the unknown data-point U to the class iC  having the maximum number of 

ik samples.  

Therefore, from Fig. 1.15, it can be concluded that U falls in class 2, since 1k =2, 2k =3 and 

3k =0. 

Although k-NN provides fair classification accuracy in comparison with multi-layer 

perceptron (MLP) and SVM, it is not as popular as MLP and SVM in the BCI community for 

its high sensitivity to curse of dimensionality [185], and hence it fails during the realization of 

real-time BCI problems. Further, it is highly susceptible to changes in the local distribution of 

feature vectors, which too makes it unsuitable for EEG problems.  

E. Multi-Layer Perceptron (MLP) 

An MLP is made of several layers of neurons, which are i) an input layer, ii) one or several 

hidden layers, and iii) an output layer. The input of each neuron is connected with the output 

of the previous layer‘s neuron [186]. The input and output nodes have linear activation 

functions, whereas each hidden unit node has non-linear activation functions. Besides, the 

 

Fig. 1.16 k-NN classification of feature vectors in three classes 
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input node has no threshold, whereas each hidden node and output node have thresholds in 

addition to the weights associated with them.  These classifiers are universal approximator, 

which means that they can approximate any continuous function provided they are supplied 

with enough neurons and layers. Further, they can classify any number of classes, which 

makes it very flexible for multi-class problems.  

MLPs have been widely used for binary [187] and multiclass [188], [189] and synchronous 

[190] and asynchronous [191] BCI problems. These classifiers are sensitive to overtraining, 

especially for noisy and non-stationary data like EEG. Therefore, careful regularization and 

architecture selection is required. 

F. Hidden Markov Model (HMM) 

An HMM [191] is a well-known dynamic classifier which provides the probability of 

observing a given sequence of feature vectors and is often used for time-series [192], text 

[193] and speech [192] classification problems. Each state of the classifier can construct a 

model of observation for each feature vector. In BCI research, Gaussian Mixture Models are 

generally used for estimating the probability. HMM finds acceptance in BCI research because 

it can be applied to the classification of temporal sequence of BCI features, even classifying 

from raw EEG data. 

For BCI research, a variant of HMM known as Input-Output HMM (IOHMM) [191] has 

been designed. The main advantage of this classifier is that one IOHMM can discriminate 

between various classes, whereas in the conventional method, one HMM is required for each 

class to achieve the same operation.  

G. Naïve Bayes Classifier 

The Naïve Bayes classifier assigns the most likely class labels to problem instances, 

represented as feature vectors [194], where the class labels are derived from some finite set. It 

works with the principle that each feature-value of a particular data-point is independent of 

other feature-values, and for this data-point to belong to a class, the t contribution of each 

feature-value independently is considered by the classifier, regardless of any possible 

correlation of all feature-values. The algorithm is explained below. 

 

Let, 

       f f f fF n32 ][ 1  be the feature vector, where if  lies in {0,1}, and 

       Ci = Cognitive task for class i. 

Then, by Bayes theorem, the probability  

P(Ci |F) 
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1.6 PERFORMANCE ANALYSIS IN EEG-BCI RESEARCH 

The performance of a EEG-BCI system is analyzed using a number of performance metrics. 

This section discusses on few of them, which are frequently used in the subsequent chapters. 

i. Confusion Matrix: The confusion matrix is a tabular representation which the relationship 

between the desired class intended by the user and the actual classes predicted by the 

classifier [195], [196].  

ii. Classification Accuracy: It is the most widely used evaluation criterion in BCI research 

because it is easy to calculate and interpret. It is defined as the ratio of the number of correct 

observations made by the classifier to the total number of observations [197]. 

iii. Type-I and Type-II Error Rate: A type I error (α) represents the rate of incorrect rejection 

of a true null hypothesis, and hence known as false positive rate.  The error of the second 

kind, i.e., a type II error (β) refers to the rate of failure to reject a false null hypothesis., and 

hence known as false negative rate [198].   

iv. Information Transfer Rate: Information Transfer Rate (Bt) represents the bit rate of the 

BCI system [199]. Its representation in bits/min is given as 

  2 2 2

1 60
log log 1 log

1
t

P
B N P P P

N T

 
     

 
                                 

where, N represents the number of possible states and P represents the classification accuracy 

between 0 and 1. T is the time needed to convey each action in second/symbol i.e., time 

interval from the issue of a command to the classified output of the same. 
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v. Statistical Hypothesis Testing: Statistical hypothesis testing [198] is required to ensure that 

the experimental data are correctly interpreted; the apparent relationship between them is 

significant or meaningful and does not occur by chance. There exist a number of well-known 

statistical tests, which can be classified into four main categories namely, i) correlational 

(such as, Pearson correlation [200] and Spearman correlation [201]), ii) comparison of means 

(such as, Paired t-test [201] and ANNOVA [202]), iii) regression [201] (such as, Simple 

regression and Multiple regression) and non-parametric (such as, McNemar‘s test [203], 

Friedman‘s test [204], Wilcoxon rank-sum test [205] and Wilcoxon signed-rank test [206]). 

The selection of right statistical test depends on the type of data, distribution of data, and 

number of data-points and observations available.  

 

1.7 Current Research Directions in Sensory-Perception, Motor Imagery 

and Alertness 

In this section, we describe current research directions undertaken by BCI researchers in 

recent years to decode sensory perception, motor imagery tasks and alertness. 

1.7.1 Decoding of Sensory-Perception 

In recent years, decoding of sensory perception has become an interesting research arena in 

BCI domain. Researchers showed keen interest to explore the perceived response using 

various sensory modality including vision, audio, touch and olfactory and also the 

involvement of fronto-parietal brain regions in mediating conscious sensory experience. The 

previous research in decoding sensory perception also helps to study whether there exists any 

neural correlation between two modalities for similar conscious perception. Hovland and 

McCarragher in [207] propose a new method for controlling sensory perception, which is 

based on stochastic dynamic programming and is set in a discrete event control framework. 

First, the dynamic programming evaluates all possible orderings of process monitors, which 

are then stored in a lookup table.  Later, this look-up table is used by a real-time sensory 

perception controller (SPC), which increases the average recognition rate while keeping the 

average monitoring cost low. The process of controlling sensory perception has two primary 

objectives: 1) collection of perceptual information to identify discrete events with high levels 

of confidence and 2) keeping the sensing costs low. The authors in [208] demonstrated two 

applications including robotic assembly and mobile navigation, which prove the benefits of 

sensory perception control. In [209], authors address the problem of controlling sensory input 

and perception for mobile navigation application, and also propose solutions that offer several 

advantages compared to existing methods in the literature. This includes design of a i) real-

time SPC by solving a constrained optimization approach, ii) unique task-independent 

discrete event model of mobile navigation for a wide range of navigation problems and iii) 

unique approach to online discrete event identification. 
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    Ishikawa et al. in [210] addresses certain possible clues for sensory perception of an 

unexpected sudden change in floor level during human gait. It can be discrepancies in the 

time of heel contact, location of force application point or center of pressure in the sole at the 

heel contact and subsequent stance period from the ones prescribed prior to the gait execution 

prepared for the normal level gait, if they exist. Participants are asked to perform a 

psychophysical experiment during gait on a walk with a small, unexpected and sudden change 

in the floor level in order to get insight for this perception mechanism. The subjects here are 

instructed to answer among step-down, flat, and step-up immediately after the walk. During 

the gait, the measured foot pressure distribution (FPD), electromyogram (EMG) of the ankle 

muscles, and gait trajectory (GT) quantify accuracy of the perception.  

    Kerren et al. in [211] conduct a different perception-based experiment on a wide range of 

wines from different parts of the worlds. This research involves interactive visualization 

techniques that help in linguistic exploration and comparisons of visual, olfactory, gustatory 

and textual properties of all the different wines from different grape varieties, or from 

different vintages. It also supports the immediate creation of visual profiles for descriptions of 

sensory perceptions for exploratory purposes as well as for purposes of confirmatory 

investigations of linguistic patterns in text and discourse and their correlations to metadata 

variables. 

    The spatio-temporal oscillations in EEG signals are proven as an indicative measure of 

sensory and cognitive processing. Brockmeier et al. in [212] propose a method that aims at 

determining the spatial amplitude patterns of a time-limited waveform across multiple EEG 

channels. It includes a single iteration of multichannel matching pursuit, where the base 

waveform is obtained via the Hilbert transform of a time-limited tone. The vector of extracted 

amplitudes across channels is utilized for classification, from which the effect of deviation in 

temporal alignment of the waveform on classification performance is analyzed. The result of 

the proposed method is found comparable with existing result for a previously published 

dataset. 

    Recent research [213] suggested by Mathias et al. confirm the strong interrelation between 

perception and action. The findings also reveal that here is an evidence for distinct time 

courses of sensory, schematic, and motoric influences within the same recognition task and 

association between auditory-motor responses to out-of-key pitches. The skilled pianists are 

given a set of novel melodies to investigate the role of motor experience in auditory memory 

recognition processes. EEG signals are recorded during an auditory memory recognition test 

with or without an out-of-key pitch alteration. A comparatively larger N2 ERP component is 

elicited with each altered pitch in comparison to the original pitches from the cortical motor 

planning regions. Early sensory (N1) and later cognitive (P3a) components are also elicited 

which gives a prediction of sensory echoic and schematic tonality models, respectively.  
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  Vecchiato et al. in [214] during music perception, further attempt to investigate the 

similarity between cerebral signs of pleasantness in healthy child and in monolateral and/or 

bilateral cochlear implanted users. Experiments reveal significant differences in cortical 

activities in alpha band between a healthy child and the patients during the fruition of a 

musical cartoon. In particular, the alpha EEG asymmetry patterns observed in a healthy child 

and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal 

theory, which states that there exist correlation between variations of the frontal EEG alpha 

activity and the perceived pleasantness of the sensory stimulation received. For a monolateral 

cochlear implanted patient, the difference of scalp topographic distribution of EEG power 

spectra in the alpha band from that of the healthy child or bilateral cochlear implanted patient 

confirms that the former perceives the music in a less pleasant way when compared to the 

later ones. 

   Khasnobish et al. in [215] uses tactile stimulus, visuo-tactile stimulus, as well as audio-

tactile stimulus separately to study the basis of object shape recognition from EEG signals 

acquired from the scalp of the human brain. Adaptive auto-regressive parameters with 

different model orders and power spectral density are selected as EEG features for 

classification, where Support Vector Machine classifier with Radial Basis Function kernel is 

used to recognize ten different object shapes. The classifier performance is evaluated in terms 

of classification accuracy, sensitivity, specificity and computation times where, the average 

recognition rate of 88.02% over all features is indicated in [215]. 

     A lot of research has been performed to advance technologies that can improve spatial 

perception of blind and partially sighted persons. Twardon et al. in [216] attempt a common 

approach to enhance or substitute vision by audition with a proposed system for gaze-

contingent auditory substitution of spatial vision. It helps immensely to a visually impaired 

mobile helper in his everyday life. The prototype of the proposed system includes the 

combination of eye-tracking with depth measuring and sonification techniques. EEG 

experiments reveal that as a result or neuroplasticity, the blind and visually impaired persons 

might learn to perceive gaze-dependent sound visually, since gaze-contingent sensory 

substitution is found to permit depth perception, which leads to intermodal (audio-visual) 

processing in untrained subjects.  

      Chaumon and Busch in [217] record EEG signals while participants performed a visual 

detection task with stimuli having different contrast intensities. The authors aim at comparing 

psychometric functions obtained under different levels of ongoing alpha power and evaluating 

the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain 

models. The experiments undertaken reveal a number of interesting observations. First, the 

ongoing alpha activity affects subject‘s visual performance. Second, there exist strong pre-
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stimulus occipital alpha oscillations, however, not so strong anterior mu oscillations. Lastly, 

the performance is reduced for the highest intensity-based stimuli.  

 

1.7.2 Decoding of Motor Imagery 

Motor imagery, as mentioned earlier, is one of the most widely researched brain signals 

among BCI researchers. Cososchi et al. in [218] propose an approach that uses self-

organizing fuzzy neural network based time series predictor to classify between left and right 

motor imagery. A single fuzzy neural network is used for each electrode to extract their 

corresponding features in time domain. Features are constructed from the mean squared error 

of the predictions by means of a sliding window. The architecture of the two-organizing fuzzy 

neural networks is composed of multiple inputs and a single output. The reasoning behind the 

usage of an auto-organizing fuzzy neural network is that it can adapt itself to each 

individual‘s EEG signals with very little prior knowledge of the subject or parameter 

selection. The algorithm is designed to perform in real-time environment where continuous 

learning and continuous adaptation of the dynamics of each individual‘s EEG is present. The 

algorithm was tested on 300 trials obtained from two subjects and an accuracy of more than 

75% was obtained in approximately 3-4 seconds. 

Zhou et al. in [219] aims at developing a wavelet packet-based independent component 

analysis (WPICA) to extract the ERD/ERS patterns from different frequency bands during 

complex lower limb movement imagery. In WPICA processing no imaginary part appears 

that removes the effect of frequency permutation. It also transforms the original signal into 

sparse distribution, which emphasizes on the non-Gaussian nature of the observed signal. In 

this study, EEG data are recorded during three complex imagery movements, which are, 

standing up and left/right movement combined with homolateral hand movement. Then, the 

independent components of each characteristic frequency band are extracted by WPICA and 

the principal ones containing the most ERD/ERS information are projected back to the time-

frequency domain of its corresponding electrodes. The proposed technique is tested on 10 

subjects and an accuracy of about 80% is obtained for WPICA, which is higher than the 

traditional ICA method (72.3%) and non-spatial filtering condition (68.34%). This method is 

an effective technique to recognize ERD/ERS patterns and it improves the pattern 

classification performance of complex mental tasks. 

Corralejo et al. in [220] use Genetic Algorithm as a feature selection method to classify 

between two classes of motor imagery data. The features used in this study are a combination 

of spectral features, continuous wavelet transform using Morlet mother wavelet, discrete 

wavelet transform, autoregressive model and µ rhythm matched filter. From this large set of 

features, the best relevant set is selected using Genetic Algorithm. The proposed technique 

was applied to the dataset IIb of the BCI competition IV and it achieved a kappa coefficient of 
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0.613. 

Common Spatial Pattern (CSP) is well suited to discriminate mental states characterized 

by ERD/ERS patterns. Several variants of CSP have come forward for extracting 

discriminative patterns from the EEG. In one approach [149], time delay embedding is 

utilized in order to extend the CSP algorithm to the state space. This form of CSP has been 

seen to outperform the classical CSP in classification accuracy as well as its generalization 

ability. Another algorithm uses incremental learning method for adaptive computation of CSP 

[221]. This rule extracts the first CSP component and minor components are estimated using 

an online deflation procedure. This method has lower computational cost compared to 

retraining the whole data, and makes it more suitable for development of online BCI system. 

Sub-band CSP (SBCSP) uses a fixed filter bank of 9 equal bandwidth Chebyshev type 2 IIR 

filter on the EEG signal followed by CSP feature extraction on each frequency bands [222]. 

Filter bank CSP (FBCSP) was proposed to select the best frequency bands by computing the 

mutual information between the CSP features with the class label [160]. The Discriminative 

FBCSP (DFBCSP) [160] was proposed to obtain subject specific discriminative FB based on 

comparing the fisher ratio of filtered EEG signal from channels C3 or C4. The Sliding 

Window Discriminative CSP (SWDCSP) filters the raw EEG data at a set of overlapping 

frequency bands using sliding window and then uses an unsupervised algorithm called affinity 

propagation (AP) to select discriminative feature set [160]. 

Liyanage et al. in [223] devised an Evolutionary Artificial Neural Network (EANN) for 

classification of motor imagery signals. Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) were used to evolve the architecture of the ANN by tuning their 

parameters in this study. CSP is selected as a feature vector and the PSO based approach 

showed a reduction of 28% in the execution time when compared to the classical approach 

and an average of 78% accuracy was obtained, which was comparable to the best result while 

using the classical approach. Khushaba et al. in [224] proposed a Differential Evolution (DE) 

based feature selection (FS) technique which outperformed GA and PSO based FS technique. 

It was also seen that DEFS required smaller memory and yielded a reduced computational 

cost.  

In the works of Wang and Makeig [225], the EEG information generated in the parietal 

cortex was derived in the form of subject-specific time- and frequency-domain parameters. To 

optimize the latency and frequency, a sliding window was used and then a low pass filter was 

used to extract the frequency components. Then the normalized amplitudes were selected for 

each time window. The feature vector was concatenated and then used as input in a SVM 

classifier using RBF as a kernel. The resulting classification was found to be 80.25%.  

In a study carried out by Pfurtscheller et al [226], a Linear Vector Quantization (LVQ) was 

used for online classification. The features that were taken for the classifier were extracted 
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from a 1 sec epoch from two channels, four band power estimates, each representing a time 

interval of 250 ms, per EEG channel and frequency range. Based on these 16 features per 

trial, the LVQ classifier derives a classification plus a measure that describes the certainty of 

this classification.  The result for the online classification varied from 10% to 38.12% error, 

the mean being 21.9% +/-6.40. 

Obermaier et al. in [227] employed two HMMs, one to represent left motor imagery and 

the other right motor imagery as classifiers. They were trained using the trials recorded during 

their corresponding motor imagery. Hjorth Parameters were used as feature vector set in this 

case. In another work by Lee et al. [228], two methods of classification were studied: 1) PCA 

+ HMM (HMM1), and 2) PCA+HMM+SVM (HMM2). It is observed that HMM1 had an 

accuracy of 75.70% using PCA while an accuracy of 60.63% was obtained for the raw data. 

Similar increase was obtained for HMM2 whereas it also had higher accuracy to HMM1. 

Thus, hybrid classifiers are also possible for classification of motor imagery. 

Recently, Lu et al. in [229] propose a novel deep learning scheme based on restricted 

Boltzmann machine (RBM) for motor imagery tasks, particularly control of prosthetic limb 

movement. Frequency domain representations of EEG signals obtained from fast Fourier 

transform (FFT) and wavelet package decomposition (WPD) are considered as features and 

used to train three RBMs. These RBMs along with an extra output layer are stacked up to 

form a four-layer neural network, called the frequential deep belief network (FDBN). The 

softmax regression is used by the output layer for classification, whereas the conjugate 

gradient method and back-propagation algorithm are applied to fine tune the FDBN. 

Experiments undertaken on public benchmark datasets reveal the significant outperformance 

of FDBN over other selected state-of-the-art methods. 

 

1.7.3 Decoding of Alertness 

Decoding of alertness in BCI-EEG domain has always been an interesting research topic, 

particularly in mental state classification [230]-[ ]. Classification of mental states of a person, 

more specifically, of a driver during driving is very crucial, since driving for longer hours may 

cause fatigue and drowsiness. Therefore, a few significant researches on estimating human 

alertness is presented here, since it relates to our very own problem of cognitive failure 

detection in driving, as presented in chapter 3. To estimate human alertness, researchers have 

taken keen interest to design EEG-based monitoring system that can estimate human alertness. 

One such effort has taken by Jung et al.in [230], where authors have shown that EEG signals, 

after acquiring from the scalp of human brain and processing through a combination of power 

spectrum estimation, PCA and artificial neural network, can estimate human alertness in real-

time. Auditory task is proven a significant stimulus in this case [230], [231], using which 

changes in normalized EEG cross-spectrum in conjunction with feed-forward neural network, 
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are also used in monitoring alertness. Further, research reveals that the loss of alertness during 

auditory detection task is highly associated with the extent, topography and frequency content 

of spectral coherence in several frequency bands and EEG channel pairs [231]. Begum et al. in 

[232] aims at designing a real-time alarm system to alert about one‘s mental states by 

classifying EEG-wavelet features using a neuro-fuzzy classifier. Besides neuro-fuzzy approach, 

Vezard et al. in [233] utilize a CSP-coupled LDA classifier to decode the mental alertness, 

while EEG signal is acquired from optimally selected EEG electrodes using Genetic algorithm. 

Fusion-based approach is also taken care to quantify the level of alertness during various 

cognitive tasks. Sengupta et al. in [234] attempts to fuse the information from EEG signal, 

high-speed image sequence and speech data in order to compute a metric that can indicate the 

level of alertness. The performance of the proposed system has been validated by using 

standard neuro-physiological tests including visual response test (VRT), auditory response test 

(ART), letter counting (LC) and stroop test; and also by using standard statistical measures 

such as multivariate linear regression and ANOVA. Car and flight simulators are also 

significantly used by researchers to experimentally monitor and provide the solutions to the 

lack of mental alertness for car-drivers and flight operators [235], [236].      

 

1.8 SCOPE OF THE THESIS 

 The thesis includes five chapters. Chapter 1 provides a thorough review of the EEG-based 

research undertaken on perception. It begins with a definition of perception and perceptual-

ability and also explores different brain signaling/ imaging techniques including EEG, PET, 

fMRI and fNIRs. The chapter also covers well-known brain signals and their association with 

different cognitive processes. Special emphasis is given to single and multi-modal BCI 

problems.  The later part of the chapter deals with standard techniques of problem-solving, 

such as pre-processing and artifact removal, feature extraction, feature selection and 

classification. Next the chapter provides a discussion on the current research directions 

associated with the problems undertaken in the thesis. The scope of the thesis is also 

appended at the end of the chapter. 

     Chapter 2, 3 and 4 are original contributions of the thesis. Here, the candidate provides 

three distinct problems in perception engineering and offers solutions to these problems by 

extending the traditional techniques of pattern recognition. Although the problems have their 

own diversity, the commonality of the problems lies in utilizing and extending computational 

intelligence techniques adopted for pattern recognition. The other common aspect of the 

problems undertaken and the approaches adopted include that the analysis of all the problems 

are performed in real time. Naturally, time required for execution of the algorithms here play 

a vital role for their amenability in real world systems. 
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     Chapter 2 addresses one interesting problem on olfactory perceptual-ability detection of 

human subjects, where the motivation is to detect the individual perceptual-ability of the 

subject and rank them in descending order. These subjective ranks offer the user the relative 

merits in decoding aromatic substance. Traditional supervised learning techniques, such as 

support vector machines (SVMs), back-propagation learning etc. could have been used to 

solve the problem. However, the existing techniques are appropriate for small class size and 

thus unsuitable for the present application, requiring large (over 10) class-size, and that too in 

real time. To alleviate the present problem, we employed a Hopfield-like recurrent neural 

classifier, the stability of which is ensured at multiple optima of a selected Lyapunov energy 

surface. In the classification of aromatic stimuli from the pre-frontal EEG response of a 

subject, we first need to map the EEG-features of the individual olfactory stimulus to one of 

the local optima in the Lyapunov energy function of the energy-surface. This mapping is done 

automatically by the selection of the weight matrix of the Hopfield-like dynamics with an aim 

to minimize the selected Lyapunov energy function for the dynamics. In the present context, 

we develop an alternative formulation, where a multi-modal high dimensional Rastrigin 

function is used as the Lyapunov energy surface. Thus for the selected energy surface, we 

construct a Hopfield-like dynamics, which essentially ensures mapping of the olfactory 

stimuli to the local optima.  

    Once the weight matrix of the Hopfield dynamics is ready, we can use it as a classifier.   

This is done in a tricky way.  Suppose we measure the feature vector of an unknown olfactory 

stimulus. The   feature vector is mapped onto the Lypunov energy surface. We initialize the 

Hopfield-like dynamics at the mapped location of the energy surface, and solve the 

differential equation until it converges at one of the nearest optima. Since each optimum is 

earmarked with one smell class, we declare the smell class associated with the optimum as the 

target class.   Experiments undertaken confirm that the proposed technique of classifying 

olfactory perceptual-ability of subjects outperforms traditional techniques by a good margin.  

   Existing literature in driving primarily focuses attention to physiological aspects of the 

drivers and the failures related to gestural/postural aspects in driving. However, online 

detection of cognitive failures from the brain signals is yet a virgin arena of research in traffic 

engineering. The thesis introduced an interesting approach to design a set-up for on-line 

cognitive failure detection of the drivers from three fundamental aspects. These are i) visual 

alertness failure detection, ii) motor planning failure detection and iii) motor-execution failure 

detection. 

In Chapter 3, the candidate proposes a novel scheme of cognitive failure detection in 

driving using brain signals. Although there exists different types of cognitive inability 

responsible for driving failures, we here adopt three possible cognitive failures, called visual 

attention failures (VAF), motor planning failures (MPF) and motor execution failures (MEF). 
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VAF refers to cognitive failures due to lack of visual perception. Primarily, in driving context, 

visual attention failure takes place when the driver is not visually attentive. In case the driver 

is visually attentive, we test any possible failure in motor planning by the subject. The failures 

involved in motor planning include possible mistakes in executing braking, acceleration 

and/or steering control. Occasionally it is noticed that the driver planned his motor activities 

correctly and timely but failed in executing the planned task. This is generally due to muscle 

fatigue and/or poor health condition and/or stray situations on part of the driver. The third test 

adopted is detection of cognitive failures in motor execution.  

Testing of cognitive failures has been accomplished by acquiring the EEG signals from 

three distinct brain lobes. To detect VAF, we acquire EEG signal from the pre-frontal, frontal 

and occipital lobes. MPF detection requires examining brain signals from the parietal lobe and 

motor cortex, while MEF is detected from the EEG acquired from the motor cortex region 

only. These electrical signals are pre-processed using Independent Component Analysis 

(ICA) to eliminate artifacts, and then passed through band-pass filters of specific frequency 

bands for individual cognitive tasks. For instance, the EEG acquired for VAF detection is 

filtered in the alpha band (8-13 Hz), while the EEG signal acquired in motor planning and 

execution is filtered in the mu-beta bands (8-30 Hz). Next the filtered signals are processed to 

extract certain signal features. For the VAF detection problem, we extract adaptive 

autoregressive (AAR) parameters and for MPF and MEF detection we extract power spectral 

density (PSD) and discrete wavelet transform (DWT). The feature dimension, usually being 

moderately high (of dimension= 78) for MPF and MEF, we reduce it by a novel evolutionary 

feature selection algorithm. The algorithm autonomously generates a set of   fixed 

dimensional features from the total list of features, and examines the best set of features for 

which the intra-class distance is minimized and inter-class distance is maximized. This is 

done by measuring fitness of the individual trial solutions, where the fitness measure indicates 

the degree of maximization of inter-class distance and minimization of intra-class distance 

jointly. The evolutionary process generates expectedly improved trial solutions over the 

program iterations, and thus when the terminating condition is reached, the best-fit candidate 

solution represents the highest degree of satisfaction of both the said criteria. 

The main research component of the work lies in designing a suitable classifier, capable of 

classifying VAF into two classes: visually attentive or non-attentive, MPF into four classes: 

braking failure, acceleration failure, steering control failure and no failure, and MEF into 

three classes: braking, acceleration and steering control execution failures. Each of the above 

three classes are again classified into two sub-classes: brake pressed or not pressed and the 

like.  The classifiers are supplied with extracted features for the respective cognitive failure, 

and the classifier response is the detected class. Apparently, any traditional supervised 

learning classifiers could serve the purpose. However, because of parallel brain activations 

and stochastic noise associated with eye blinking and other muscle movements, the features 
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are often found noisy. The creeping of noise in the features makes the traditional classifiers 

unsuitable for the MPF detection. For the VAF and MEF, however, support vector machine 

(SVM) classifier has acceptable performance. 

The fundamental problem in the present research thus is to design a classifier worthwhile 

for classification of motor planning classes in presence of stochastic noise in the EEG 

features.  Fuzzy sets, in general, and type-2 fuzzy sets in particular, have inherent 

characteristics to take precise decisions in presence of noisy measurements. While classical 

(type-1) fuzzy sets can capture the noise due to the randomness of the measurement, type-2 

fuzzy sets can capture intra- and inter-personal level uncertainty that might appear in a 

decision-making system because of the randomness in the assignment of memberships within 

and across experimental subjects respectively. Here, we propose two distinct models of type-2 

fuzzy classification, one realized with interval type-2 fuzzy sets (IT2FS) and the other with 

general type-2 fuzzy sets (GT2FS).  The IT2FS-induced classifier determines the average 

degree of membership of a data point (by taking the average of the upper and lower 

membership functions at the given measurement point) in a given class, and declares the class 

with the highest membership as the class for the given data point. The GT2FS-induced 

classification employs secondary grades as additional input to tune the primary membership 

function in each class to determine the degree of membership of a data point in a given class. 

The class with the highest secondary grade induced primary membership for a given data 

point is declared as the winning class. A thorough comparison of the IT2FS- and GT2FS-

induced classifiers is provided in the chapter to examine the relative merits of GT2FS-based 

classifier over its counterpart. 

The fourth chapter is concerned with touch perception, where the motivation is to classify 

the touch nourishment received by psychological patients from different nurses in a hospital 

environment. The objective is to select the right nurse by individual patient for their highest 

degree of pleasure during the phase of mental treatment. Touch perception is primarily active 

in the somato-sensory cortex. The nearest electrodes available are frontal and parietal 

electrodes and the motor cortex region. EEG signals acquired   from the above electrodes of 

the patients are first pre-processed and filtered from artifacts. The processed signals are then 

fed to a classifier to recognize the pleasure levels received by the patients.    

    The classifier design is given primary consideration in the present work. We adopted radial 

basis function (RBF induced back-propagation neural networks to classify the pleasure level 

of the patients. The RBF-neural network selects specific touch nourishments, such as soft 

touch, rubbing, messaging and embracing. Next, for a given touch nourishment we select a 

back-propagation neural network to classify the individual touch nourishment into three 

classes: pleasant, acceptable and unpleasant. Experiment undertaken reveals that the proposed 

neural architecture outperforms its competitors with respect to classification accuracy. To test 
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statistical validation of the proposed classifier performance, McNemar‘s test is employed. The 

proposed scheme has successfully been realized to select appropriate nurses by Schizophrenic 

patients based on the degree of qualitative touch perceived by them across nurses. 

The thesis ends with a concluding chapter dealing with the self-review of the works 

undertaken in chapters 2, 3 and 4 and also possible future research directions.  

 

1.9 SUMMARY 

This chapter provides a general introduction to EEG signal analysis to understand the 

biological basis of perception. It also gives an overview of different modalities of brain 

signaling/imaging techniques and major brain signals used in the subsequent chapters. Special 

emphasis is given to problem solving schemes for the selection of single and mixed signals. 

The later part of the chapter provides a discussion on EEG signal processing, low level feature 

extraction techniques and classification algorithms to decode cognitive activities. An outline 

to well-known performance analysis metrics is also included. The chapter comes to an end 

with a brief review of current research directions and the scope of EEG signals in sensory-

motor perception and decoding of motor imagery and alertness. 
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Chapter 2 

  

 

Olfactory Perceptual Ability 

Measurement Using a Recurrent 

Neural Classifier 

  

 

 

The chapter introduces a novel approach to measure perceptual-ability of subjects 

based on their EEG response to olfactory (smell) stimuli. A recurrent neural network 

model is employed to classify pre-trained base (standard) stimuli and discriminate 

noisy stimuli for both the olfactory stimuli of similar and different genres, where the 

noisy stimuli is synthesized by adding impurity to standard stimuli. The primary 

emphasis of the chapter lies in designing the recurrent neural dynamics with suitable 

weights, so that for a given base stimulus the convergence of the dynamics to one of 

several optima (local attractors) on the given Lyapunov energy surface is ensured. 

Experiments undertaken reveal that for small noise amplitude below a selected 

threshold, the dynamics essentially converges to fixed stable attractor. However, with 

a slight increase in noise amplitude above the selected threshold, the local attractor 

of the dynamics shifts in the neighborhood of the attractor obtained for the noise-free 

standard stimuli. The other important issues undertaken in the chapter include a novel 

algorithm for evolutionary feature selection and data-point reduction from multiple 

experimental EEG trials using principal component analysis. The confusion matrices 

constructed from the experimental results of olfactory classification justifies the 

importance of data point reduction. Statistical tests undertaken indicate that the 

proposed recurrent classifier outperforms its competitors with classification accuracy 

as the comparator. Lastly, the importance of the chapter is examined on a simulated 

tea-taster selection problem, where feature level discrimination of both the noisy and 

standard tea-samples are prominent from the given scatter plot. 
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2.1 INTRODUCTION 

Olfactory perception is the process of understanding and recognizing smell stimuli using 

previous knowledge/experience about it [1]. A person’s ability to recognize and interpret 

stimuli, hereafter called perceptual-ability, depends on the sensitivity of the participating 

neurons in the perceptual process [2]. This sensitivity in turn depends on the structural and/or 

functional behavior of the neurons [3]. Perceptual ability varies widely due to individual 

differences in neuronal sensitivity [4]. There is no standard approach to measure perceptual-

ability based on neuronal participation in the perceptual process. This chapter introduces an 

approach to measure perceptual-ability using electroencephalographic (EEG) response [5].  

Humans process smell stimuli by a sequence of three steps [6]. Aromatic stimuli are 

perceived by receptors located in the olfactory epithelium (inside the nasal cavity) through 

mucus present in the nostrils. Odor is then sensed by one (or fewer) of several hundred 

receptor neurons responsible for encoding a particular olfactory stimulus. To synthesize the 

composite signal for transfer to the olfactory cortex, the fired neuron responses from the 

stimulus are collected by one of several glomeruli (each reserved for one stimulus) of 

olfactory bulbs [7]. In humans, pro-cerebral lobes synthesize electrical neuronal spikes while 

discriminating olfactory stimuli [8]. The pro-cerebral lobe is located half-way within temporal 

and frontal lobes. The electrical spikes can be acquired as cortical response to olfactory 

stimuli from appropriate scalp locations. 

 An EEG machine acquires the cortical current signals from different locations on the scalp 

using metal electrodes [9] and transforms them into equivalent voltage signals by passing the 

current through resistive devices. The obtained voltage swings are digitized inside the EEG 

system for subsequent processing by an attached computer to filter noise and recognize 

olfactory stimulus. There exist a number of techniques to acquire the brain states involved in 

perceptual processes. We employed EEG here for its superior temporal resolution [10], 

noninvasiveness [11], [12], portability and low-price. In addition, EEG signals acquired from 

the pre-frontal [13], [14] and the temporal lobes [15], have good correlations with olfactory 

recognition, memory and perception. This work attempts to determine perceptual-ability using 

EEG response to odor stimuli. 

Signal modality selection is an important issue in EEG analysis. Usually, signal modality 

greatly depends on the cognitive tasks involved, and/or the stimulus type and also the 

modality of stimulation. In [16], the authors employed olfactory event-related potentials 

(OERP) to analyze cortical response to olfactory stimuli. OERP offers high sensitivity to 

olfactory function. The reaction time to odors is typically found to lie in (800-900) 

millisecond range. Further, the reaction time varies depending on stimulus characteristics 

[17]. Here, we use OERP particularly for its long persistence to classify smell from EEG 

response.  
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The chapter aims at addressing two important aspects concerning olfactory perception. 

First, it proposes a new technique to recognize olfactory stimuli from the EEG response. The 

study includes recognizing both pre-trained base (standard) stimuli and noisy stimuli, where 

the latter is synthesized by injection of noisy aromatic ingredients into a base (standard) 

stimulus. The other problem addressed in the chapter deals with the measurement of 

perceptual-ability to recognize pre-trained base stimuli and separating noisy stimuli.  

The first problem refers to designing a recurrent neural dynamics, capable of classifying 

smell stimuli from the EEG signals captured from one’s pre-frontal lobe. The initial value of 

the variables used in the neuronal dynamics here represents the selected features of an 

olfactory stimulus. The objective of the design lies in identification of a weight vector for the 

dynamics to ensure its convergence to a given minimum on the selected Lyapunov energy 

surface, particularly when the dynamics is initialized around the minimum. This is done by 

designing an optimization problem with an aim to minimize the Lyapunov energy function at 

selected locations on the energy surface for a unique weight vector. Differential Evolution 

(DE) [18] algorithm is used to optimize the energy function. Further, we perform feature 

selection by evolutionary algorithm, and data point reduction by Principal Component 

Analysis (PCA) [19], [20], [21]. 

Feature selection of an EEG signal can be performed by attempting to model EEG in 

different domains to extract necessary domain features [22-24]. For example, the nonlinearity 

of EEG is captured by time-domain features, while the frequency domain EEG features 

provide a direct correlation between cognitive tasks and specific frequency bands. The non-

stationary characteristic of EEG is captured by time-frequency correlated features, such as 

wavelet transforms. All the above features together form a very high dimensional feature 

vector. Selecting fewer features without losing classification accuracy of the underlying 

cognitive tasks reduces computational overhead of the classifier. The chapter proposes a 

novel approach to automatic feature selection (from the high dimensional feature space) by an 

evolutionary algorithm. 

Given a set of training instances where each instance includes a set of features with 

respective class labels.  For any integer j, the j-th feature of the data points in a given class 

should differ as little as possible. For each selected feature j , the difference between the 

mean-to-standard deviation ratios of the feature of any two classes should be as large as 

possible. A DE algorithm selects a minimal set of appropriate features that optimizes the 

above objectives jointly. 

Data point reduction is important in EEG-based stimulus classification. The features 

extracted from multiple trials of the EEG signals, even from the same subject with the same 

stimulus, are not unique. This requires identifying “ideal” class representative data points, 

where each point represents a feature vector of a fixed dimension. Here recurrent neural 
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dynamics is used to map the ideal class representative to an optimum of the Lyapunov energy 

surface. If instead of mapping the class representatives only, all data points of same class 

(from the same subject and stimulus) were mapped on to the Lyapunov surface, they would 

form a small cluster of optima in close vicinity on the energy surface. However, with “poor 

data points” of a class, the mapped optima may not be close on the energy surface, 

introducing complexity in the classification of unknown data points. Here instead mapping 

only uses the “ideal class representatives” on to the energy surface. To find the ideal class 

representative, we employ PCA to obtain a transformed single data point (class 

representative) from a set of data points of the smell class of same dimensions.  

The second addressed problem deals with perceptual-ability measurement, concerning both 

recognition-ability of base stimuli and discriminating ability of noisy stimuli. The results of 

stimuli classification by the proposed recurrent classifier are used to determine (relative) 

perceptual-ability. The perceptual-ability measurement has been successfully applied in a 

simulated tea-taster selection problem. 

The present chapter extends [25] with a classifier design using a specialized recurrent 

neural net with Rastrigin function as the Lyapunov surface (Hopfield neural net [26], [27] 

based classifier was used in [25]). A metric of perceptual-ability is defined herein based on 

the recognition-ability of base stimuli and discriminating ability of noisy stimuli. An 

application to determine perceptual-ability of subjects in a tea-taster selection problem is 

presented.  

The chapter is structured as follows. Section 2.2 describes Lyapunov stability analysis. 

Section 2.3 describes olfactory stimulus classification. Section 2.4 discusses a metric for 

perceptual-ability measurement. Section 2.5 provides the methods and Section 2.6 provides 

results of the olfactory classifier validation for odors of both similar and different genres. 

Section 2.7 demonstrates case study with tea-taster selection. The conclusion is in Section 2.8.  

 

2.2 LYAPUNOV STABILITY ANALYSIS 

We employ a recurrent neural network classifier, the structural design (connectivity of 

neurons) of which is determined by Lyapunov stability analysis [28].  

Definition 1: A scalar function )(UV


 is called a Lyapunov surface with respect to origin, if 

the following three conditions are satisfied: 

i) 0   V )(0  

      ii) )(U V


> 0 for 0  U 

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    iii) )U( V


 has continuous first partial derivatives with respect to all components of .U


 It 

means that 
iu

V




is a continuous function of iu , where iu is the i-th component of U


 [29].  

Definition 2: Given the dynamics of a system: 

       ).(( t)Uf  
dt

Ud 


                                                (2.1) 

where U


 is of (d × 1) dimension and f denotes a scalar function of (t).U


 The 

solution say) ( eq U U


  of 0  
dt

Ud




 in (2.1) is called an equilibrium state/stable point of the 

dynamics. 

Definition 3: Let ||U||


denotes the Euclidean norm of a vector .U


 For a given dynamics 

)),(( tUf  
dt

Ud 


 let eqU


be the equilibrium point. Then the set of points )(tU


 for 

which   ||UU|| eq


, where   is positive number, however small, is called the -

neighborhood )S( of (t)U


. 

Definition 4. A scalar function )( UV


 is called negative (positive) definite with respect to the 

point eqU


in the -neighborhood of (t)U


, if )(U V 


  > 0 ( )( UV 


> 0) at all points in the region 

excluding eqU


itself, where it is zero.  

Definition 5. The necessary conditions for the dynamics ))(( tUf  
dt

Ud 


 to be asymptotically 

stable at the equilibrium point eqU


are: 

i)   there is a region )S( , where  <  for any neighborhood )S(  surrounding eqU


, such that 

the trajectories of the dynamics would start within )S(  but remains within  )S( as time t 

approaches infinity, and 

ii)  the trajectory of the dynamics would start within )S(  and converge to the origin as time t 

approaches infinity. 

Given a dynamics of the form (t))U(f  
dt

Ud 


 where (t)U


 is of (d×1) dimension. Let )( UV


 be 

the Lyapunov surface for the given dynamics. Then the dynamics is asymptotically stable in 

the large, if 
dt

UdV )(


 is negative definite. This statement is popularly known as Lyapunov’s 

stability criterion [29]. 

 

2.3 SYSTEM OVERVIEW AND DESIGN 

This section provides a schematic architecture of smell stimuli classification using the pre-

frontal EEG response (Fig. 2.1). Smell stimulus is first processed to keep it free from artifacts 

due to eye blinking and the power supply. Eye blinking does not predominantly affect the 
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EEG data as subjects are instructed to keep their eyes closed during the experiments. EEG 

response to olfactory stimuli is usually confined in (3-13) Hz, i.e., theta (3-7 Hz) and alpha (7-

13 Hz) bands [30-33]. Pre-processing in Fig. 2.1, therefore, refers to obtaining the desired 

frequency band of 3-13 Hz by a band-pass filter.  

The next two steps are feature extraction (FE) and feature selection (FS) respectively. 

While feature extraction involves extraction of features from the EEG signal, feature selection 

refers to identifying an optimal set of features from the list of extracted features. For EEG 

feature extraction, researchers usually start with a large set of EEG features and use a feature 

selection algorithm to down-select features. Here, feature selection (FS) algorithm down-

selects the features from a pool containing time-domain, frequency-domain and time-

frequency-correlated features.  One approach adopted here is to group a few selected features 

of different domains in different combinations so as to obtain several sets of overlapped 

features, and later to use a classifier to identify the best feature set. The fourth step is data 

point reduction, where we obtain a single data point (feature vector) of d-dimension from a 

given set of t d-dimensional data points using the first principal component of the data 

covariance matrix of (t × d) dimension. The last step is classification realized with a recurrent 

neural network. 

 

 Fig. 2.1 A schematic architecture of smell-stimuli classification 

2.3.1 Feature Extraction 

Existing literature [30], [32], [34] on EEG based brain-computer interfacing (BCI) provides a 

number of features, which have good correlation with olfactory perception. EEG provides 

good temporal resolution and therefore temporal features (for example, Hjorth parameters, 

and autoregressive parameters) carry important information about the mental tasks undertaken 

by the subject. Further, the neuronal excitations corresponding to a given task are found to 

have specific narrow frequency bands. Naturally, frequency domain features, such as power 

spectra at different frequency bands, too are essential attributes to decode brain imagery. 

Unfortunately, only time- or frequency-domain features are unable to capture the 

correspondence between time and frequency, i.e., which frequency at a given time. Time-

frequency domain features, such as wavelet coefficients, however, capture time-frequency 

correlations and thus carry more information about the EEG signal corresponding to an 

imagined task.  

Olfaction 

Smell 

Class 

Pre-

Processing 

Data-point 

Reduction 
FE FS Classification 
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The most commonly used features employed in EEG research, irrespective of the cognitive 

tasks undertaken; include Hjorth parameters [35], [36], power spectral density (PSD) [37], 

wavelet coefficients [38] and autoregressive (AR) parameters [39].  Each of the above 

features excluding the Hjorth parameters has a large dimension. The above features yield 

large feature vectors, adding significant computational overhead to the classifier. One 

approach to reduce this overhead is to pick up (at least) two types of features of different 

domains, place them in random proportion in a vector of fixed length, and then select the best 

among such vectors with respect to classification rate. We consider a mixture of 1) Hjorth 

plus PSD, 2) wavelet coefficient plus PSD, and 3) AR plus PSD parameters.  

2.3.2 Feature Selection 

Given a set of N time-domain (fixed duration) EEG signals obtained from multiple subjects, 

including repeated trials for the same subject, for each EEG signal, we obtain a D-

dimensional data point (also called feature vector containing D features). Let 

][ 1, Di,i,2ii x  x  xX 

  be the i-th data point (feature vector), where jix , for j = 1 to D denotes 

the j-th feature of the i-th EEG signal. Each of the N EEG signals has an assigned (olfactory) 

class label ]K,[k 1 , where K denotes the maximum number of classes. The problem in the 

present context is to optimally select d out of D number of features, considering all the N EEG 

signals without losing their class identities. Several algorithms for automatic feature selection 

are available in the current literature [40], [41]. The most popular among them are sequential 

forward (SF) and sequential backward (SB) selections. The SF (SB) selection starts with an 

empty (complete) set of features and adds (deletes) one feature at a time with an aim to select 

the best d out of D features. The sequential algorithms suffer from the well-known “nesting 

effect” [42], which entails that a previously added (deleted) feature cannot be discarded 

(inserted) later. The drawback of sequential selection can be overcome by formulating the 

problem using optimization and solving it by a random search/evolutionary algorithm.  

Let, 

 m
jix ,  and m

j x ,  be the j-th feature of the i-th and  -th EEG time-series respectively 

belonging to the class m ;   

      mN  be the number of data points in class m ; 

        m
j  and n

j  are the mean of the j-th feature respectively in m -th and n -th classes; 

        m
j and 

n
j  be the standard deviation of the j-th feature in m -th and n -th classes 

respectively. 

We now represent feature selection as an optimization problem to satisfy the following two 

objectives.  
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The first objective function 1L  aims at minimizing the difference between individual 

feature values of any two data points within a class. This is ensured by minimization of 

objective (2.2). 

|xx|L m
j,

K

m

d

j

mN

i

mN

i

m
j,i 




   
   1 1 1

≠
1

1                                                (2.2) 

  The second objective function 2L  attempts to maximize the mean to standard deviation ratio 

of a feature between any two classes. This is ensured by maximization of (2.3). 

 

 |)/()/(|L
K

m

K

mn
n

d

j

n
j

n
j

m
j

m
j   



 1 1 1

2 σμσμ

                                  

  (2.3) 

Now, we construct a composite objective function L  given in (2.4), the minimization of 

which satisfies the above two objectives.  

  21 λLLL                                                                       (2.4) 

Here, λ  is the scale factor introduced to scale 2L  to maintain uniformity in the order of 

magnitude between the two terms in the right hand side of (2.4).  One approach to optimize 

(2.4) is to employ any numerical/meta-heuristic optimization algorithm [43-45] to determine 

the optimal set of features. Several swarm and evolutionary optimization algorithms are 

available in the current literature [46-49].  

We solve the optimization using the Differential Evolution (DE) algorithm. We use 

DE/rand/1/bin [18] version of DE. The DE used here has four main steps: initialization, 

mutation, recombination and selection. In the initialization phase, we generate trial solutions 

(also called parameter vectors) for the optimization problem. Here, the parameter vectors are 

represented by binary strings consisting of two fields: i) a D-dimensional sub-string, where a 

one (zero) in the j-th component represents inclusion (exclusion) of the j-th feature, and ii) a 

choice of  in [0, 10]. The above bounds of  is selected experimentally to maintain a 

uniformity in the order of magnitude of the two terms in the right-hand side of (2.4). See Fig. 

2.2 for an example trial vector.  

The rest of the DE algorithm includes mutation, recombination and selection over 

iterations, until the criteria for convergence is satisfied. See the Appendix A.1 for more 

details. 
 
                                                         Binary trial vector 

                                                         D  D-1 ………………….1     0        

0 1 1 1 1 0 1 0 101 

 

 
Decimal encoding of the string 

122 5 

 

Fig. 2.2 An example trial vector   
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2.3.3 Data Reduction using PCA 

Features extracted from EEG signals of the same subject with same stimulus over multiple 

trials are not unique. We derive a unique set of EEG features by identifying the commonality 

among the feature vectors, (hereafter called data points) obtained over multiple experimental 

trials. The derived data point containing commonality (obtained from the same subject with 

the same stimulus) may be considered as the “ideal data point” for the given class of the 

stimulus. Here, we use PCA, as many times as the number of stimulus times the number of 

subjects, to extract the ideal data points from each subject in response to different stimuli.  

Let,  

} ,,,{ 21
k
t

kk
k X...X XS  be a set of t extracted feature vectors for the k-th stimulus, where 

},,,{ 21
k

d,i
k
,i

k
,i

k
i x...xxX   is a d-dimensional feature vector (data point) obtained after feature 

selection, and ]1[ K,k  denotes the k-th stimulus, where K is maximum number of stimuli 

used. 

The main steps of PCA are briefly outlined below.  

1. For each data point k
iX , we obtain a new (mean-subtracted) vector  

,1 ,2 ,
{ , , , },k k k k k k k

i i i ii i i d
X x x x x x x    


                                (2.5) 

    where k
ix is the mean of the elements in .X k

i  

2. Let, T
21 ], , ,[ k

t
kk X XX  kD  be a matrix of (t × d) dimension. We obtain the data 

covariance matrix T

)1(

1
kkk DDC  .

d 
  and obtain its first principal component kPC (i.e., 

Eigen vector corresponding to the largest Eigen value).  

3. We project the mean subtracted data points: ,k
iX   i=1 to t along the first principal 

component to obtain the class representative data point kθ


 by the following transformation: 

.PCθ k

T

kk )( D


                                                              (2.6) 

Thus we obtain one class representative data point of d-dimension from t data points of d-

dimension of the same class. The process is repeated for each group of t data points obtained 

from each subject due to application of each stimulus. Thus for a maximum of K number of 

stimuli and R subjects, the above procedure is repeated K × R times. 

2.3.4 Classification 

In classifying the acquired EEG signals corresponding to an unknown smell stimulus into one 

of several known olfactory classes, we strive to maintain high classification accuracy even 

when the olfactory stimulus is not free from noise due to aromatic impurities. Recurrent 

neural topologies [50], for example Hopfield neural net [26], have inherent power to map 
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noisy data points into stable classes, represented by the optima on the energy surface 

constructed for a given Hopfield-like dynamics.  

With Hopfield neural nets, researchers generally design an energy function for a given 

neuronal dynamics of the recurrent network to determine the condition for stability of the 

dynamics. Instead, we start our design with a given energy function that satisfies the 

characteristics of a Lyapunov function [28] containing multiple minima. We want the 

dynamics to settle to one of the available minima depending on the initial parameters. Here, 

the (reduced) features of an olfactory signal are used as the initial parameters of the dynamics. 

The dynamics settle to a specific minimum for two or more instances of features 

corresponding to different smell stimuli when stimuli are similar. Fig. 3.3 provides a plot of 

two-dimensional Rastrigin function, a smooth (continuous) function with multiple minima, 

the deepest of which is located at the origin, that satisfy the required criteria of a Lyapunov 

function with multiple optima (minima). Using the Rastrigin function as the energy function, 

we determine the neuronal dynamics so as to satisfy the condition of negative definiteness in 

its time-derivative, ensuring asymptotic stability of the dynamics in the sense of Lyapunov 

and thus its convergence at one of several minima.  

Let ddkkkk    1,2,1, ][  


 be the k-th smell class- representative containing d number of 

features: k,jθ , j = 1 to d, and )( kV 


 be the Rastrigin-type Lyapunov surface, given by  

.πθwθθV

d

j

k,jjk,jk 




1

2 ]10)2cos(10[)(


                                            (2.7) 

for k=1 to K, involving the weight vector dd2   w  wwW  11 ][ 


. It is also apparent that the 

function )( kθV


in (2.7) satisfies the necessary conditions of Lyapunov function. 

 

 

 

Fig. 2.3 The plot of a two-dimensional Rastrigin function: Equation (7) with 

dimension=2.  

 

)( kθV


 
 

 
1,kθ  

 

 
2,kθ  
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The time-derivative of )( kθV


is obtained as 

                      

.
)(

.
)()( ,

1
,

,

dt

θd

θ 

θV

dt

θdV jk

d

j
jk

jkk 









                                              (2.8)

                          

.)10)2(cos10(
,

1 1

,
2
,

, dt

dθ
θ wθ

θ 

jk
d

j

d

j

jkjjk
jk

 
 





















 

          

(2.9)

               

.
dt

dθ
πθπwθ

k,j
d

j

k,jjk,j




1

))2sin(202(                                     (2.10) 

Now, the condition for asymptotic stability of the dynamics is given by:
 

          

.0
)(


dt

θdV k



                                                           (3.11)

From (2.10) that the condition stated in (2.11) holds, if 

         i.j. πθπwθ
dt

dθ
jkjjk

jk
 )),2sin(10(2 ,,

,
                               (2.12)  

Equation (2.12) provides a set of dynamics for each smell class k and feature j.  

We now briefly discuss the encoding and the recall cycles for the proposed recurrent neural 

network.  Encoding refers to identifying the weight vector of the recurrent network, whereas 

recall refers to determining one of the minima (stable attractor) on the Lyapunov surface for a 

given initial settings of .tij )(θ


 

Encoding:  Given ddkkkk θθ  θθ  1,2,1, ][ 


 for k=1 to K smell classes, we now propose a 

method to determine a unique weight vector dd2   w  wwW  11 ][ 


, such that for each smell 

class-representative ,kθ


 k=1 to K, we have a minimum on the energy surface ).( kθV


 The 

minimum on the energy surface for a given stimulus is marked as the stable optimum 

(attractor) for the stimulus class. The weight vector selection is performed using optimization, 

where the objective is to uniquely determine the weight vector so as to minimize the energy 

function )( kθV


 for k= 1 to K classes. The algorithm to select optimal weight vector for 

recurrent neural network classifier for a given smell class is given in the Appendix A.2. 

Recall: To match an unknown input stimulus, we need to take t instances of the stimulus of 

uniform durations separated by equal time-delays, and pass the acquired t instances of EEG 

signals through pre-processing, feature extraction and feature selection steps as outlined in 

sections 2.3.1 and 2.3.2, and finally reduce the t sets of features into one set by data point 

reduction algorithm, given in section 2.3.3. 

Let the assembled d-dimensional features (data point) obtained following the above steps 

for an unknown olfactory stimulus be )(0θ 


, representing the initial choice of the parameters 
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in the neuronal dynamics given in (3.12) with jkθ , replaced by jθ   for all j.  Let kθ


for k=1 to 

K be the representative optima for K distinct smell classes. To identify the nearest known 

optimum to )(tθ 


at steady-state, we solve the dynamics (2.12) with jj,k θθ  for j= 1 to d, 

and identify the optimum stable point (attractor) with the shortest Euclidean distance with 

steady-state value of )(tθ 


. The class of the unknown stimulus now can be inferred from the 

pre-defined location of convergence of the each known stimulus class. The algorithm to 

determine the nearest stable optimum for a given smell class is given in the Appendix A.3.

 
 

2.4 PERCEPTUAL-ABILITY MEASURE 

We propose a novel technique to measure (relative) perceptual-ability based on two 

parameters. The first parameter, referred to as recognition-ability, represents the ability to 

recognize pre-trained smell (olfactory) stimuli correctly. The second parameter, called 

discriminating ability, represents the ability to discriminate two or more noisy smell stimuli, 

where the noisy smell stimuli are synthesized by adding different aromatic impurities to one 

base (standard) stimulus. Usually, impurities are added in 100-200 parts per million volumes 

of the standard stimuli to maintain the traces of the standard stimuli in the noisy stimuli. 

Let, s
kn be the sample size of the standard olfactory stimulus of class k presented to subject s 

in a random order, where the samples may contain natural impurity due to their collection 

from diverse sources. Let, s
kn  be the number of correctly classified stimuli by the same 

subject. Then the probability that a pre-trained smell stimulus of class k will be correctly 

recognized by subject s, hereafter called s
kC , in a single trial is given by 

          P( s
kC ) = .

s
k

s
k

n

n
                                                            (2.13) 

 The average of P( s
kC ) for a given subject s for k =1 to K, where K denotes maximum number 

of classes, is hereafter referred to as the recognition-ability, and is given by 

.)(
1 ∑

1

s

K

k

s
kCP

K
RA



                                                (2.14) 

The second parameter, DAs, is used to determine the power of discrimination of noisy smell 

stimuli by the subject s, based on a measure of similarity of each noisy stimulus with its ideal 

(noise-free) class centroid and its dissimilarity with the class centroids of other standard 

stimuli.  

Let,  

i
cX


 be the centroid of the noise-free data points of class i ; 

iQ  be the number of noisy data points lying in class i; 
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djrr xX  1, ][


 be the r-th noisy data point lying in class i, r= 1 to iQ ; 

iDist  be the average of iQ city block distances of djrr xX  1, ][


, r= 1 to Qi from i
cX


. 

Let iQ (=4) out of Q (=14) data points for each stimulus be noisy. Thus, we obtain: 

.)||(
1

1 1

,,
 



d

j

iQ

r

i
jcjr

i
i  xx 

Q
Dist                                                   (2.15) 

Let, itDis   be the average city block distance of (K-1) non-noisy class centroids ][ k
j,c

k
c xX 


 

for k= 1 to K classes, k ≠ i, with all noisy data point djrr xX  1, ][


 of class i. Symbolically,  



  




K

ik
k

iQ

r

d

j

r,j
k
c,j

i
i |-xx|

QK
tDis

1 1 1

)(
)1(

1
                                   (2.16) 

Now, DAs representing the average discriminating ability, considering all stimuli, is defined 

as the average of the ratio 
i

i

tDis

Dist


for i=1 to K, i.e, 

        . 
tDis

Dist

K
DA

K

i
i

i
s 






1

1
                                                   (2.17) 

The larger is the DAs, the higher is the average discriminating ability of subject s. Usually, 

itDis   
is much larger than iDist  for all i; consequently DAs appears to be much smaller. This 

motivated us to use a normalized measure of DAs, called  DAs , where
)(Max

s
s

s
s DA 

DA
DA



 . Now, 

treating sDA  like probability and presuming that RAs and sDA  are independent, we define 

Perceptual-ability (PAs) of subject s as       

   .DARAPA sss ×=                                                       (2.18) 

The product function introduced in (2.18) reveals that an increase in either RAs or sDA  or 

both cause an increase in PAs.  

The parameter PAs supports comparing the relative perceptual-ability between subjects. We 

determine the rank of a subject in an experimental group of M subjects using the index of an 

array of the total set of sorted PAs.  

 

2.5 PHYSIOLOGICAL SIGNAL PROCESSING AND CLASSIFICATION 

EXPERIMENTS 

This section describes the methods to identify: i) the active brain regions responsible for 

olfaction, ii) the necessary frequency spectrum of the EEG associated with olfaction, iii) the 
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necessary EEG features required for classification of olfactory sources for similar and 

different genres, and iv) noisy stimulus discrimination.  

2.5.1 Experimental Framework 

The experimental framework includes a wireless 14 channel EEG headset (manufactured by 

Emotiv) and an Intel i7 desktop computer with 8GB RAM and a CPU clock of 3.4GHz with 

EEGLAB, MATLAB 2011B with the signal processing toolbox, and EMOTIV Application 

Processing Interface (API). The EEG Emotiv system has a sampling rate of 128 Hz with a 

signal resolution of 100µV. EEG signals are picked up from 14 electrodes namely AF3, AF4, 

F7, F8, F3, F4, P7, P8, T7, T8, FC5, FC6, O1 and O2. Here, odd numbers denote left hemisphere 

and even numbers denote right hemisphere. Among these, AF3 and AF4 are primarily 

associated for olfactory signal recognition. The experiment includes 17 men and 8 women 

(subjects) in the age group of 20-28. Fig. 2.4 provides an experimental trial, where a subject is 

given an unknown smell stimulus to recognize and her EEG signal is captured by Emotiv 

headset. 

Usually, an experiment is composed of ten sessions, with 10 trials per session. Each odorant 

is presented for 10 seconds with a gap of 5 minutes between consecutive trials. Ten distinct 

odorants, including naphthalene, odonil (air/room freshener and insect-killer), sandalwood 

powder, cinnamon, rosewater, male perfume, hydrogen sulphide, ammonia, methane and 

camphor are used as smell stimuli for the experiments. For classification of odors of similar 

genre, five distinct stimuli, cumin, coriander, bay leaves, cinnamon and cardamom are used.  

 

2.5.2 Experiment 1(Selection of Active Brain Regions) 

This experiment identifies the active brain regions responsible for sensing and/or processing 

of olfactory stimuli. Independent Component Analysis (ICA) [51] has been used to localize n 

independent sources from n time-varying EEG signals from different regions on the scalp. For 

 

Fig. 2.4 An experimental trial, having a subject experiencing an unknown smell stimulus 

for olfactory recognition 

 

AF3, AF4 
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the present application of olfactory stimuli recognition, fewer locations in the brain are 

activated (have high signal activation as identified from the component scalp-maps of the ICA 

response). With C=14 channels, we identify 14 independent sources using ICA, and select 

fewer than 14 sources having relatively high brain activation due to olfaction. 

 Fig. 2.5 provides component scalp maps for 14 channels after performing ICA analysis 

during an experimental trial. The figure demonstrates the high activity (marked in red) in the 

pre-frontal region, whereas comparatively lower activity (marked in blue) in the remaining 

regions. Supporting neuro-biological evidence found in [52-56] reveals that olfaction sensing 

and processing is performed primarily by the pre-frontal cortex. 

2.5.3  Experiment 2(Frequency Band and Type Selection of Filters in Pre-processing) 

We first determine the selective frequency band of the filter and then select the filter type 

based on the desired characteristics. For filter band selection, we take the Fourier 

transformation of the EEG signals obtained for different stimuli. The frequency spectra from 

four distinct stimuli show high amplitude peaks between 3-13 Hz (Fig. 2.6). For all ten 

samples, the above observation holds for samples from the pre-frontal electrodes. The pass-

band of the filters used for pre-processing is 3-13 Hz, covering both theta (θ) and alpha (α) 

bands. The results are supported by [31-32]. 

 

 

 

Fig. 2.5 Component epoch maps of 14-channel Emotiv headset. AF3 and AF4 refer to pre-

frontal lobe, F3, F4, F7, and F8 refer to frontal lobe, FC5 and FC6 refer to primary motor 

cortex, T7 and T8 refer to temporal lobe, P7 and P8 refer to parietal lobe, O1 and O2 refer to 

occipital lobe. Here, blue color in the color bar signifies the lowest activation, whereas the 

highest activation is denoted by red color. 
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Next, we select the filter types among the alternatives. Typically, we have four common IIR 

(infinite impulse response) filter realizations: Butterworth, Chebyshev type-1 and type-2, and 

elliptic. Filter selection in a given application is usually guided by required filter performance 

(filter roll-off, ripples in pass and stop band, computational complexity). Since the sampling 

frequency here is low (128 Hz), we focus on roll-off and ripples in pass/stop bands of the 

band pass filters in (8-13) Hz band. We varied filter order (i.e., highest degree of the 

polynomial in the denominator) for different realizations and found the four competitive 

filters:  Butterworth of order 6, Chebyshev type-1 and type-2 of order 4, and elliptic filter of 

order 4. Fig. 2.7 shows that the sharpest roll-off and good attenuation in both pass/stop band 

ripples are obtained for the elliptic filter. We selected the elliptic filter of order 4 for the 

digital band pass filter.  

2.5.4 Experiment 3(Selection of EEG Features) 

Performance of a pattern classifier is determined by the features used for classification and the 

architectural design of the classifier. Therefore, to attain good classification accuracy, we need to 

correctly determine the EEG features. However, feature selection is hampered by our inability to 

reproduce the biological basis of olfaction. One approach is to consider all possible time-, 

frequency- and time-frequency correlated features, and then identify the discriminating 

features having a wide margin in their respective spaces for the individual stimulus. 

 

 

0 5 10 15 20
0

1

2

3

4

5

6

Frequency (f) in Hertz

M
a

g
n

it
u

d
e

 |
Y

(f
)|

 

 

odonil

cinnamon

naphthalene

male perfume

 

Fig. 2.6 Frequency spectra of four stimuli: the theta (3-7Hz) and alpha (8-13Hz) 

bands are proven as the desired band of interest. 
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Here, we performed experiments for stimuli within and across different genres. For each 

subject-stimulus pair, we took 10 EEG signals of 1280 time samples each. We extracted 160 

wavelet coefficients, 112 PSDs, 3 Hjorth parameters and 99 AR parameters for each of 10 

EEG signals, and constructed 10 feature vectors of each smell class per subject.   

One feature type alone does not yield good classification accuracy. Thus, we group 2 types 

of features (PSD with wavelet coefficients, PSD with AR parameters, PSD with Hjorth 

parameters) and separately run the feature selection algorithm with these three groups of 

features; the optimally reduced dimensions of three feature sets are 30, 27 and 11 

respectively.  

Fig. 2.8 plots the third level approximated wavelet coefficient (A3) extracted from the AF3 

electrode position. We demonstrate the separation of the wavelet coefficient for four out of 

ten stimuli. There are fewer features capable of discriminating all four stimuli. For example, 

the 24
th
, the 64

th
 and the 70

th
 features can be used jointly to classify the olfactory stimuli. 

Better olfactory stimuli discrimination is apparent in PSD (Fig. 2.9). 

The experiment is repeated for olfactory stimuli of the same genre (Indian spices family) with 

10 EEG signals of 1280 time samples each for each of five stimuli. Figures 2.10 and 2.11 plot 

the first few PSD (out of 120) and wavelet coefficient (out of 126) features respectively 

extracted from AF3 electrodes to identify the useful features for discriminating five different 

Indian spices. The figures show that fewer features, for example, the 28
th
, the 32

nd
 and the 47

th
 

PSD features, are jointly capable of discriminating all five olfactory stimuli. Here, DE 

optimally selects 18 out of 246 PSD and wavelet coefficient features as the reduced feature 

set. 

 

 

 

Fig. 2.7 Frequency response of a Butterworth, Chebyshev-I, Chebyshev-II and Elliptic 

band pass filter with a pass band and stop band attenuation. 
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Fig. 2.8 Approximate wavelet coefficient A3 extracted from AF3 electrode to 

discriminate four selected stimuli. 
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Fig. 2.9 Power spectral density extracted from AF3 electrode to discriminate four 

selected stimuli. 
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Fig. 2.10 Power spectral density extracted from AF3 electrode to discriminate five Indian 

spices 
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2.5.5 Experiment 4(Noisy Stimulus Discrimination) 

We examine the possible shift in the local (stable) attractors of the recurrent neural dynamics 

(on the Lyapunov energy surface) with increasing noise in the base stimuli. We inject random 

noise of small magnitude (varied within  (10-20) % of the instantaneous EEG feature 

amplitudes over the entire time frame of the EEG trials). Feature-level noise is considered to 

determine the maximum percentage magnitude of allowable noise to sustain the same stable 

optimum corresponding to the base stimulus without noise. The experiment is conducted with 

twenty five subjects with ten repeated trials of varying noise magnitudes for all ten 

experimental stimuli. For certain stimuli, such as Male perfume and Hydrogen Sulphide, with 

noise amplitude within 15.6% of the feature values, the dynamics essentially converge to the 

same optimum with no noise (Fig. 2.12). When the noise amplitude crosses 15.6%, the 

dynamics converge to one of several optima in the neighborhood of the optimum obtained for 

the corresponding base stimulus. For certain stimuli, including Cinnamon, Sandalwood 

powder, Methane, Rosewater, Naphthalene and Camphor, the slope of the curves are more or 

less uniform, whereas for the others (i.e., for Odonil and Ammonia), the slope changes greatly 

when the noise amplitude crosses approximately 20%. 

 

2.6 CLASSIFIER VALIDATION AND PERFORMANCE 

We examine the classification accuracy of the proposed feature selector and classifier 

combination within a genre and across different genres. We consider a) individual class 

performance during the classifier training, b) overall performance using confusion matrices, 

c) performance with/without data point reduction (using PCA), and d) relative performance of 

the proposed classifier. 
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Fig. 2.11 Approximate wavelet coefficient A3 extracted from AF3 electrode to 

discriminate five Indian spices 
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2.6.1 Individual Class Performance during Training 

For individual class performance of different genres, the recurrent classifier is trained with 

2500 trials, one for each stimulus (of different genres), repeated 10 times on each of 25 

subjects. For the stimuli of similar genre, the classifier is trained with 1250 trials. A 10-fold 

cross validation is employed to check the consistency of the data, where 9 out of 10 folds are 

applied for training purposes and the remaining one fold is used for the validation purposes.  

Table-2.1 and 2.2 provide the average classification accuracies of training data across 

different genres and within a same genre respectively using 68-dimensional and 18-

dimensional features averaged over nine folds. The highest classification accuracies for the 

odorant is marked in bold in both Table 2.1 and 2.2. 

2.6.2 Overall Performance during Testing Phase 

Table 2.3 and Table 2.4 show the individual class performance of different genres and of 

similar genre, respectively. Table 2.3 indicates that the classification accuracy for the 

individual class is high, over 97%, for all test stimuli of different genres. Table 2.4 indicates 

minimum individual classification accuracy over 92%. This latter performance may be due to 

intra-genre olfactory stimuli having a closer feature space than inter-genre stimuli. 

 

Table 2.1 Average Training Accuracy of 25 Subjects for 10 Stimuli across Different Genres 

 

Stimulus Type 

Classification Accuracy (in %) 

Best Average Worst 

Naphthalene 99.6 89. 8 80.0 

Ammonia 97.2 88.4 79.6 

Odonil 98.8 87.8 76.8 

Cinnamon 98.4 87.6 76.8 

Male Perfume 98.0 87.4 76.8 

Methane 97.6 87.7 78.0 

Camphor 97.6 86.6 75.6 

Hydrogen Sulphide 99.2 88.7 78.2 

Rosewater 97.6 86.3 74.8 

Sandalwood Powder 97.2 85.0 72.8 
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Fig. 2.12 Avergae percentage shift in optimum versus percentage of noise amplitude injected. 
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Table 2.2 Average Training Accuracy of 25 Subjects for 5 Stimuli within A Same Genre 

 

Stimulus Type 

Classification Accuracy (in %) 

Best Average Worst 

Naphthalene 99.6 89. 8 80.0 

Ammonia 97.2 88.4 79.6 

Odonil 98.8 87.8 76.8 

Cinnamon 98.4 87.6 76.8 

Male Perfume 98.0 87.4 76.8 

 

Table 2.3 Confusion Matrix of Ten Smell Classes of Different genres Using DE-Recurrent NN 

classifier Along with PSD and Wavelet Coefficient Features 

 

Table 2.4 Confusion Matrix of Five Intra-genre Smell Classes Using DE-Recurrent NN 

Classifier Along with PSD and Wavelet Coefficient Features 

 Predicted Class 

Actual 

 

Class 

 
Cumin Coriander Bay 

leaves 

Cinnamon Cardamom 

Cumin 92.8 4.0 1.2 1.2 0.8 

Coriander 6.4 92.0 1.2 0.4 0.0 

Bay leaves 1.2 2.8 96.0 0.0 0.0 

Cinnamon 0.0 0.0 2.0 94.8 3.2 

Cardamom 0.0 0.0 0.0 5.6 94.4 

 

2.6.3  Performance Analysis with/without Data-Point Reduction 

We examine data-point reduction using PCA. Since intra-genre classification performance for 

individual stimulus is relatively worse than inter-genre, we restrict the present analysis to 

intra-genre (Table 2.5). 

The classification performance with the average of the data points within a given stimulus 

class used to train the recurrent neural net classifier (instead of PCA), appears in Table 2.6. 

Average classification accuracy decreases by 7% in absence of PCA as the data point selector. 

 
Predicted Class 

 

A 
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t 

u 
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l 
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s 

 
Napht

halene 

Ammo

nia 
Odonil Cinnamon 

Male 

Perfume 
Methane Camphor 

Hydrogen 

Sulphide 
Rosewater 

Sandalwood 

Powder 

Naphthalen

e 
99.6 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ammonia 0.4 97.2 1.2 0.0 0.8 0.0 0.4 0.0 0.0 0.0 

Odonil 0.4 0.4 98.8 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

Cinnamon 0.0 0.0 0.0 98.4 0.4 0.0 1.2 0.0 0.0 0.0 

Male 

Perfume 
0.4 0.8 0.4 0.4 97.6 0.0 0.4 0.0 0.0 0.0 

Methane 0.0 0.0 0.0 0.4 0.0 97.6 0.0 2.4 0.0 0.0 

Camphor 0.4 0.8 0.4 0.4 0.8 0.0 97.6 0.0 0.0 0.0 

Hydrogen 

Sulphide 
0.0 0.0 0.4 0.4 0.0 0.4 0.0 99.2 0.0 0.0 

Rosewater 0.0 0.0 0.0 0.4 0.8 0.0 0.4 0.0 97.6 1.2 

Sandalwood 

Powder 
0.0 0.0 0.0 0.4 0.8 0.0 0.8 0.0 1.2 97.2 
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Table 2.5 Average Classifier Accuracy Along with True Positive, True Negative, False Positive and 

False Negative Rates Using PCA 

Stimulus 

Types 

DE-Recurrent NN Classifier with PSD +Wavelet 

Coefficients 

True 

Positiv

e (%) 

True 

Negativ

e (%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

Average 

Classifie

r 

Accurac

y (%) 

Cumin 92.8 98.1 1.9 7.2  
 

94.0 
 

Coriander 92.0 98.3 1.7 8.0 

Bay leaves 96.0 98.9 1.1 4.0 

Cinnamon 94.8 98.2 1.8 5.2 

Cardamom 94.4 99.0 1.0 5.6 

 

 

Table 2.6 Average Classifier Accuracy Along with True Positive, True Negative, False Positive and 

False Negative Rates Without Using PCA 

Stimulus 

Types 

DE-Recurrent NN Classifier with PSD +Wavelet 

Coefficients 

True 

Positiv

e (%) 

True 

Negativ

e (%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

Average 
Classifier 

Accuracy 

(%) 

Cumin 89.2 96.2 3.8 10.8  

 

87.04 
 

Coriander 75.6 96.7 3.3 24.4 

Bay leaves 94.0 96.1 3.9  6.0 

Cinnamon 90.8 96.0 4.0  9.2 

Cardamom 85.6 98.8 1.2 14.4 

2.6.4  Relative Performance Analysis  

To study the relative performance, we consider standard PCA based feature selection and the 

following classifiers: 1) Linear Discriminant Analysis (LDA) [57], 2) k-nearest Neighbor 

(KNN) [58], 3) Feed-forward Neural Network (FFNN) [59], 4) Linear Support Vector 

Machine (LSVM) [60], [61], [62], 5) Support Vector Machine with Radial Basis Function 

(SVM-RBF) [63] kernel, and 6) Naïve Bayes [64], [65] (Table 2.7).  

Table 2.7 reveals that the final measure of classification accuracy is the highest for the 

proposed feature selector-classifier combination. Further, wavelet coefficients and power 

spectral density together offer the highest overall classification accuracy of 98.08%. The 

above study is undertaken on inter-genre classification. A paired t-test is used to compare the 

said classifiers considering DE-Recurrent neural structure as the reference classifier. 

McNemar’s test [66], [67] compares the relative performance of our proposed DE-

Recurrent NN algorithm with six standard techniques (PCA-LDA, PCA-kNN, PCA-FFNN, 

PCA-LSVM, PCA-Naïve Bayes, and PCA-SVM-RBF) (Table 2.8). McNemar’s test has been 

applied to determine the performance of two classification algorithms for correct 

classification of the feature vectors. Because of lack in availability of databases, the study is 

performed with our Indian (Jadavpur University) smell database [68]. It is evident from Table 

2.8 that the proposed classifier outperforms all its competitors excluding PCA-Naïve Bayes. 
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This confirms the fact that PCA-Naïve Bayes perform nearly similar to that of the proposed 

classifier. 

 

 

2.7 APPLICATION IN SIMULATED TEA-TASTER SELECTION 

There is no standard technique to automatically determine the perceptual-ability of tea-

tasting. Here we examine perceptual-ability in tea-tasting by measuring their EEG response to 

the aroma of tea-samples. We use 5 different varieties of tea leaves with 14 samples each. 

 

Table 2.7 Mean Classifier Accuracy and Standard Deviation (within Parenthesis) of Inter-Genre 

Testing Data Using DE Feature Selection Algorithm along with False Positive Rate (α) and False 

Negative Rate (β) 

Features 

Percentage Classifier Accuracy (in %) 

Statistical 

Significanc

e 
PCA-LDA 

PCA-

kNN 

PCA-

FFNN 

PCA-

LSVM 

PCA- 

SVM-RBF 

PCA- 

Naïve 

Bayes 

DE-

Recurrent 

NN 

Hjorth + PSD 

77.4 

(0.0004) 

82.08 

(0.0100) 

83.04 

(0.004) 

84.44 

(0.0212) 

85.48 

(0.0108) 

86.20 

(0.0092) 

97.8 

(0.0065) 

t=51.4890 

std. error of 

difference= 

0.002 

α 0.1860 0.1500 0.1476 0.1372 0.1364 0.1296 0.0034 

β 0.2512 0.2090 0.1923 0.1736 0.1539 0.1465 0.0225 

Wavelet + PSD 

78.72 

(0.0128) 

82.52 

(0.0144) 

83.76 

(0.0112) 

85.52 

(0.0096) 

89.92 

(0.0336) 

90.92 

(0.0338) 

98.08 

(0.0121) 

t = 9.9720 

std. error of 

difference= 

0.007 

α 0.1805 0.1496 0.1408 0.1359 0.1176 0.1082 0.0022 

β 0.2408 0.2009 0.1831 0.1537 0.1427 0.1410 0.0192 

AR + PSD 76.2 

(0.0124) 

78.64 

(0.0244) 

81.12 

(0.0152) 

83.72 

(0.0084) 

84.28 

(0.0228) 

85.24 

(0.0188) 

95.08 

(0.0206) 

  t = 17.6413 

std. error of 

difference= 

0.006 

 

α 0.2119 0.1904 0.1604 0.1411 0.1406 0.1395 0.0054 

β 0.2609 0.2384 0.2161 0.1843 0.1733 0.1557 0.0492 

Mean Classifier 

Accuracy (in %) 

77.44 81.08 82.64 84.56 86.56 87.52 96.98  
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Table 2.8 Statistical Comparison of Classifiers using McNemar’s Test 

Reference Algorithm: DE - Recurrent Neural Net 

Classifier 

algorithm used 

for comparison 

using desired 

featureds d=50 

Parameters 

used for 

McNemar 

Test 
Z 

Comments 

on 

acceptance

/ rejection 

of 

hypothesis 
n01 n10 

PCA-LDA 210 354 36.2570 
p< 0.00001 
(Rejected) 

PCA-KNN 196 277 13.5306 
p< 0.00001 

(Rejected) 

PCA-FFNN 180 254 12.2788 
p< 0.00001 
(Rejected) 

PCA-LSVM 160 226 10.9455 
p< 0.00001 

(Rejected) 

PCA-SVM-RBF 143 193  7.1458 
p< 0.00001 
(Rejected) 

PCA-Naïve-

Bayes 
142 170  2.3365 

p=0.019465 

(Accepted) 

 

Noise is introduced for four samples of each class by using four different organic solvents 

(vinegar, rosewater solution, orange juice and pineapple juice). All 70 tea-liquor samples are 

smelled by 10 subjects. First EEG signals are acquired from AF3 and AF4 channels, and 

feature extraction, feature selection, data-point reduction and classification (by using recurrent 

neural net) are performed (Table 2.9). The last column in Table 2.9 provides sRA  measure of 

each subject. 

Table 2.9 Recognition-Ability of Subjects Based on Classification Accuracy 

 

Subjects 

Percentage Classification accuracy in  

RAs Class 

1 

Class 

2 

Class 

3 

Class 

4 

Class 

5 

1. 97 80 92 95 77 0.882 

2. 85 80 90 77 75 0.814 

3. 77 90 85 77 90 0.838 

4. 75 82 95 97 85 0.868 

5. 95 75 75 82 97 0.848 

6. 85 90 95 87 92 0.898 

7. 82 85 87 82 77 0.826 

8. 92 97 95 90 95 0.938 

9. 87 77 97 85 75 0.842 

10. 87 82 87 75 80 0.822 

We also measure sDA . Here, for each of the four noisy stimuli of one class, we perform FE, 

FS, data-point reduction and classification. We measure the city block distance of the current 

attractor from the attractor of the corresponding classes, when experimented with standard 

stimuli. We also measure the city block distance of the current attractor with the attractor for 

individual class, when experimented with standard stimuli. These distances are used to 

determine sDA , sDA  and subsequent sPA  by (2.18). The results of sDA , sDA and sPA
 
are 

given in Table 2.10. To compute rank, we sorted two entries of the Table 2.10: subject 
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number, and sPA  measure, and sort the list of entries in descending order of the sPA  

measure. The last column in Table 2.10 provides the computed rank of individual subjects. 

Table 2.10 Ranking of Perceptual-Ability of 10 Subjects 

 

The feature vectors for near-similar stimuli are mapped around the optimum (of the 

Lyapunov energy surface), identified for the standard (noise-free) base stimuli of the same 

class. The distance between the locations of any two mapped noisy stimuli on the energy 

surface represent the dissimilarity between the two stimuli. In the present context, the fine 

differences among the aroma of noisy tea samples are automatically detected by the natural 

convergence of the recurrent neural dynamics at local optima around the identified stable 

optimum of their standard (noise-free) samples. 

The feature level discrimination is also prominent from the scatter plot (Fig. 2.13) of the 

best two selected features for both noisy (four samples of three varieties) and standard stimuli 

(any six out of ten samples of three varieties). The noise-free samples of different varieties are 

marked by the corresponding base colors including blue, red and dark green. The noisy tea-

samples of each variety e.g., 6
th
, 7

th
, 8

th
 and 9

th
 are contaminated by vinegar solution, 

rosewater solution, orange juice and pineapple juice respectively. C1, C2 and C3, in Fig. 2.13 

refer to the cluster centres of the standard (noise-free) tea-samples of corresponding varieties. 

Four noisy samples of a particular tea genre appear closely to the ideal sample of their class, 

maintaining their identity (discriminating ability among them). 

2.8 CONCLUSIONS 

The chapter introduced a novel approach to classify olfactory stimulus from the EEG 

response. A recurrent neural network classifier is designed to classify pre-trained stimuli and 

detect the nearest pre-trained class for noisy stimulus modulated over the selected pre-trained 

stimulus. A new metric to compute perceptual-ability of subjects based on their recognition-

ability of pre-trained stimulus and discriminating ability of noisy stimulus is proposed. This 

metric has successfully been used to determine the perceptual ability of subjects using a set of 

standard (pre-trained) stimuli. Among the other approaches introduced in the chapter, design 

Subject RAs DAs 
sDA  

% PAs Rank 

1. 0.882 0.27 0.5294 46.69 9 

2. 0.814 0.31 0.6078 49.47 7 

3. 0.838 0.23 0.4509 37.78 10 

4. 0.868 0.45 0.8823 76.58 4 

5. 0.848 0.38 0.7450 63.17 6 

6. 0.898 0.51 1.0000 89.80 1 

7. 0.826 0.48 0.9411 77.73 3 

8. 0.938 0.44 0.8627 80.92 2 

9. 0.842 0.43 0.8431 70.98 5 

10. 0.822 0.29 0.5686 46.73 8 
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of new evolutionary technique for feature selection and a novel use of the traditional PCA 

algorithm in data point reduction need special mention.  

 

Fig. 2.13 Feature level discrimination of best two selected features for both  

noisy (contaminated) and noise free (ideal) tea-samples. 

Four experiments have been proposed to examine the performance of the system from 

different perspectives: physiological, signal processing and classification. The physiological 

issues deal with selection of specific brain regions capable of recognizing olfaction. Signal 

processing issues include EEG frequency band selection to find the best response for 

olfactory stimulus. Classifier issues include EEG feature selection for olfactory stimulus and 

validation of classifier performance.  

The proposed scheme has successfully been applied in simulated tea-taster identification 

and ranking by measuring their perceptual-ability using a few pre-trained stimuli. The 

suggested scheme of (relative) perceptual-ability measurement of subjects, to the best of the 

authors’ knowledge, is the first successful work of its kind.  

 

APPENDIX 

A.1 Pseudo code for feature selection using DE 

Input: D dimensional data points },...,,{ 21 NXXX


X , where },...,,{ ,2,1, Diiii xxxX 


, each having D 

features and an assigned class level m   [1, K] for K classes with class labels for each iX


. 

Output: Selected d-dimensions of the data points (feature vectors) corresponding to minimal J. 

 

Begin 

1. Initialization: Initialize   NP number of  trial solutions iZ


of the format given in Fig. 2.2 for i= 1 

to NP. Initialize crossover ratio Cr=0.7. 
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2. Mutation: For each iZ


, pick up 3 companion target vectors: jZ


, kZ


and lZ


 and compute 

 ZZFZZ lkji )(


 , where, F is a scale factor in [0, 2]. Here j, k and l are distinct and mutually 

exclusive to each other. 

3. Recombination: Now for each pair of iZ


and iZ 


, construct a new trial vector iM


, where j-th 

element of iM


is obtained by:  

     jiji zm ,,  , if r, a randomly selected number in [0,1] <Cr. 

     jiji zm ,,  , otherwise. 

     4. Selection: For each pair of iM


and iZ


, ii MZ


 , if   )()( ii ZfMf


 , where f(.)=L (Eqn. (2.4)) 

is the fitness (objective) function for the minimization problem. 

5. Repeat from step 2 until the stopping criterion is not   attained. 

6.  Output the best fit member from the population pool. The components of the best fit parameter 

vector with one values are the required features. 

End.  

 

A.2 Pseudo code for optimal weight selection of recurrent neural net 

classifier 

 

Input: K class representatives ][ 21 Kθ,θ,θ





  with each kθ


( ],1[ K  k ) of dimension d, obtained 

by data reduction using Principal Component Analysis for each of the K individual classes, each of 

dimension d1 . 

Output: Optimal connection vector W


 of dimension d1 . 

Begin 

    1. Set the generation number t=0  and randomly initialize a population of NP individuals   

)}(),...,(),({ 21 tWtWtW NPt


P

 

with )]([)( , twtW jmm 


 for j [1, d], and m= [1, NP].
 

   2. Evaluate the trial vector )(tWm


 by measuring its cost   function             

        ))(( tWf m



 


K

k

d

j

jkjmjk θwθ
1 1

,,
2
, ]10)2cos(10[  by (2.7).

 

 3.    ))))(((minarg()(
],1[

tWftW m
NPm

best






 

4.     While terminating condition is not reached do begin 

          a) Mutation: Generate a donor vector )]([)( , tvtV jmm  corresponding to the  m-th target vector   

)(tWm


via the mutation scheme of DE as mentioned in Appendix-A.1 (Step 2).               

       b) Recombination: Generate trial vector )]([)( , tutU j mm 


for the m-th target 

vector )(tWm


through binomial recombination scheme of DE as mentioned in Appendix-A.1 

(Step3). 

         c)  Selection:  Evaluate the trial vector )(tUm


 by     measuring its cost function )).(( tUf m


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 If ))(( tUf m


< ))(( tWf m



 

    

);()1( tUtW mm




 

    Evaluate ))1(( tWf m



 
and save it for future.  

If ))(U( tf m


< ))(( tWf best



 

 

);()( tUtW mbest




 

        Evaluate ))(( tWf best



 
and save it for future. 

End-if;  

  Else );()1( tWtW mm




 

End-if;  

Increase the counter value  t =t+1.  

End-while; 

        Print )(tWbest


; 

 End. 

 

A.3   Pseudo code for Recall phase of recurrent neural net classifier 

Input: Optimal connection vector W


 of dimension d1 . 

Output: Class  of unknown smell stimulus. 

 

Begin 

   1.  Initialize )0(θ

  = .)],0([ jθ j   

   2. Solve the dynamics (12) with jjk θθ , by Newton-Raphson method presented below. 

       
))((

))((
)()1(

tθf

tθf
tθ tθ

j

j

jj



 ,  j. 

where, )](2sin[)())(( tθ w10tθtθf jjjj  , until  |)()1(| tθtθ jj , where ε  is a pre-

assigned positive number, however small possible. 

   3. For known optima Kθ,θ,θ





21 , find kθ


 having the  smallest distance with )(tθ

 = )]([ tθ j for k=1 

to K.  

Let, || | |)()(| || |)()( tθtθtθtθ k


  ,  k;  

         then )()( tθtθ


  , i.e., )(tθ

 falls in  -th class of  

         stimulus. 

End 
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Chapter 3 

  

 

Cognitive Failure Detection in 

Driving Using Type-2 Fuzzy 

Classifiers 

  

 

 

The chapter aims at detecting on-line cognitive failures in driving by decoding the 

EEG signals acquired during visual alertness, motor-planning and motor-execution 

phases of the driver. Visual alertness of the driver is detected by classifying the pre-

processed EEG signals obtained from his pre-frontal and frontal lobes into two 

classes: alert and non-alert. Motor-planning performed by the driver using the pre-

processed parietal signals is classified into four classes: braking, acceleration, 

steering control and no operation. Cognitive failures in motor-planning are 

determined by comparing the classified motor-planning class of the driver with the 

ground truth class obtained from the co-pilot through a hand-held rotary switch. 

Lastly, failure in motor execution is detected, when the time-delay between the onset 

of motor imagination and the EMG response exceeds a predefined duration. The most 

important aspect of the present research lies in cognitive failure classification during 

the planning phase. The complexity in subjective plan classification arises due to 

possible overlap of signal features involved in braking, acceleration and steering 

control. A specialized interval/general type-2 fuzzy set induced neural classifier is 

employed to eliminate the uncertainty in classification of motor-planning. 

Experiments undertaken reveal that the proposed neuro-fuzzy classifier outperforms 

traditional techniques in presence of external disturbances to the driver. Decoding of 

visual alertness and motor-execution are performed with kernelized support vector 

machine classifiers. An analysis reveals that at a driving speed of 64 km/hr, the lead-

time is over 600 milliseconds, which offer a safe distance of 10.66 meters. 
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3.1 INTRODUCTION 

Driving involves complex cognitive processes, concerning sensory perception, motor-

planning and motor-execution.  The cognitive failure detection (CFD) problem, introduced 

here, refers to classifying cognitive failures involved in visual alertness (VA), motor-planning 

(MP) and motor-execution (ME) phases of driving with a motive to alert the driver by an 

(audio) alarm before an accident takes place.  One approach to solve the above problem is to 

capture the brain signals of the driver by a non-invasive means for subsequent processing and 

classification.  

   Among the well-known brain signal acquisition techniques, electroencephalography (EEG) 

[1] is most popular for its prompt time-response [2], non-invasive characteristic [3], [4] 

portability and cost-effectiveness. Because of the above merits, the chapter attempts to 

employ EEG-signal processing and classification to detect VA failure (VAF), MP failure 

(MPF) and ME failure (MEF). The VAF is recognized from the acquired P-300 response of 

the driver in reaction to external stimulation [5]-[8], such as sudden appearance of bumpers, 

traffic light changes, and the like.  MPF and MEF detection, require Event Related De-

synchronization/Synchronization (ERD/ERS), which, being spontaneous, requires no external 

stimulation for its generation [5], [6].   

Classification of cognitive tasks from the acquired EEG signals is relatively easier when 

the tasks involve disjoint brain regions. However, cognitive tasks (braking, acceleration and 

steering control) involved in MP usually engage the same cortical regions (parietal and motor 

cortex), with an overlap in their feature space. This overlap acts as a source of uncertainty to 

the classifier. Traditional classifiers, which usually show promising performance, 

unfortunately, fail to accurately discriminate pattern classes with overlapped features. The 

logic of fuzzy sets has an inherent power to handle uncertainty in measurement space. Thus 

fuzzy logic induced classifiers are a good choice for the present MP classification. Our 

experience [9]-[12] further reveals that the MP features of the above three cognitive tasks 

have wider fluctuations over experimental instances of the same subject and across subjects. 

Type-2 fuzzy set has an added advantage over its type-1 counterpart to handle both intra- and 

inter-personal level uncertainty [13].This motivated us to employ Interval type-2 Fuzzy 

sets/General type-2 Fuzzy sets (IT2FS/GT2FS) [14] to design classifiers for the MP classes.  

      There exist traces of works on pattern classifiers using type-2 fuzzy sets. Das et al. 

employed projection-based learning techniques to determine optimal weights of a 

multilayered type-2 neuro-fuzzy classifier [15]. Lee et al. introduced a recurrent interval type-

2 fuzzy neural net (IT2FNN) for non-linear system identification. They employed asymmetric 

interval type-2 membership functions for type-2 fuzzy reasoning, and used gradient descent 

learning for weight adaptation [16]. Lin et al. in [17], proposed a self-organizing model of 

IT2FNN, where the motivation is to employ i) self-organized learning for the determination of 
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fuzzy rules and ii) parameter learning for the selected fuzzy rules. In the self-organized 

learning phase, new type-2 rules are added and inefficient rules are pruned out of the 

IT2FNN. In [18], Park et al. introduced a new model of IT2FNN where type-2 fuzzy rules 

include a function of the linguistic variables in the consequent. The fundamental aspect of 

their work lies in automatic tuning of parameters of the IT2FNN using real-coded Genetic 

Algorithm. 

Current research on type-2 classifiers is primarily focused around adding sophisticated 

learning paradigms to improve classifier performance.  The new learning paradigms 

introduced include extreme learning machines [19], active/incremental learning [20], [21], 

transfer learning [22], [23] and multi-view learning [24] techniques. For example, Deng et al. 

employed extreme learning algorithm to adapt parameters in the consequent of type-2 fuzzy 

rules to improve generalization performance of the resulting system [19]. Pratama et al. also 

addressed techniques for generalization and summarization capability of IT2FS classifier by 

introducing learning mechanisms to expand, prune, recall and merge rules [25]. Yang et al. 

utilized transfer learning principles [22] in Takagi-Sugeno fuzzy logic systems for adaptive 

recognition of epileptic EEG signals [23]. In [20], [21] the authors proposed two interesting 

works on incremental type-2 meta-cognitive learning machines that autonomously detect 

what, how and when to learn.  

     In recent times, an increasing interest to classify brain signals is noticed in research 

community [26], [27]. For example, Wang et al. selected random forest algorithm for epilepsy 

detection for its superior performance over its three competitors, including decision tree and 

support vector machine (SVM) based realizations of both decision tree and random forest 

[28]. Herman et al. [29] examined the scope of IT2FS induced classifier in motor imagery 

related EEG classification task for both off-line and online test cases. In [30], the authors 

indicated that type-2 fuzzy logic classifier outperforms the traditional linear discriminant 

analysis (LDA) classifier in terms of classification accuracy in presence of noise. Nguyen et 

al. proposed a novel approach for motor imagery classification using wavelet feature induced 

interval type-2 fuzzy classifier [31] and demonstrated that the said classifier outperforms 

traditional statistical, neural and adaptive neuro-fuzzy inference system (ANFIS) classifiers. 

Andreu-Perez et al. proposed a self-adaptive GT2FS-induced inference system for online 

classification of motor imagery to navigate a bi-pedal humanoid robot [32].  

  Traditional type-2 fuzzy inference generating systems usually employ rules with type-2 

fuzzy propositions in the antecedent and type-2/interval type-1 fuzzy propositions in the 

consequent [15], [33]-[37]. The classifier rules employed in this chapter are designed with 

type-2 fuzzy propositions to synthesize the antecedent and a single crisp class label at the 

consequent. The intra- and inter-subjective variations in the acquired brain signals are 

accommodated in the construction of type-2 membership functions (MFs) of the antecedent 



108 

 

propositions. The crisp, instead of interval type-2, class label is used in the consequent to 

describe precise/hard classification of MP tasks in presence of imprecise measurements.  

    In this chapter, two different proposals for type-2 classifiers are introduced, one 

synthesized with interval type-2 (IT2) and the other with general type-2 (GT2) fuzzy neural 

networks. Both the realizations include two layered neural nets with the first layer performing 

IT2/GT2 fuzzification [13], firing interval computation [15] and Nie-Tan type-reduction [15], 

[38], [39]. We here do not require defuzzification, as the class label of the input fuzzified 

features is determined by comparison of the type-reduced outputs of the neurons in the first 

layer. The second layer selects the neuron with the highest type-reduced output in the first 

layer and generates a decoded output pattern corresponding to the position of the selected 

neuron in the first layer. Since defuzzification is avoided and Nie-Tan type-reduction involves 

only averaging operation, the run-time complexity of the classifiers is reduced significantly, 

making them amenable for real-time driving application. 

     In addition, the GT2 classifiers proposed here utilize a novel technique for secondary MF 

evaluation. Here, the secondary MF at a given value of the linguistic variable x x and 

primary membership ( )
A

x   in fuzzy set A  is obtained based on the location of the optima of 

( )
A

x   over x , and the distance of x from its two neighborhood optima on its both sides. 

The computation of secondary membership is done offline to reduce run-time complexity of 

the classifiers. It may be noted that in traditional z-sliced based GT2 system [40], the GT2MF 

is presumed to have a specific geometry, such as triangle. The proposed method, on the other 

hand, computes secondary MF from the primary MF and thus is more accurate. 

Computational complexity of the proposed GT2FS-induced classifier also is nominal as it 

requires m.d extra multiplications in comparison to the proposed IT2FS induced classifier, 

where d denotes the number of GT2FS used in the antecedent of a rule and m denotes the 

number of rules used. 

   The novelty of the chapter thus lies in the design of an integrated CFD system for driving 

applications with special emphasis to the design of a fast and accurate type-2 (IT2FS/GT2FS) 

classifier to classify the MP classes, including braking (BR), acceleration (ACC), steering 

(STR) control and no operation (NOP).  Besides CFD system and type-2 neuro-fuzzy 

classifier design, the other original contribution of the chapter lies in the design of an 

evolutionary feature selection algorithm. This algorithm is used to reduce dimension of EEG-

features for subsequent classification of MP and ME signals. The work presented here is 

significantly different from the authors‟ previous works [9]-[12] with respect to formulation, 

approach and experiments.  

    The rest of the chapter is structured as follows. In section 3.2, we propose a psychological 

model of CFD cycle and present an integrated approach to system design for CFD. Section 

3.3 describes evolutionary feature selection algorithm. In section 3.4, we emphasize the 
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design of the proposed type-2 (IT2FS/GT2FS) classifiers as well as the KSVM classifier. 

Section 3.5 is developed to deal with psycho-physiological experiments concerning selection 

of EEG filter bands, active brain regions and EEG features. In Section 3.6, we validate 

classifier performance, estimate lead-time for different speeds and evaluate objective 

performance of the proposed CFD system. Concluding remarks are given in section 3.7. 

 

3.2 SYSTEM DESIGN AND INTEGRATION 

This chapter examines cognitive failures in driving from three important perspectives: visual 

alertness (VA), MP and ME.VAF, refers to cognitive failures due to lack of visual alertness of 

the subject (driver). MPF refers to cognitive failures occurring during the phase of translating 

traffic conditions into necessary plans for ACC, BR and STR control. In presence of correct 

motor-planning, MEF might occur because of delay in executing the plans due to muscle 

fatigue/drowsiness and/or poor health of the driver. Fig. 3.1 provides a schematic 

representation of the cognitive failure detection loop, where VAF, MPF and MEF are 

monitored sequentially by the proposed system to generate necessary audio alarms to alert the 

driver. A commonsense thinking reveals that VAF may in turn result in MPF, which 

subsequently may result in MEF. In Fig. 3.1, we, however, attempt to identify the first 

occurrence of only one cognitive failure in the loop, rather than generating audio alarms for 

sequential failures, to avoid confusion of the driver. 

 

In order to detect the above three cognitive failures of the driver, we need to process EEG 

signals from four distinct brain regions, including pre-frontal and frontal regions for testing 

VA, parietal lobe for MP and motor cortex region for ME. The acquired EEGs from pre-

frontal/frontal, parietal and motor cortex regions are pre-processed using band pass filters 

(BPFs) of suitable frequency bands. VA being more prominent in alpha band (~8-13 Hz) [41] 

 

Fig. 3.1 Proposed psychological model of cognitive failure detection in driving to 

appropriately alert the driver with different audio alarms 



110 

 

and MP/ME being relatively more active in mu- (8-13 Hz) [42] and beta (13-30 Hz) [43] 

bands, we used BPFs of required pass bands. More review on EEG channel selection and 

frequency band selection are provided in [44] and [45]. Subsequent steps undertaken on the 

filtered signals include feature extraction, feature selection and classification.  

 For VAF, we require feature extraction and classification only as VAF can be 

characterized by fewer features. The importance of the VAF classifier is to detect the 

presence/absence of the P300 oddball signal within a finite interval of approximately 350 

milliseconds. The classifier should recognize the visual non-alertness of the subject in 

absence of the P300. For MPF and MEF, we, require all the three steps: FE, FS and 

classification. Here, the classifier aims at detecting ERD/ERS from the parietal lobe within a 

specific time-period of approximately 600 milliseconds from the onset of the stimulus. It may 

be noted that although we count the time-point of ERD/ERS generation from the onset of the 

stimulus, such generation is spontaneous and is not directly influenced by the stimulus. In 

addition, MPF detection requires the ground truth (GT) planning decision from a second user, 

usually the co-pilot.  

    The response of the MPF classifier is compared with the GT decisions to determine any 

subjective error of the pilot. Lastly, for the MEF detection, the classifier looks for the 

presence or absence of an ERD/ERS signal from the motor cortex. If no ERD/ERS is detected 

within 800 milliseconds from the onset of the stimulus, the classifier declares the failures in 

motor execution. To confirm the MEF, we also pre-process, filter and classify the 

elecctromyogram (EMG) signal acquired from the fore-arms/leg muscles of the subject. If no 

EMG signal is detected within 1200 milliseconds from the onset of the stimulus, the subject 

must have committed a fatal execution error. The above measurements are referred to driving 

speed above 64 km/hour. If driving speed falls off, the subject is relaxed and the above time 

markers shift right depending on the speed. 

 Fig. 3.2 includes three classifiers for VAF detection (VAFD), MPF detection (MPFD) and 

MEF detection (MEFD) and their interconnections. The VAFD classifier has two outputs: 

visually alert and non-alert. The MPFD classifier classifies planning failures into four classes: 

BR, ACC, STR and NOP.  The MEFD unit includes three classifiers to classify ACC, BR and 

STR control failures during ME phase. The class labels of BR classifier are BR-pressed (BR-

P) and BR-not pressed (BR-NP). Similar nomenclature is used for other two classifier 

outputs.  

The planning classifier is structurally more complex than the rest as it needs to compare the 

detected class labels of the driver with the GT classes. The GT class labels are obtained from 

the co-pilot, who continuously feeds his decisions about the requirement of BR, ACC and 

STR control to the decision logic (Fig. 3.2) using a digital rotary switch. Since there are four 

possible classes (BR, ACC, STR and NOP), the co-pilot keeps the rotary switch in NOP mode 
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unless any change is required at any point of time. After the co-pilot informs his planning 

decisions by pressing the right switch for ACC, BR and STR, it naturally returns to NOP by 

mechanical spring action. So, each planning decision may be regarded as a short duration 

pulse.   The following   two criteria have been used to select the co-pilot to assist a given 

pilot. 

 

(1) The co-pilot‟s response time of generating Event Related Potential should be  to that of 

the main pilot, and  

(2)  The co-pilot and the main pilot should be able to receive stimuli concurrently without any 

interruptions. 

The decision logic unit compares the parietal classifier response with the GT classes obtained 

from the co-pilot and thus determines appropriate planning failures in case there is a 

mismatch between the two responses (Fig. 3.3). Side connections from one classifier to the 

next in Fig. 3.2 are used to realize asynchronous operations between two successive 

classifiers. For example, if the subject is visually alert, we use this signal to act as a control 

input of a gating device to pass on parietal features to the MPFD classifier. Similarly, if no 

errors in BR, ACC and STR control signals are detected in MP phase, we use these signals as 

the control input of respective gating devices for subsequent BR, ACC and STR control 

classifiers during the ME phase. 

 

Fig. 3.2 Basic classifier architecture for CFD 
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3.3 FEATURE SELECTION 

In the proposed CFD system, we used adaptive autoregressive parameters (AAR) for VAFD, 

power spectral density (PSD) and db4 wavelet coefficients for MPFD and MEFD. We 

selected these features based on our previous experience of working with EEG-based driving 

[9]. The AAR parameters being of low dimensions require no feature selection. However, 

PSD and DWT [46] features used in MP and ME having large dimensions require reducing 

features using a feature selection algorithm. 

      Let, ,1 ,2 ,{ , , , }k k k k
i i i i DF f f   f


  be the i-th feature vector with component k
jif , , j  1 to D 

falling in the k-th class, where, [1, ]i n  and [1, ]k m are positive integers,  

k
jc  and 

l
jc  be the j-th component of the cluster centers  (geometric centroids) for the    

classes k and l  respectively. 

Then the aim of the proposed feature selection algorithm is to select d<<D number of 

features in a manner such that it satisfies the following two objectives jointly.         

 (1) The first objective function J1 aims at minimizing the city-block distance of all 

components of the i-th feature vector, [1, ]i n  from their respective cluster centers. This is 

ensured by minimizing (3.1).  

 

Fig.3.3 Complete architecture of IT2FS induced planning failure detection in driving 
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                                                       (3.1) 

(2) The second objective function J2 aims at maximizing the distance between the cluster 

centers
k
jc  and 

l
jc of two classes k and l respectively. This is realized with maximization of 

(2). 

2

1 1 1

| |                          
m m D

k l
j j

l k j
l k

J c c
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

                                   (3.2) 

The two objective functions can be jointly represented by a composite objective function, 

given in (3), which needs to be minimized to attain the above two objectives satisfactorily. 

1

2

,
J

J
J




                                                                           (3.3) 

where,  is a small positive number ( 0.001 say). The trial solutions here are binary strings 

of D-dimension representing presence or absence of a feature in the feature-vector. 

DE/rand/1/bin variation of Differential evolution (DE) [45] is used to obtain optimal solution 

(i.e., a binary string of D-dimension for which J is minimum) for the given minimization 

problem. Pseudo code for feature selection using DE is given in Appendix [A.1].  

  

3.4 CLASSIFIER SELECTION AND DESIGN 

The VAFD and the MEFD classifiers are selected from the standard off-the-shelf classifiers 

as they have only two class labels. Here, because of superiority of KSVM in classification of 

non-linearly separable data-points [48], [49], we selected it for VAFD and MEFD 

classification. 

      The MPFD classifier has four classes: BR, ACC, STR and NOP, which are often found to 

have overlaps in feature space because of commonality of signal sources (here, motor cortex). 

This makes MPFD classification hard, leaving little space for traditional classifiers for the 

present application. Here, we need to design a suitable classifier, capable of performing 

classification with high accuracy at low computational overhead for real-time application. 

Fuzzy classifiers, in particular, type-2 fuzzy classifiers can serve the said purpose for their 

inherent capability to perform classification with overlapped class boundaries.  

The existing IT2FS induced neural classifiers [15]-[18] show good performance with 

respect to classification accuracy, but their use for the present application is restrictive for 

their large computational overhead. This motivated us to design a simpler classifier with small 

computational overhead for real time application, however, without a compromise in their 

classification accuracy. In this section we would address two such fast classifiers, one realized 
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with IT2FS- and the other using GT2FS-induced neurons. The proposed GT2FS-induced 

classifier has relatively better classification accuracy than its IT2FS counterpart, but the 

computational speed wise IT2FS outperforms all existing and also the proposed GT2FS-NN 

classifiers.  

3.4.1 Preliminaries on Interval-Valued, IT2FS and GT2FS 

Definition 1: Let, X be the universe of discourse of a linguistic variable x . A classical (type-

1) fuzzy set A , defined on the universe X , is a two-tuple, given by 

}|))(,{( XxxxA A                                              

where, )(xA , called membership of x  in A , is a crisp number in [0, 1] for any x X . The 

fuzzy set A is also expressed as  

( ) |A
x X

A x x


                                                    

where  represents the union of all feasible Xx [50]. 

Definition 2: Given a universe of discourse X  for the linguistic variable x .  Let, 

([0,1])L denote the set of all closed sub-intervals in [0,1] and is given by 

  2([0,1]) { [ , ] | ( , ) [0,1]L x x x x x    and }.x x                            (3.6) 

An interval-valued fuzzy set A [51], [52] is given by a mapping 

: ([0,1])A X L ,                                                                   (3.7) 

and the membership degree of x X is given by ( ) [ ( ), ( )] ([0,1])A x A x A x L  , where 

: [0,1]A X  and : [0,1]A X  are mapped as the lower and the upper bound of the 

membership interval ( )A x  respectively.   

Definition 3: For a given universe of discourse X for the linguistic variable x , a type-2, also 

called general type-2 fuzzy set (GT2FS) A
~

is a two-tuple [14], given by 

]}1 ,0[,|)),(),,{((
~

~  xA
JuXxuxuxA                             

where, 

)(~ xu
A

 (called primary membership) is a crisp number in [0, 1], 

]1,0[),(~  ux
A

  is the secondary or type-2 membership function (MF). 

The fuzzy set A
~

 is also expressed as  

]1,0[),,(|),(
~

~   
 

x
Xx Ju

A
JuxuxA

x

                                            

          

]1,0[,|]/)([   
 

x
Xx Ju

x Jxuuf
x

                                                                                     



115 

 

where, ]1,0[),()( ~  uxuf
Ax   , and  represents the union over all feasible Xx and 

xu J . 

Definition 4: For a given ,xx  the 2-dimensional plane containing u and ( , )x u  is referred 

to as vertical slice of ),(~ ux
A

 . Thus, 

         ( , ) ( ) | , [0,1]x xA
u Jx

x u f u u J  


   ,                                                                          

here, ( )xf u lies in [0,1]. The amplitude of a secondary MF is referred to as secondary grade 

of membership [13]. 

Definition 5: If ( , ) 1
A

x u  , x X  and [0,1]xu J   , then the type-2 fuzzy set A is called 

an interval type-2 fuzzy set (IT2FS). In other words, if all the secondary grades of a type-2 

fuzzy set are equal to one, it is called as IT2FS [52]. 

Definition 6: An IT2FS contains an infinite number of embedded type-1 fuzzy sets. The upper 

membership function (UMF) of an IT2FS is given by  

   ( ) ( ( )),AA e
e

x  x xMax 


                                                                                                               

where, eA is an embedded fuzzy set in the IT2FS.  

Similarly the lower membership function (LMF) of an IT2FS is given by 

       ( ) ( ( )), .AeA
e

x x xMin 


                                                                                                        

An IT2FS thus is bounded by an UMF and an LMF. The union of all the embedded fuzzy sets 

in an IT2FS is called the footprint of uncertainty (FOU) [13]. 

Let, jf be a linguistic variable representing an experimental feature and A be a fuzzy set, 

representing CLOSE-TO-CENTRE-OF-THE-SPAN-OF- jf . Because of difference in 

experimental readings of the feature ,jf we describe it by a Gaussian MF with mean and 

variance equal to their respective values of the feature in different experiments for the same 

subject. Thus, for 10 experimental subjects, we have 10 type-1 Gaussian MFs describing the 

statement: jf  is A. We take the maximum and minimum of the 10 type-1 MFs to construct an 

IT2FS, where the maximum and minimum return the UMF and the LMF respectively (Fig. 

3.4).  

For multi-class classification using IT2FS, we use type-2 classifier rule i of the form: If f1 

is 1A and f2 is 2A  andand df is dA , then class is Ci, where f1, f2, …, df  are d features and 

jA  for j= 1 to d are  IT2FS. Now, for unknown measurements 1 1f f   and  2 2f f  ,…, 

,d df f  we determine the firing strength of the rule i by taking the average of upper and 

lower firing strengths UFSi and LFSi, where    

  
21

1 2( ( ), ( ), , ( ))
d

i dA A A
UFS Min f f f                                                      (3.14) 
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       and       
1 2

1 2( ( ), ( ), ( ))
d

i dA A A
LFS Min f f f                                         (3.15) 

where 
jA

  and 
jA

  are UMF and LMF of IT2FS jA . 

 

Now, for k classifier rules, we say that the features: 1 1 ,f f   2 2f f  ,…, d df f   fall in 

class r if the average of LFSr and UFSr exceeds the average of LFSi and UFSi,  i. The 

justification of the averaging is briefly discussed below. 

It is important to note that the actual firing strength of a rule i lies in [LFSi, UFSi] and is 

uniformly probable everywhere in the said interval. Thus the expected firing strength of rule i 

would be the average of LFSi and UFSi. The significance of the proposed simple approach is 

apparent for its low computational overhead and run-time performance over comparable 

algorithms [15]-[17], [53], [54] for real-time classification of brain signals. The type-2 

classifier rule and inference generation using the above rule is represented in the form of a 

type-2 fuzzy neuron (Fig. 3.5), where the neuron includes d IT2FS , and for a given set of 

measurements 1 1 ,u uf f    2 2
u uf f  ,…, ,u u

d df f   we obtain the UFSi and LFSi to finally 

obtain their average, representing the degree of the measurements to fall in class i. The 

subscript u above is used to designate the subject. 

 3.4.2 IT2FS-Based Classifier Design 

The IT2FS-induced planning classifier (Fig. 3.3) determines four class labels including C1 

(braking), C2 (acceleration), C3 (steering control) and C4 (no operation). The small dotted box 

in Fig. 3.3 describes the MP classifier, comprising two modules, where the first module is an 

IT2FS neural net with outputs C1, C2, C3 and C4. This neural net is realized with IT2FS 

neurons, the symbol and architecture of which are given Fig. 3.6(a) and 3.6(b) respectively. 

The next top box within the dotted small box in Fig. 3.3 represents the second module of the 

MP classifier. This module sets one of its output: kC =1, if lk CC  l , and sets remaining 

 

Fig. 3.4 Construction of IT2FS1 for feature jf from 10 Gaussians for 10 

subjects in braking 
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outputs to zero. In other words, if the IT2FS neural net responds with the largest output at 

kC in comparison to ,lC ),( kl  then the second module sets kC =1 and 0.lC   

 

 

The co-pilot, as mentioned earlier, takes binary decisions about 1D  (braking), 

2D (acceleration) and 3D (steering control) as required during driving. These decisions are 

considered as ground truth for the driver and consequently a failure occurs when 1kD  but 

kC  =0 for any ]3 ,1[k . This is given in Fig. 3.3 by three decision boxes. It is important to 

note that kD and kC  for a given k respectively represent decision of co-pilot and decoded 

decision of the driver for the same planning action, say BR. 

 The two modules representing MP classifier here is realized by a two-layered neural net 

(Fig. 3.6(b)), where the first layer is constructed with IT2FS neurons and the second layer 

with perceptron neurons. Suppose, for a given instance of motor-planning by a subject s, we 

 

Fig. 3.5 Architecture of the an IT2FS neuron r 

 

 

 

 

 

 

 

 
                               

(a)                                                                                                   (b) 

Fig. 3.6(a) The structure of a neuron, Fig. 3.6(b) Architecture of the proposed IT2FS- induced 

classifier to classify motor-planning classes 
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have d features: 1 2, , ,s s s
df  f  f  after feature selection. Assume that the MP task has m (=4) 

cognitive classes, such as BR, ACC, STR control and NOP.  

 The principle of classification by the proposed IT2FS-NN, given in Fig. 3.6(b) is step-

wise outlined below for an unknown subject u. 

Step 1:  Evaluate lower and upper firing strengths: rLFS  and rUFS  of the r-th IT2FS neuron 

by evaluating the t-norm (here, min) of the embedded type-1 LMFs and UMFs respectively at 

measurement points djf j
u   to1, 

 , where   

        ))((
1





j

ud

j
r fLMFLFS Min                                                      (3.16) 

and            ))((
1





j

ud

j
r fUMFUFS Min                                                     (3.17) 

where, Min
d

j 1

 is cumulative minimum operator for varying  j=1 to d. 

Step 2: We next evaluate the average firing strength for the r-th neuron, given by 

   ),(
2

1
rrr UFSLFSC                                                      (3.18) 

for mr   to1 classes. This has similarity with Nie-Tan type reduction [15], [38].

Step 3: For any ],1[, mlk  , if ,lk CC  ,lk  then the response of proposed neuron k  is given 

by  

kC =1 and lC=0, kl  .                                        

By steps 2 and 3, we want to convey that we consider the feature sets to fall in class k if the 

average firing strength kC  (using (3.11)) of the neuron k exceeds the same of other neurons. 

     The perceptron learning algorithm used in Fig. 3.6(b) adapts the weights lkw  , k =1 to m  

and l =1 to m  by using the learning equation: 

lklklk eCtwtw  )()1(                                               (3.9) 

where,  

             )( tw lk is the weight between kC  to 
lC at time t ,  

 lll Cde = error signal corresponding 

to output 


lC with  reference to pre-defined target value ld , and     is the learning rate in 

[0,1]. 

3.4.3 GT2FS-Based Classifier Design 

The intra- and inter-personal level uncertainty of individual sources is usually buried in the 

FOU of an IT2FS.  In order to efficiently utilize the above forms of uncertainty, we prefer to 

use GT2FS-based classifier. A GT2FS, in general, is a 3-tuple given by 

, ( ), (( ,) ( )) ,j j j jC C
f f f f

k k
     where fj is the j-th feature, ( )

k
jC

f  is the type-1 MF and 
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( , ( ))
k

j jC
f f   is the secondary grade of membership of feature fj for a given primary MF 

( ).
k

jC
f   

  In this section we propose i) one novel approach to secondary membership evaluation for a 

given pair of linguistic variable value and corresponding primary membership over each user 

supplied type-1 MF, and ii) classification of motor imageries using GT2FS-NN.  

A. Secondary Membership Evaluation 

 In [55], authors proposed a novel approach for secondary MF evaluation in the settings of an 

optimization problem. For evaluation of secondary memberships in real-time, we here 

propose an alternative approach free from optimization using the following assumptions: 

1. Suppose in a test, maximum marks=100 and there are 50 students, out of which a few 

students scored zero and 100 and the rest scored marks in [0, 100]. Now, the examiner is 

very certain while assigning a marks zero or 100. But he does not have the same degree of 

certainty while assigning a mark, say 67, to a student. 

      In the assignment of secondary membership, we adopted a similar policy. The secondary 

membership should have a maximum value equal to (or close to) 1 at the peaks and 

minima on the primary MF. The motivation of such selection lies in the phenomenon that 

the secondary grade representing the degree of primary membership should have the 

highest value at the peaks and minima (of the type-1 MFs) as the user is confident of 

assigning maximum and minimum membership values at those selected locations of the 

type-1 MF. Formally, we write ( , ( )) 1,j jCk
f f     if )(~ jC

f
k

  has a local peak or 

minimum at .j jf f   

2. The secondary membership should decrease as the linguistic variable is away from the 

location of the peak/minimum of the type-1 primary MF. Presuming an exponential 

decrease in secondary membership at ,j lf f  when there exists a nearest peak/minimum 

at ,j jf f  we obtain 
| |

( , ( )) ( , ( )).
f fj l

l l j jC Ck k
f f f f e   

      
| |f fj le

  
  as 

( , ( )) 1.j jCk
f f     

3. When a point [ , ]j j jf f f   where jf  and 
jf are two nearest peak/minimum on the type-

1 MF ( ),jCk
f   we obtain the secondary MF at ( , ( ))j jCk

f f   by 

| | | |

( , ( ))

[ ( , ( )). , ( , ( )). ]

j jCk

f f f fj j j j
j j j jC Ck k

f f

Max f f e f f e

 

   
       



 

          

],[
|||| 

 jjjj ffff
ee Max  

as  ( , ( )) 1j jCk
f f     and ( , ( )) 1j jCk

f f     

for 
jf  and 

jf being peak/minimum on the type-1 MF. 

    It may be added here that computation of secondary membership has to be performed for 

the primary MFs obtained from each subject. To represent the subjective primary and 
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secondary MF for each linguistic variable, we add an extra s as the left superscript to ( )jCk
f   

and ( , ( )),j jCk
f f    which would look like ( )s

jCk
f   and ))(,( ~ jC

s
j

s ff
k

  respectively. 

B. GT2FS-NN Based Classification  

In GT2FS, we need to consider subjective type-1 MF and their secondary membership values 

for all possible values of the linguistic variable (here, feature). To represent subjective 

consideration of type-1 MF, we adopt the old notations like s
jf to describe j-th feature for 

subject s. Let us assume that we have n subjects to develop the complete membership space 

for the entire MP classifier system.  

       Let, ( )s
jCk

f  be the primary MF for feature jf obtained from experimental data of subject 

s for the classifier rule for class k, and ( , ( ))s s
j jCk

f f   be the secondary MF for feature 

jf constructed from primary MF of subject s for the classifier rule of class k. Here, we design 

one GT2FS-neuron to describe the k-th class classifier rule with features 1 2, , ,u u u
df f f , 

where u denotes the unknown subject. The neuron produces the firing strength Ck of the k-th 

class classifier rule. Thus for m classes, we have m such neurons. The neuron with the largest 

firing strength would describe the right class (classifier output). This is realized by 

architecture similar to Fig. 3.6(b), where the neurons are of GT2FS type (see Fig. 3.7). The k-

th class neuron works following the principles outlined below.  

 

1. First, for each type-1 MF ( )s u
jCk

f   obtained from subject s for feature jf , we evaluate 

secondary membership ( , ( ))s u s u
j jCk

f f    at the measurement point ,u u
j jf f    j=1 to d.  

 

                                   Fig. 3.7 Architecture of the proposed GT2FS-induced neuron 
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2. We then submit ( )s u
jCk

f  and ( , ( ))s u u
j jCk

f f   at the input of Max and Min blocks 

,s where we evaluate 

max ( ( ) ( , ( )))j s u s u s u
j j jC Ck ks

z f f fMax   


     and

min ( ( ) ( , ( )))j s u s u s u
j j jC Ck ks

z f f fMin   


     for j=1 to d. 

3. Now, we compute max max
1

( )
d

j

j

z zMin


  and min min
1

( )
d

j

j

z zMin


 by two additional blocks. 

4. In the last step, we compute average of maxz and minz to compute ,kC the class membership 

(or firing strength) of the fired k-th classifier rule realized with the neuron. 

After kC ‟s are evaluated for k = 1 to m, we use a figure similar to Fig. 3.6(b) with IT2FS 

neurons being replaced by GT2FS neurons to identify the class p where pC  =1 for  

,p rC C r   and 0rC   for .r p  

The GT2FS-induced classifier outperforms both the existing and the proposed IT2FS-

induced classifiers because of utilization of secondary memberships in firing strength 

evaluation of rules. In GT2FS-induced classification, we attempted to obtain an equivalent  

IT2FS-like representation in the product space of primary and secondary memberships and 

hence evaluated the UMF and the LMF at a given measurement point. Such product function 

based UMF and LMF computation improves the qualitative measure of firing strength 

computation, which in turn enhances the classifier performance in comparison to its IT2FS 

counterparts. In this chapter, secondary MF computation, however, is done offline. 

3.4.4 Complexity Analysis 

The IT2 classifier includes four main steps: i) Determining the LMF and the UMF at the 

given measurement points of d IT2FS present in the antecedent of a classifier rule represented 

by the IT2 neurons, ii) computing t-norm of the resulting LMFs (and the UMFs) obtained 

from d IT2FS to generate LFS and UFS respectively from each neuron, iii) Taking average of 

the UFS and the LFS from each neuron and iv) a forward pass in the single layer perceptron 

classifier to produce the desired class of the given measurement space.  

The complexity of step (i) is O(d). The complexity of step (ii) is also O(d). The complexity 

of step (iii) is O(1). The complexity of step (iv) is O(m),where m denotes number of neurons. 

As we have m neurons working in parallel, their complexity represented by the first three 

steps, need to be considered once only. So, the overall time-complexity is 2O(d) +O(1) + 

O(m)  O(d) +O(m). In uni-processor architecture, the complexity of the individual neurons, 

however, adds up, yielding an overall complexity of O(m.d) + O(m),which approximately is 

O(m.d). 

      For GT2FS-based classifier, we need extra complexity for secondary membership 

evaluation plus taking product of primary and secondary MFs at the given measurement 

points. The secondary membership computation is done offline. So, its complexity does not 

add to GT2FS classifier-overhead. Now, for d fuzzy propositions in the antecedent of the 
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classifier rule, we need to have 2O(d) additional multiplications per neuron with respect to 

that in IT2FS-induced neurons. So, if the parallel architecture is fully supported, the overall 

complexity appears to be 2O(d)+ 2O(d) + O(m) + O(1)  4O(d) + O(m).  Again, if the 

computation is performed on a uni-processor architecture, the computational complexity is 

obtained as 2m.d +2m.d + m O(m.d). 

3.4.5 The KSVM Classifiers 

VAFD and MEFD classifiers here are realized with KSVM, for proven performance in two 

class classification problems and their low computational overhead. In Fig. 3.2, each of the 

ME tasks: BR, ACC and STR control is classified into two classes, namely BR-P and BR-NP, 

ACC-pressed (ACC-P) and ACC-not pressed (ACC-NP) and STR-control done and STR-

control not done. The VAFD classifier classifies the obtained pre-frontal and frontal feature 

set into two classes: visually alert and non-alert.  A typical SVM classifier aims at designing a 

hyper-plane that leaves the maximum distance between the hyper-plane and the closest 

element from the hyper-plane (i.e., margin) from both classes. A linear support vector 

machine classifier can segregate linearly separable data points by an optimally chosen hyper-

plane. KSVM is employed when we do not have knowledge about the linear separable nature 

of the data points of two classes. One approach to select the right SVM classifier is to 

consider KSVM with linear, polynomial and radial basis function (RBF) type kernel functions 

with varied parameters of the kernel and thereby determine the parameters with maximum 

classification accuracy. Since linear SVM is equivalent to KSVM with linear kernel function, 

we lose nothing by realizing the latter. 

The KSVM attempts to minimize the following cost functional to find an optimal choice of 

the weight vector w.  

      

1

1
( , , ) ( )

2

N
T

i i
i

C   


   Φ w w w                                                 (3.19) 

where, for i=1 to N the following constraints should hold. 

( ) ,Tdi i i   w Φ x  

( ) ,T di i i    w Φ x  

0i  and 0,i    

In the above formulation, {( , )}di ix  for 1,2,i N   are the training samples with ix being the 

input pattern for the i -th example and di is the target class label +1 or -1. Slack variable 

i and i  represent  -insensitive loss function [48] and 

( ) [ ( )0i i Φ x x ( ) ( )],1
1

i m i x x whose { ( )xj i } for j=0 to 1m denote a set of non-linear 

basis function. w is the 1m  dimensional unknown weight vector, and C is a user-defined 

positive parameter. Here, ( , ) ( ) ( )TK i ix x Φ x Φ x is an inner product kernel. In our experiment, 
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we used radial basis function kernel, given by 2 2( , ) exp( || || /2 )K i i   x x x x , polynomial 

kernel, given by ( , ) (1 ) ,T dK i i x x x x  and linear kernel ( , ) (1 ).TK i i x x x x  We adapt C and 

parameter of the respective kernel function to obtain their settings for maximum classification 

accuracy. This is discussed in detail in the experiment section. 

 

3.5 PSYCHO-PHYSIOLOGICAL EXPERIMENTS 

This section provides experiments undertaken to determine certain experimental parameters 

concerning EEG and also to validate the principles outlined in Section 3.2 - 3.4.  

3.5.1 Experimental Set-up 

EEG is captured from a 21-channel standalone EEG acquisition system with sampling rate of 

200 Hz, manufactured by Nihon Kohden while the experiments are performed using a 

Logitech driving simulator. In addition, four EMG sensors are placed on both hand muscles 

(extensor carpi radialis longus) and leg muscles (gastrocnemius muscles, often referred to the 

bulging area of the calf muscle) of the participants to test motor execution failure. The EMG 

data are recorded at sampling rate of 1 KHz.  

The experiments are performed using a Logitech driving simulator  (See Fig. 3.8), 

comprising a steering wheel and a foot rest comprising an accelerator and a brake paddle 

(from right to left), following configurations for British/Indian cars. The driving simulator is 

connected to a personal computer using a Universal Serial Bus (USB)-port. The computer is 

configured with an intel processor with 8GB RAM and a CPU clock of 3.4 GHz. One video 

display unit (VDU) connected with the computer is used to observe the driving environment, 

containing the car under reference, roads and other cars and pedestrians.  

 

 

Fig. 3.8 Experimental set-up for acquisition of EEG and EMG signals from a subject driving a 

virtual driving simulator 
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3.5.2 Participants 

Ten subjects aged 22-30 years are selected for driving experiments, among whom six are 

healthy (H1-H6) registered drivers, two are fatigued (F1 and F2) due to lack of sleep over last 

48 hours, and the rest are driving learners (L1 and L2).  

3.5.3 The Training Session 

At first we prepare the training dataset. The dataset prepared for the CFD problem is 

presented in the form of a tree (Fig. 3.9). The root node of the tree denotes cognitive failures. 

At the next level, we present the failure types. At the third level, we list the classes under each 

failure type. At the lowest level (leaves), we present the stimulus type for each class of the 

failure. The total number of stimuli/subject/training session is obtained by the count of the 

leaf nodes, which here is 43. We repeat the experiment 10 times on each of the 10 subjects, 

thus having an EEG database of 43×10×10=4300. The length of the EEG samples collected 

for each stimulus is 300ms + 400ms + 400 ms= 1100ms (see Fig. 3.10).  

 

 

Experimental procedure of the training session is provided in Table 3.1. 

 

 

Fig. 3.10 Structure of the stimulus used and timings 

 

 

Fig. 3.9 The tree representing 43 EEG data-samples for 43 stimuli per subject per training 

session 
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Table 3.1 Experimental Procedure for the Training Session 

 

A. Stimuli Preparation 

Each subject is instructed to perform driving with a given road map for 10 times, where the 

road-map includes nine types of visual stimuli. The list of the stimuli along the motor actions 

required in response to the respective stimulus is given in Table 3.2. The structure of the 

stimulus is given in Fig. 3.10. 

Steps Description 

Step-I: Stimulus 

preparation 

 

9 stimuli as indicated in Table-II are submitted to the subject one by one, each for 

duration of 5 seconds after a uniform interval of 10 seconds between two successive 

presentations, followed by EEG acquisitions. The 9 stimuli are used to obtain four 

classes of subjective actions: Braking (by left foot), Acceleration (by right foot), 

Steering control (by both hands), and No operation/Wait for the next stimulus. The 

structure of an individual stimulus and timing are given in Fig. 8. 

Step-II: EEG and 

EMG 

Acquisition 

i) P-300 detection from electrodes:   Fp1, Fp2, F3,  

F4, Fz, F7,  F8, O1, O2, Pz for VAF  

ii) ERD/ERS detection from electrodes P3, P4, 

C3, C4 for MP: Steering control (hand-imagery) 

iii) ERD/ERS detection from electrodes C2 and Cz for MP: Braking (left foot-imagery) 

iv) ERD/ERS detection from electrodes C1, Cz, P3, Pz for MP: Acceleration (right foot-

imagery) 

v) ERD/ERS detection from electrodes C3 and C4 for ME: Steering control (hand-

execution) 

vi) ERD/ERS detection from electrodes C2 and Cz for ME: Braking (left foot-

execution) 

vii) ERD/ERS detection from electrodes C1 and Cz for ME: Acceleration (right foot-

execution) 

viii) PSD detection from EMG electrodes:   Ch1and Ch2  (for hands) and Ch3 and 

Ch4 (for foot) to check muscle activity  

Step-III: Pre-

processing and 

Filtering 

Using Elliptic filter of order 4 with pass bands 

i) -band (7-13 Hz) for VAF 

ii)  and  bands (8-13, 13-30 Hz) for MPF 

iii)  band (13-30 Hz) for MEF 

Step-IV: Feature 

Extraction and 

Feature 

Selection 

Features extracted for VAF: 11 AAR parameters 

Features extracted for MPF: 15 PSD + 63 DWT 

Features extracted for MEF: 15 PSD + 63 DWT 

Features selected for VAF: All extracted features 

Features selected for MPF and MEF: 18 out of 78 features by DE-based feature 

selection 

Step-V: MF 

Construction 

IT2FS Construction 

1. Type-1 MF construction for each feature from multiple trials of the same of the 

same subject 

2. Construction of Mixture of Gaussians by repeating experiments on 10 subjects 

3. Taking max and min of the Gaussians to obtain UMF and LMF of IT2FS 

GT2FS Construction 

1. For each  Gaussian primary MF obtained in step-2 above, compute secondary MFs 

at the desired value of linguistic variable x and primary MF: ( ).xA   

Step-VI: 

Classifier 

Training 

1. Define class labels for IT2FS/GT2FS classifiers 
2. Feed extracted features to the classifier: (IT2FS/GT2FS) and measure error at 

the output of layer 2 neurons  

3. Adjust the weights of the second layered neurons by Perceptron Learning 

algorithm. 

4. Select KSVM parameters and train the KSVM classifier with the selected 

parameters. 
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Table 3.2 List of Stimuli and Required Motor Intension 

 

Stimulus 

type 

 

Stimulus description 

Required 

motor intension 

1 
Car moving ahead and side car at either side 

is too close 

Steering (STR) 

control 

2 High bumper Braking (BR) 

3 
Car coming from opposite direction at high 

speed 
Braking (BR) 

4 
Sudden increase in gap between the car 

moving ahead and the reference car 

Acceleration 

(ACC) 

5 Change in traffic light from green to red Braking (BR) 

6 Sharp bending in front 
Steering (STR) 

control 

7 
Sudden decrease in gap between the car 

moving ahead and the reference car 
Braking (BR) 

8 Change in traffic light from red to green 
Acceleration 

(ACC) 

9 
Cars on road at constant speed and no change 

in road direction/traffic signal 
NOP 

 

B. EEG Electrodes and Signal Acquisition  

We used the standard 10-20 electrode placement technique (Fig. 3.11) to locate the electrodes 

listed in Table-2.1 for the cognitive tasks associated with VA, MP and ME tasks. 10-20 

electrode placement technique is a well-known International standardized method for locating 

the EEG electrodes on the human scalp. This section includes an outline of 10-20 electrode 

placement technique using 21-channel EEG acquisition device (Fig. 3.11). The „10‟ and „20‟ 

refer to the fact that the actual distances between adjacent electrodes are either 10% or 20% of 

the total nasion-inion distance of the skull. Nasion and inion are two anatomical landmarks 

that are used for the essential positioning of the EEG electrodes. The position of EEG 

electrodes can be understood from their nomenclature. It is clear from Fig. 3.10 that the first 

letter of each brain region refers to the location of electrode placement and a number to 

identify the hemisphere location. Odd numbers (1, 3, 5, 7, 9) refer to electrode positions on 

the left hemisphere, whereas even numbers (2, 4, 6, 8) refer to those on the right hemisphere.  

Here, we selected pre-frontal and frontal electrodes: Fp1, Fp2, F3, F4, Fz, F7, F8 for VA 

detection as they are usually activated in alertness related brain-activity [56]. In addition, O1, 

O2 and Pz electrodes are selected for VA following [57]-[59] for possible engagement of the 

parietal and the occipital lobes to elicit P300 in the presence of rare/target visual stimuli. It 

may be noted that usually before motor execution, the subject performs motor imagery for 

motor planning to mentally prepare for hand or leg movements to perform braking, 

acceleration and/or steering control.    
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When there is no time-pressure, motor imagery and motor execution can be easily recognized 

from parietal and motor cortex ERD/ERS, particularly for new drivers. But when the subject is 

under time-pressure, the time-gap between the two ERD/ERS signals is not always visible. For 

hand motor imagery, the electrodes used are   P3, P4, C3, C4; for hand motor execution the 

electrodes used are C3 and C4  while for the foot motor imagery and execution, we take the 

difference signals: P3 – Pz, P4 – Pz and C1 – Cz and C2 – Cz to distinguish them from the hand 

motor imagery/execution [60]. 

C. Pre-processing and Filtering  

We here select Infinite Impulse Response (IIR) filters over Finite Impulse Response (FIR) 

filters because of its requirement of fewer filter coefficients with respect to the latter for a 

given order of the filter.  

For realization, we select Elliptic filter of order 4 over Butterworth, Chebyshev-I and 

Chebyshev-II filters for its sharper roll-off around the cut-off frequencies than the rest. (Fig. 

3.12). For pass band selection of the elliptic filters, we obtain the centre frequency of the 

bands for the three cognitive tasks and obtained the scalp maps, given in Table 3.3. The 

filtered signals in the pass band of the VA and motor imagery classes from occipital and 

motor cortex regions respectively are given in Fig. 3.13 and 3.14. It is confirmed from both 

the figures that alpha band (8-13 Hz) is associated during visual alertness and beta (13-30 Hz) 

band is active during motor execution tasks. 

 

Fig. 3.11 10-20 electrode placement system for 21-channel EEG device. 

F: Frontal, Fp: Pre-frontal, C: Motor cortex, T: Temporal, P: Parietal and O: Occipital 
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Table 3.3 Activation of Scalp Maps for Different Cognitive Modalities at Different Frequency Bands 

 

 

 

Fig. 3.13 Pass band (7-13 Hz) selection of the elliptic filter for occipital EEG for four 

stimuli 
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Fig. 3.12 Frequency response of Filters: Butterworth, Chebyshev-I, Chebyshev-II 

and Elliptic filters of order 4 
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For each driving session, we take ICA of the 19 electrodes and observe that for the 

independent components 1, 3, 4, 5, 6, 7, 8, 9, 14, 16, 17, we have circular (enclosed) red 

regions indicating activation of the corresponding brain regions (Fig. 3.15). The remaining 

components are ignored since these are activated due to eye-blinking and muscle artifacts.  

 

D. EEG Feature Selection 

To select features for a given cognitive task, we plot the feature values against feature-count, 

and note the discriminating features for the sub-classes (say, BR, ACC, STR and NOP) of the 

cognitive task (say, MP/ME). We extract AAR parameters for VAFD, and PSDs and DWT 

coefficients for MPFD and MEFD. To obtain feature sets, the signal is first segmented using a 

moving window with window size = 500ms, which yields a data array of 10 samples/window 

at 200 Hz sampling rate. During feature extraction, this sliding window is moved from left-to-

right along with each EEG data array and the features: AAR, PSD and DWT coefficients are 

computed to obtain the required features for VAFD, MPFD and MEFD respectively. Fig. 3.16 

 

Fig. 3.15   ICA scalp components from 19 EEG electrodes. Here, red color denotes the 

highest activation, whereas, blue color represents the lowest activation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14 Pass band (13-30 Hz) selection of the elliptic filter during execution of four 

motor actions for four stimuli 
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shows AAR feature discrimination during VAFD. Feature discrimination plots for PSD and 

DWT parameters are given in Fig. 3.17 and 3.18.  

 

 

 

 

 

Fig. 3.17 PSD feature discriminations from motor imagery response of a 

subject during ACC, BR, STR control and NOP planning 

 

Fig. 3.18 DWT feature discriminations from motor imagery response of a subject during 

ACC, BR, STR control and NOP planning 

 

 

Fig.  3.16 AAR parameter discrimination from occipital EEG of a subject during four 

different types of stimuli 
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During visual alertness, we extract 11 AAR features from each of 90 experimental trials 

for each subject, where each trial represents one visual stimulus. From Fig. 3.16, it is clear 

that most of the AAR features (i.e., 3
rd

, 4
th
, 5

th
, 6

th
, 8

th
 and 10

th
) can successfully discriminate 

occipital response of a subject between visually alert and non-alert classes. During motor-

planning and execution, we extract 15 and 63 dimensional PSD and DWT features 

respectively, of which all are not equally significant. Fig. 3.17 and 3.18 provide PSD and 

DWT feature plots during motor-planning. It has been noted from Fig. 3.16 and 3.17 that only 

a few PSD and DWT features: 8
th
, 9

th
, 11

th
 and 12

th
 can jointly discriminate 4 motor planning 

actions. 

After feature extraction, we finally obtain 11 AAR, 15 PSD and 63 DWT features. For (15 

+ 63) = 78 dimensional MPF and MEF feature sets, we require to execute the evolutionary 

feature selection to select fewer features (here 18) without losing their inherent power of 

inter-class separation. The superiority of the proposed DE-based feature selection strategy 

against the traditional principal component analysis (PCA) is validated using confusion 

matrices (Table 3.4), where, we compare the performance of the proposed DE-based feature 

selection algorithm with traditional PCA. This is realized by comparing the IT2FS-induced 

neural classifier performance with a priori feature selection by the proposed and PCA 

techniques. Table 3.4 provides a comparison of classifier performance using confusion 

matrices. It is apparent from the Table that the proposed feature selection results in better 

classifier performance in all the four classes with respect to PCA. 

Table 3.4 Confusion Matrices of Four Motor-Planning Classes Using PCA and DE-Induced Feature 

Selection Algorithm 

 
Predicted Class using PCA-based Feature Selection 

Predicted Class using DE-induced Feature 

Selection 

Actual 

Class 

 

Accelera

tion 

Braking Steering 

Control 

No 

action 

Acceleration Braking Steering 

Control 

No 

action 

Accelerati

on 
0.83 0.015 0.09  0.065 0.95 0.005 0.025 0.02 

Braking 0.0225 0.8775 0.08 0.02 0.0025 0.9675 0.025 0.005 

Steering 

Control 
0.145 0.055 0.795 0.005 0.025 0.01 0.96 0.005 

No 

operation 
0.15 0.05 0.08 0.72 0.04 0.01 0.06 0.93 

 

The rest of the steps in Table 3.1, including MF construction and classifier training are self-

explanatory. The classifier performance in the training phase is given in [47]. Only the 

parameter selection of KSVM with linear, polynomial and RBF Kernels are given in Tables. 
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It is observed from the Table 3.5 that the KSVM with RBF Kernel yields the best 

classification accuracy in the training phase with C= 1 and  =0.75 (marked in bold).  The 

polynomial kernel (with d=2, 3) based KSVM however yields worse classification accuracy 

than the RBF kernel and the linear kernel (d=1) based KSVM (Table 3.6). 

Table 3.5 Classification Accuracy of KSVM-RBF Classifier for Varied C and  

C   

0.01 0.75 1.00 100 

0.5 71.44 83.55 80.22 77.33 

1 77.22 95.22 88.44 81.55 

10 66.55 78.11 73.33 69.11 

Table 3.6 Classification Accuracy of KSVM-Linear and Polynomial Classifier for Varied C and d 

C d 

 1 2 3 

0.5 91.33 89.11 87.22 

1 95.00 93.11 90.00 

10 88.55 86.33 81.33 

 

3.5.4 The Test Session 

Table 3.7 provides a summary of the main steps undertaken in the test phase. Steps-I to III are 

similar with those in the training session with the following exception. Although for both the 

training and the test sessions we used the same driving simulator, the training was performed 

with presentation of individual stimulus one by one in a discrete sense. However, the test 

session is performed in a continuous mode. So, any stimulus might appear at any time-point. 

After the assessment of the classifiers by a team of experts as indicated in Table 3.7, we 

analyze the classifier performance as given in the next section.  
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3.6 PERFORMANCE ANALYSIS 

This section provides experimental basis for performance analysis and comparison of the 

proposed   classifiers with traditional/existing ones. It also undertakes experiments for lead-

time estimation and objective performance of the proposed CFD system with respect to 

different stimuli, representative of traffic conditions. 

3.6.1 Performance Analysis of VAFD Classifier 

Here, we compare the run-time and relative classification accuracy of LDA and KSVM with 

linear, polynomial and RBF kernels, when experimented over 10 subjects, each   experiencing 

4 BR, 2 ACC and 2 STR control instances (See Fig. 3.9) for 10 times, and thus yielding 

altogether 400 BR, 200 ACC and 200 STR control instances. It is observed that the RBF 

kernel-based KSVM outperforms (marked in bold) its competitors in classification accuracy, 

whereas LDA offers the least run-time (marked in bold), leaving behind linear, polynomial 

and RBF kernel-based algorithms in increasing order of their run-times (Table 3.8). The study 

also compares the classifier performances by taking occipital features only following [57]-

Table 3.7 Experimental Procedure for the Test Session 

Steps Description 

Step-I: Online stimuli 

presentation 

Place the subject along with a co-pilot in a real/emulated driving 

environment where any one of 9 stimuli may appear at any time-point. 

Step-II: EEG acquisition 

and filtering 

Acquire EEG from channels as mentioned in the training session, 

preprocess and filter them by Elliptic filter of order 4. 

Step-III: Feature extraction Extract AAR, PSD and DWT features and perform DE-based feature 

selection to obtain 11 AAR for VAF detection and 78 PSD+DWT 

features for MPF and MEF. 

Step-IV: Classification Feed extracted features to VA, MP and ME classifiers with pre-set 

weights obtained from the training session 

Step-V: Recording Record VA classifier, MP classifier and ME classifier response over time 

and save these in a file. Also record a video of the online driving session 

from the computer screen. 

Step-VI: Assessment by 

experts 

1. Experts match the recorded co-pilot decision and the traffic instance at 

the same time-point to detect VAF classifier performance. 

2. Re-run the video and get the response of three experts at different time-
points about MP decisions for alarms. Match the common response of 

the experts with that of MP alarms recorded earlier and generate 

classifier performance. 

3. Experts note the time-delay in EMG response from the time-pint co-

pilot points out MP decisions. If the delay exceeds a time limit (600 

ms), then MEF is correctly detected. 
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[59] and prefrontal/frontal features following [56]. Table 3.8 reveals that the performances of 

all classifiers are improved by approximately 2 - 2.5% when prefrontal plus frontal features 

are used instead of occipital features only. 

 

 

Table 3.8  Run-Time and Mean Percentage VAFD Classification Accuracies (standard deviation in 

percentage) by Different Classifiers 

Classifiers Runtime 

(in ms) 

Brain Regions Mean percentage classification accuracies in % and (std. 

deviation in %) for traffic instances 

BR ACC STR control 

 

LDA 

 

8.22 ms 

Occipital only 84.00 (0.00413) 87.00 (0.00815) 85.50 (0.00672) 

Pre-frontal + 

Frontal 

86.50 (0.00695) 89.50 (0.00972) 88.00 (0.00879) 

Type-1 

Fuzzy 

 

9.02 ms 

Occipital only 81.25 (0.00134) 83.50 (0.00258) 83.00 (0.00231) 

Pre-frontal + 

Frontal 

82.75 (0.00225) 84.50 (0.00438) 84.0 (0.00378) 

 

ANFIS 

 

11.6 ms 

Occipital only 87.50 (0.00847) 88.00 (0.00879) 87.00 (0.00815) 

Pre-frontal + 

Frontal 

89.25 (0.00938) 89.50 (0.00972) 88.50 (0.00891) 

 

SOFNN 

 

10.2 ms 

Occipital only 84.75 (0.00454) 86.00 (0.00622) 85.50 (0.00672) 

Pre-frontal + 

Frontal 

85.75 (0.00492) 86.50 (0.00695) 86.00 (0.00622) 

KSVM- 

linear Kernel 

 

12.04 ms 

Occipital only 93.75 (0.04543) 93.00 (0.04472) 93.50 (0.04121) 

Pre-frontal + 

Frontal 

95.50 (0.02643) 95.00 (0.02558) 95.50 (0.02643) 

KSVM- 

polynomial 

Kernel 

 

12.24 ms 

Occipital only 91.25 (0.01783) 90.50 (0.00712) 91.00 (0.01429) 

Pre-frontal + 

Frontal 

93.25 (0.02130) 93.00 (0.01907) 94.50 (0.02412) 

KSVM-RBF 

Kernel 

 

13.2 ms 

Occipital only 93.33 (0.02289) 92.50 (0.01828) 93.00 (0.01907) 

Pre-frontal + 

Frontal 

95.75 (0.02794) 95.50 (0.02643) 92.00 (0.01864) 
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The performance analysis here is undertaken at three levels: i) classification accuracy, ii) run-

time complexity and iii) joint occurrence of true/false and positive/negative cases.  Table 3.9 

includes the result of mean percentage classification accuracies of type-2 fuzzy classifiers 

against traditional ones, including self-organized fuzzy neural network (SOFNN) [53], 

artificial neural network fuzzy inference system (ANFIS) [54] and three existing IT2FS-

induced models [15]-[17]. The experiment was performed on 10 subjects, each participating 

in 10 sessions, comprising 9 stimuli, covering 10 ×10 ×9= 900 traffic instances. It is observed 

from Table 3.9 that the proposed IT2FS-NN (GT2FS-NN) classifiers outperform their nearest 

competitor by an average classification accuracy of ~ 3% (~ 5%) in absence of phone calls, 

whereas the accuracy changes to ~ 5% (~ 8%) when phone calls are received by the driver. 

 

 

 

 

 

 

 

 

 

 

In the run-time complexity analysis, given in Table 3.10, we observe that the proposed 

IT2FS-NN algorithm takes the smallest run- time (~38 milliseconds), when compared with 

the other classifiers. In addition, the proposed GT2FS-NN, requires 96.02 milliseconds, which 

is comparable to the run-time of most of the IT2FS-NN [15], [16] classifiers.  

 

Table 3.9 Mean Percentage Classification Accuracy of IT2FS-NN (GT2FS-NN) Against Standard 

Classifiers for Traffic Instances Plus Without (With) Phone Calls 

 

Classifiers 

Mean percentage classification accuracy in % for traffic instance without phone calls 

(with phone calls) 

For motor-planning tasks 

BR ACC STR control NOP 

Proposed IT2FS-NN  96.75 (94.25) 95.00  (92.00) 95.50 (91.50) 93.00 (90.0) 

Proposed GT2FS-NN  98.75 (97.25) 97.50 (95.50) 98.00 (96.50) 95.00 (93.0) 

ANFIS  [54] 94.00 (88.75) 92.5 (87.50) 92.0 (85.0) 90.00 (86.00) 

IT2FS-NN [15] 92.75 (91.75) 91.50 (90.00) 90.00 (88.50) 89.00 (88.00) 

IT2FS-NN [16] 91.25 (89.50) 91.00 (90.00) 89.50 (88.00) 87.00 (86.00) 

IT2FS-NN [17] 91.00 (88.75) 89.50 (88.00) 87.50 (85.50) 84.00 (82.00) 

SOFNN  [53] 85.25 (76.00) 81.00  (73.50) 80.50 (75.50) 79.00 (75.00) 

Type-1 Fuzzy NN 89.00 (87.25) 88.00 (86.5) 88.5 (86.5) 86.0 (84.0) 

LDA 90.75 (89.25) 90.0 (88.5) 89.5 (87.0) 88.0 (86.0) 

LSVM 91.25 (89.75) 90.5 (88.0) 90.0 (88.5) 89.0 (87.0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.2. Performance Analysis of the Type-2 MPFD Classifier  
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Motor-Planning Classifier Run-time in IBM PC Dual-core Machine 

IT2FS-NN (proposed) 38.22 milliseconds 

IT2FS-NN (Das et al.) [15] 96.34 milliseconds 

IT2FS-NN (Lee et al.) [16] 98.26 milliseconds 

IT2FS-NN (Lin et al.) [17] 92.42 milliseconds 

SVM  38.25  milliseconds 

ANFIS [54] 100.02 milliseconds 

SOFNN [53] 112.04 milliseconds 

GT2FS-NN (proposed) 96.02 milliseconds 

Type-1 Fuzzy NN 50.4 milliseconds 

 Lastly, we consider four distinct performance metrics: True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) to compare the relative performance of all 

classifiers (Table 3.11), when performed over 6 healthy subjects, yielding 540 traffic 

instances, where GT2FS is found to outperform all existing and the proposed IT2FS-NN by 

around 2-3% in TP class.  

 
Table 3.12 also offers a comparative study of TP, TN, FP and FN measures of the proposed 

IT2FS-NN (GT2FS-NN) classifier across 10 subjects without/with received phone calls. It is 

apparent from Table 3.12 that for six healthy subjects (H1-H6), the mean TP and TN 

measures are almost independent of received phone calls. However, for the fatigued subjects 

Table 3.11 Comparative Studies of Percentage TP, TN, FP and FN Measures (%) of the Proposed 

Classifiers With Existing IT2FS Classifiers 

Classifier 

Performance Metrics 

TP TN FP FN 

GT2FS-NN (proposed) 97.96 1.85 0.19 0.00 

IT2FS-NN (proposed) 95.92 1.67 1.48 0.93 

IT2FS-NN (Das et al.) 95.19 1.48 2.03 1.30 

IT2FS-NN [Lee et al.] 94.81 1.48 1.68 2.03 

IT2FS-NN [Lin et al.] 94.63 1.30 1.85 2.22 

Type-1 Fuzzy NN 87.77 3.52 5.74 2.96 

 

Table 3.10 Run-Time of IT2FS-NN and Other Competitive Classifiers 
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F1-F2 and Learners L1-L2, the mean TP and TN measures drop by more than 6% while using 

IT2FS-NN. However, GT2FS-NN provides mean TP and TN measures which almost are 

independent of received phone calls for all subjects, whereas, FP and FN measures increases 

by 1-6% in presence of phone calls for fatigued subjects and driving learners, depending on 

their misclassification in intended motor-planning. 

Table 3.12 Comparative Studies of TP, TN, FP and FN Measures With/Without Phone Calls for 

IT2FS-NN (GT2FS-NN) Classifier across 10 Subjects 

Subject Stimulus 

Traffic Instance + Without Phone Calls Traffic Instance + With Phone Calls 

TP TN FP FN TP TN FP FN 

H1 97.78 

(98.89) 

1.11  (1.11) 0.00   

(0.00) 

1.11   

(0.00) 

95.56   

(96.67) 

1.11   

(1.11) 

0.00   

(1.11) 

3.33   

(1.11) 

H2 95.56 
(96.67) 

2.22   
(3.33) 

1.11    
(0.00) 

1.11    
(0.00) 

93.34    
(95.56) 

2.22    
(2.22) 

1.11    
(1.11) 

3.33   
(1.11) 

H3 92.23 

(94.45) 

4.44   

(4.44) 

1.11 

(0.00) 

2.22 

(1.11) 

90.01 

(94.45) 

2.22 

(3.33) 

5.55 

(1.11) 

2.22 

(1.11) 

H4 94.45 
(96.67) 

3.33   
(3.33) 

1.11   
(0.00) 

1.11   
(0.00) 

92.23   
(95.56) 

2.22   
(3.33) 

3.33   
(1.11) 

2.22   
(0.00) 

H5 93.34 

(95.56) 

3.33 

(3.33) 

2.22 

(1.11) 

1.11 

(0.00) 

91.11 

(94.45) 

1.11 

(3.33) 

6.67 

(2.22) 

1.11 

(0.00) 

H6 97.78 
(98.89) 

1.11 
(1.11) 

0.00 
(0.00) 

1.11 
(0.00) 

92.23 
(95.56) 

1.11 
(2.22) 

4.44 
(1.11) 

2.22 
(1.11) 

Avg. of 

(H1-

H6) 

95.19 

(96.86) 

2.59 

(2.77) 

0.925 

(0.185) 

 

1.295 

(0.185) 

 

92.41 

(95.375) 

 

1.68 

(2.59) 

 

3.51 

(1.295) 

2.40 

(0.74) 

 

F1 87.78 

(93.34) 

7.78 

(5.55) 

1.11 

(0.00) 

3.33 

(1.11) 

80.00 

(87.78) 

1.11 

(4.44) 

7.78 

(1.11) 

11.11 

(6.67) 

F2 86.67 

(91.11) 

8.89 

(7.78) 

2.22 

(1.11) 

2.22 

(0.00) 

80.00 

(85.56) 

2.22 

(5.55) 

6.67 

(2.22) 

11.11 

(6.67) 

L1 81.12 

(87.78) 

12.22 

(11.11) 

2.22 

(0.00) 

4.44 

(1.11) 

74.45 

(83.34) 

5.55 

(10.00) 

8.89 

(2.22) 

11.11 

(4.44) 

L2 83.34 
(90.00) 

10.00 
(10.00) 

3.33 
(0.00) 

3.33 
(0.00) 

76.67 
(84.45) 

3.33 
(8.89) 

6.67 
(2.22) 

13.33 
(4.44) 

Avg. of 

(F1-

L2) 

84.72  

(90.56) 

9.73   

(8.60) 

2.22   

(0.28) 

3.33  

(0.56) 

77.78    

(85.28) 

3.05    

(7.22) 

7.50    

(1.94) 

11.67   

(5.56) 

3.6.3 Performance Analysis of MEFD Classifier 

Performance of MEFD classifier is determined by classifying EEG acquired from the motor 

cortex region and EMG acquired from foot and hand muscles into two classes (motor action 

performed or not performed) for individual actions (BR, ACC and STR control.  For both 

EEG and EMG classification, we use the same set of classifiers as used in VAFD. Table 3.13 

and 3.14 provide mean percentage accuracies of KSVM-RBF and other standard classifiers 

including LDA, KSVM-linear and KSVM polynomial classifiers for EEG and EMG-based 

MEFD classification respectively. It is apparent from the Tables that for both EEG and EMG-

based MEF classification, KSVM-RBF outperform others with a mean percentage 

classification accuracy of ~91%.   
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3.6.4 Lead-time Estimation 

In this section, we attempt to evaluate the lead-time, determined by the difference between 

two time estimates, the safety-time to avoid collision and the time point when the alarm for 

MEF is generated. The safety-time depends on two parameters: the braking distance, i.e., the 

distance traversed after applying the brake and the speed of the vehicle.  When the speed is 64 

km/hr (i.e., 40miles/hr), the braking distance is 32 meter, which corresponds to a safety-time 

of 1.8 seconds.  

  Table 3.15 provides the lead time estimates for seven different stimuli, averaged over 10 

subjects, each performing 10 trials of 45 minutes driving session, maintained at 64 km/hour. 

In the calculation of lead-time, we used the measure of safety-time minus the approximate 

time for muscle activation, both counted from the onset of the stimuli. The approximate time 

of muscle activation is computed by time point of the first ERD/ERS generation 

corresponding to motor planning plus 600 milliseconds. The 600 milliseconds in the 

calculation are considered for muscle activation after the occurrence of the first ERD/ERS 

generation.  

   It is apparent from Table 3.15 that lead time for the seven stimuli usually is over 600 

milliseconds for a speed around 64 km/hr. Thus during braking we have a safe distance of (64 

×0.600)/3600= 10.66 meter. Figures 3.19, 3.20 and 3.21 present the audio alarm generation 

and lead time estimation during specific BR, ACC and STR control instances respectively. 

Table 3.14 Mean Percentage Accuracies of KSVM-RBF and Other 

Standard Classifiers for EMG-Based MEFD Classification 

Motor  

Actions 

Mean Classifier Accuracy in %  for Classifiers 

LDA 
SVM-

linear 

 SVM- 

polynomial 

   SVM-RBF 

Braking 81.20 88.25 85.25 90.5 

Acceleration 82.50 86.50 85.50 91.5 

Steering 

control 
80.50 86.66 86.5 91.0 

Mean % Acc. 81.40 87.137 85.75 91.0 

 

Table 3.13 Mean Percentage Accuracies of KSVM-RBF and Other 

Standard Classifiers EEG-Based MEFD Classification 

Motor 

Actions 

Mean classifier accuracy in % for Classifiers 

LDA 
SVM-

linear 
SVM-

polynomial 

SVM-RBF 

Braking 82.50 88.75 86.25 90.25 

Acceleration 85.00 89.5 87.50 92.50 

Steering control 82.00 89.5 85.33 90.50 

Mean % Acc. 83.167 89.25 86.36 91.083 
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Among nine stimuli, as listed in Table 3.2, estimated lead-time are computed for stimulus 

type-1, type 3 and type 7 and are shown in Figures 3.19, 3.20 and 3.21 respectively. From 

figures, it has been found that the estimated lead-time being 628 milliseconds, 679 

milliseconds and 654 milliseconds respectively, which is acceptable for avoiding traffic 

accidents if the vehicle runs at a speed of 64km/hr. 

 Table 3.15 Average Estimate of Lead-Time for Seven Different Stimuli for Driving Speed=64km/hr 

 

Stimuli 

Type 

(Details 

given in  

Section V) 

Average Time (in ms) counted from the onset 

of stimuli for the occurrence of  

Average 

Estimate 

of lead-

time (in 

ms)  

P300 for 

VA  

ERD/ERS 

for MP  

 

     Approximate 

time for muscle 

activation/MEF 

alarm generation 

Type-1 
325 

 

572 1172 628 

Type-2  322  524 1124 676 

Type-3  320  521 1121  679 

Type-4  322  524  1124  676 

Type-5  342  546 1146 654 

Type-6  282  501 1101 699 

Type-7  340  570 1170 630 

 

 

 

 

 

Fig. 3.19 Audio alarm generation and lead-time for a braking instance 
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3.6.5 Objective Performance of the Proposed CFD System 

To evaluate objective performance of the proposed CFD system with respect to 9 different 

stimuli, describing different traffic instances, we perform driving experiment with ten drivers, 

 

Fig. 3.21 Audio alarm generation and lead-time for a steering control instance 

 

 

 

Fig. 3.20 Audio alarm generation and lead-time for an acceleration instance 
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each participating in four simulated driving sessions of 3 hours. The performance analysis 

given in Table 3.16 indicates significant reduction (by 88% approximately) in failures due to 

the presence of the proposed CFD system in the simulated environment.  

Table 3.16 Number of Failures Corrected in Presence of the Proposed CFD System 

 

Stimuli 

 

Required motor 

intension 

 

No. of failures 

detected in 

absence of 

CFD 

No. of failures 

corrected in 

presence of 

CFD 

Type-1 Braking (BR) 96 85 

Type-2 Braking (BR) 42 37 

Type-3 Acceleration (ACC) 11 10 

Type-4 Braking (BR) 45 40 

Type-5 Steering (STR) control 22 19 

Type-6 Braking (BR) 68 60 

Type-7 Acceleration (ACC) 42 37 

Type-8 Steering (STR) control 34 30 

Type-9 NOP 06 05 

Further, Table 3.17 provides the percentage of FP, FN, TP and TN rates of the proposed CFD 

system across four motor intensions: BR, ACC, STR control and NOP irrespective of 

stimulus type. The percentage of true positive cases is found to be around 88% for BR, ACC 

and STR control, when experimented with 10 drivers, each participating in four driving 

sessions of 3 hours.  

Table 3.17 Percentages of TP, Tn, FP, FN rates of the proposed CFD system 

Required motor intension 
Percentage (%) of 

TP TN FP FN 

Braking (BR)  88.44 6.37 3.19 2.00 

Acceleration (ACC) 88.68 7.54 1.89 1.89 

 Steering (STR) control 87.50 3.60 3.60 5.30 

No operation (NOP) 83.33 0.00 0.00 16.67 

 

 

3.7 CLASSIFIER VALIDATION USING STATISTICAL TEST  

Although several statistical tests to compare relative performance of classifier algorithms are 

available in the literature [61], most of these require multiple datasets obtained from different 

sources. At present we undertook experiments with only one database: Brain-Stimulated 

Cognitive Failure Detection Database (BSCFDD), prepared at Jadavpur University. Thus we 

select McNemar‟s test [62] for statistical validation of classifiers tested on a single database.  

    Consider, two algorithms A and B, where A is the reference algorithm. Let, fA and fB be 

two classifiers realized with algorithms A and B respectively. We define two parameters n01 

and n10, where n01 denotes the number of examples misclassified by fA  but not by fB . On the 

other hand, n10 denotes the number of examples misclassified by fB  but not by fA . Let the 

null hypothesis be that both the algorithms have the same error rate [13]. We define a statistic  
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In the present circumstance, for MPFD classifier, we consider, A=GT2FS algorithm and B= 

any one of the 9 algorithms listed in Table 3.2. We compute n01, n10 and Z for all the 9 

algorithms in Table 3.18. Now, we consult a 2 -distribution table and obtain 2
1,0.95 3.84  , 

which represents the value of Chi-square distribution with degree of freedom=1 and 

probability=0.05. The null hypothesis is accepted, if Z-value evaluated < 3.84, else the null 

hypothesis is rejected.  

     It is apparent from Table 3.18 that McNemar‟s test reveals that GT2FS-based classifier is 

comparable with that of IT2FS. However, the rest of the classifiers in the Table are not 

comparable with the reference algorithm A: GT2FS based classifier. 

     We also repeat the above procedure for the VAFD and MEFD classification. Here, we use 

A=KSVM-RBF and B=any one of 6 classifier algorithms listed in Table 3.2. It is apparent 

from Table 3.19 that the null hypothesis is rejected as the Z-score of all of them 

exceeds 2
1,0.95 3.84  .  

 

 

 

Table 3.18 Statistical Validation of Classifiers Using McNemar‟s Test during MPFD Phase 

Reference Algorithm: GT2FS-NN Classifier 

Classifier algorithm 

used for comparison 

using desired features 

d=18 

Parameters 

used for 

McNemar’s 

Test 
Z 

Comments 

on 

acceptance/ 

rejection of 

hypothesis 
n01 n10 

SOFNN 31 77 18.75 
Reject 

IT2FS-NN (Lin et al.) 
23 59 14.93 

Reject 

LDA 
13 37 10.58 

Reject 

LSVM 
13 34 8.510 

Reject 

IT2FS-NN (Lee et al.) 
21 45 8.015 

Reject 

IT2FS-NN (Das et al.) 
6 17 4.348 

Reject 

TYPE-1 FUZZY-NN 16 31 4.170 
Reject 

ANFIS 19 35 4.167 
Reject 

Proposed IT2FS-NN 
6 16 3.682      Accept 
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3.8 CONCLUSIONS 

The chapter proposes a novel approach to CFD in driving at three distinct levels: VA, MP and 

ME. An IT2FS/GT2FS-induced neural net is used to decode motor imageries and a KSVM 

classifier has been used to decode VA and ME. Performance analysis of the proposed IT2FS-

NN/GT2FS-NN classifier reveals that the said classifier outperforms standard ones by a 

significant margin of classification accuracy, even in presence of external disturbances, such 

as attending to phone calls. It is important to mention that GT2FS outperforms all existing and 

the proposed IT2FS-NN by around 2-3% in TP class. The proposed IT2FS-NN has very good 

run-time speed with good accuracy and thus useful for the present application. McNemar‟s 

test undertaken reveals that KSVM and the proposed GT2FS-induced classifiers outperform 

their competitors with respect to classification accuracy. 

Table 3.19 Statistical Validation of Classifiers Using McNemar‟s Test during VAFD and 

MEFD Phase 

Reference Algorithm: KSVM-RBF Classifier 

Classifier algorithm used for 

comparison using desired 

features d=11 (VAD) and 

d=18 (MEFD) 

Parameters used 

for McNemar’s 

Test Z 

Comments on 

acceptance/ 

rejection of 

hypothesis 
n01 n10 

LDA 

VAFD: 17 68 29.410 Reject 

MEFD: 31 97 33.008 
Reject 

Type-1 Fuzzy NN  

 

VAFD: 
21 47 9.191 Reject 

MEFD: 
24 59 13.927 Reject 

SOFNN 

VAFD: 16 37 7.547 
Reject 

MEFD: 22 49 9.521 
Reject 

KSVM-linear 

VAFD: 8 23 6.322 
Reject 

MEFD: 21 44 7.446 
Reject 

KSVM-polynomial 

VAFD: 18 37 5.890 
Reject 

MEFD: 
23 49 8.680 Reject 

ANFIS 

VAFD: 15 32 5.446 
Reject 

MEFD: 20 39 5.490 
Reject 
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  A lead-time analysis is undertaken to examine the feasibility of the proposed CFD system 

for field applications. It is observed that for car speed around 64 km/hour lead-time is 

approximately 600 milliseconds, offering a safe braking distance of 32 meters. An objective 

performance analysis is also given to demonstrate the reduction in cognitive failures due to 

incorporation of the proposed CFD system in presence of nine different stimuli. It is observed 

that on an average there is a decrease in cognitive failures by 88% for BR, ACC and STR 

control, when experimented with 10 drivers, each participating in 4 simulated driving sessions 

of 3 hours.  

   The future work may consider replacing co-pilot by ultrasonic sensor-based CFD system. 

Among other future works, selection of right features and design of high speed but accurate 

classifiers also remain an open problem for research.  

APPENDIX 

A.1 Pseudo Code for Feature Selection Using DE 

                                                                                                     

Input: D dimensional feature vectors
2

{ , ,..., }k k k k
i N

F F FF
  

, where ,1 ,2 ,{ , , , }k k k k
i i i i DF f f   f


 be the i-th 

feature vector having an assigned class level k   [1, m] for m classes. 

Output: Selected d-dimensions of the feature vectors corresponding to minimal J. 

Begin 

1. Initialization: Initialize   NP number of trial solutions iZ


 for i= 1 to NP. Initialize crossover 

ratio Cr = 0.7. 

2. Mutation: For each iZ


, pick up 3 companion target vectors: jZ


, kZ


and lZ


 and compute 

 ZZFZZ lkji )(


 , where, F is a scale factor in [0, 2]. Here j, k and l are distinct and mutually 

exclusive to each other. 

3. Recombination: Now for each pair of iZ


and iZ 


, construct a new trial vector iM


, whose j-th 

element  ,i jm
 
is obtained by:  

      , ,i j i jm z , if r, a randomly selected number in [0,1] <Cr. 

     jiji zm ,,  , otherwise. 

     4. Selection: For each pair of iM


and iZ


, we set ii MZ


 , if   )()( ii ZfMf


 , where f(.)=J (Eqn. 

(3.3)) is the fitness (objective) function for the minimization problem. 

5. Repeat from step 2 until the stopping criterion is not   attained. 

6.  Output the best fit member from the population pool. The components of the best fit parameter 

vector with one value are the required features. 

End.  
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Chapter 4 

  

 

Tactile Perception of Human 

Subjects Using Radial Basis 

Function-Induced Back-Propagation 

Neural Net Classifier 

  

 

 

This chapter introduces a novel approach to examine the scope of touch-perception as 

a possible modality of treatment of patients suffering from certain mental disorder 

using a Radial Basis function induced Back-propagation Neural Network. 

Experiments are designed to understand the perceptual difference of schizophrenic 

patients from normal and healthy subjects with respect to four different touch classes, 

including soft touch, rubbing, massaging and embracing and their three typical 

subjective responses (pleasant, acceptable, unpleasant). Experiments undertaken 

indicate that that the frontal part of the scalp map of healthy subjects carry more 

blood during touch perception than those obtained for the schizophrenic patients. 

Further, for normal subjects and schizophrenic patients, the average percentage 

accuracy in classification of all the three classes: pleasant/acceptable/unpleasant is 

comparable with their respective oral responses. In addition, for schizophrenic 

patients, the percentage accuracy for acceptable class is very poor of the order of 

below 10%, which for normal subjects is quite high (46%).  Performance analysis 

reveals that the proposed classifier outperforms its competitors with respect to 

classification accuracy in all the above three classes. 
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4.1 INTRODUCTION 

Touch refers to physical contact of a person‟s skin with any non-living substance or living 

organisms. Perceiving touch usually depends largely on the subjective experience of people. 

For example, a baby of two months old can recognize his mother by the way she holds the 

baby. In this way, touch perception can be considered as one of the most important modality 

during his development stages [1]-[3]. The sense of touch is perceived by various tactile 

receptors, which in general, utilizes A-beta fibers to transmit tactile information with 

extremely rapid speed. In addition, relatively slower A-delta and even slower C fibers are also 

used for signal transmission by free nerve endings. Receptors gather tactile information 

during various touch nourishments including soft touch, rubbing or massaging from a 

relatively larger area of the skin, which causes ambiguity in locating the source of the 

stimulus. Tactile information (sensation) for each touch nourishments are fed to the spine 

from the receptors by the nerve endings and then ascend to the brain using the spino-thalamic 

pathway.  

This chapter aims at classifying distinctive touch patterns commonly used in 

hospitals/health centers to treat physio- and psycho-therapeutic patients from their acquired 

electro-encephalographic (EEG) signals. Experiments have been performed with both normal 

subjects and physic patients to determine their level of pleasure in four different types of 

(non-sexual) touch-nourishments offered by nurses or inmates of the subjects from their 

cortical responses. Later the degree of nourishment perceived is matched with the oral 

response of the subject to test the validity of the experimental results obtained from cortical 

responses.  

     Although there exist traces of works on touch-perception, the objectives and motivation of 

the present chapter to the best of the authors‟ knowledge and belief is new. The current 

literature considers classifying touch perceived by a subject into two classes based on the 

electroencephalographic (EEG) response [4] of the subject. Multiclass classification and 

rating of touch sensation has also been examined by Nakamura [5] using factor analysis and 

artificial neural network (ANN). In a recent work [6], the degree of pleasantness perceived 

from touch sensation is found to have a positive correlation with the beta power increase in 

the parietal, temporal and frontal regions whereas mu-band power suppression in the 

somatosensory cortex of a subject during stimulation [7]-[8]. The research findings about the 

significant relation between touch sensation and somatosensory cortex are available in [3], [9-

14].  

      The originality of the present work lies in designing a two-stage classifier, where the first 

stage employs a Radial Basis Function (RBF) [15] layer to classify EEG features due to 

different touch modality, and the second stage uses Back-propagation Neural networks to 

classify detected touch modality into levels of pleasure (Unpleasant, Acceptable and 
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Pleasant). Besides classifier, other important coverage of the chapter includes defining degree 

of pleasure perceived (DPP) by a subject based on the EEG feature estimates, and comparing 

the measured DPP with subjective assignments by the patients. Moreover, DPP measure for 

pleasant touch, as perceived by the subjects, is used to select the best-performing nurse among 

the group. Lastly, we compare the classification accuracy of the proposed classifier with the 

listed classifiers after application of touch therapy, and observe that the proposed classifier 

correctly classifies the touch as Pleasant/Acceptable/Unpleasant. 

    The rest of the chapter is organized as follows. In section 4.2, we propose a scheme for 

touch classification. In section 4.3, we offer the relationship between degree of pleasure 

perceived and its fuzzy ranking as Pleasant / Acceptable / Unpleasant. Experimental details 

and performance of the proposed classifier are provided in section 4.4. Finally, conclusions 

are listed in section 4.5. 

  

4.2 SYSTEM OVERVIEW AND TOUCH CLASSIFICATION 

This section introduces the basic scheme for touch classification from the acquired EEG 

signals of the subject. We use channels F3, F4, F7, F8, P3, P4, Pz, C3 and C4 channels from 

frontal, parietal, somato-sensory and motor cortex of the subject‟s scalp in conventional 10-20 

EEG electrode-placement system. The parietal electrodes offer a good resolution in textural 

pattern of the touched surface. Pre-frontal and frontal electrodes are responsible for “the 

emotional (feeling component [5]” of touch. The somato-sensory cortex electrodes offer the 

tactile sensation as a measure of mu-suppression and beta-band power while touching the 

subject‟s skin [16]-[17]. Fig. 4.1 provides an overview of touch perception by EEG-analysis.  

 

Four different touch stimuli, as has been perceived by a subject, are first pre-processed 

(filtered) to keep it free from artifacts due to eye-blinking and spurious pick-ups of line noise. 

The filtered data are sent for feature extraction (FE) to extract the basic primitives of the 

original signal. After FE, it has been found that all the trial instances and the samples for a 

particular touch stimulus are not equally essential. To identify the right data-point and 

samples useful for subsequent classification, we here employ Principal Component Analysis 

(PCA) [18] for performing first data point selection (DPS) followed by feature selection (FS) 

from the extracted EEG features using FE. Here, we use the standard EEG features, such as 

 

Fig. 4.1 An overview of touch perception by EEG analysis 

FE: Feature extraction, DPS: Data-point selection, FS: Feature selection 
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Power Spectral Density (PSD) [19], Discrete Wavelet Transform (DWT) [20] and 

Approximate Entropy (ApEn) [21] for classifying four different types of touch nourishments. 

In DPS step, for each touch-nourishment class, PCA selects a single data-point (feature 

vector) from a set of t number of D dimensional data-points and referred as representative 

data-point of that class. Later in FS step, PCA selects d number of significant features from 

the D dimensional class-representative for each touch-nourishment. Finally, the selected 

feature vector for each class is applied for classification using radial basis function (RBF) 

induced back propagation neural network (BPNN).  

4.2.1 Feature Extraction 

Features of a pattern are best defined by its basic primitives that represent the original pattern 

in time-, frequenct- and/or time-frequency domain. In the present chapter, frequency domain 

features including PSD offer information about the power spectrum of an EEG signal during 

various kinds of touch stimuli. Besides PSD, time-frequency analysis such as DWT and ApEn 

provides both temporal and spatial information of EEG signals during the experiment.  

4.2.2 Data-Point Reduction and Feature Selection Using PCA 

The present chapter aims at using principal component analysis (PCA) to select EEG data-

points as well as EEG features jointly. First, principal component analysis (PCA) derives a 

unique set of EEG features from a set of data-points for class k, } ,...,,{ 21
k
t

kk
k XX XS  by 

identifying the commonality among the feature vectors, (hereafter called data points) obtained 

over multiple experimental trials of the same subject with the same stimulus [22] and refers it 

„ideal data point‟ kX1 of that stimulus-class. Second, PCA selects most significant d features 

out of D-dimensional ideal data point },...,,{ ,12,11,11
k

D
kkk xxxX 

 
using the similar procedure. 

Finally, we obtain 1×d dimensional class representative for each touch nourishment. Thus for 

a maximum of K number of stimuli and R subjects, the above procedure is repeated K × R 

times. 

4.2.3 Classification 

Touch classification, introduced in this chapter, requires designing a suitable classifier 

capable of classifying touch stimuli into multiple classes with a good level of accuracy. The 

quality of touch being detrimental to texture of the contact-surface, movement frequency of 

the touching organ and temperature-rise of the contact area, is an important issue to influence 

classifier-performance. In addition, physiological parameters of the subject in contact, the 

personality and relation of the person touching the subject also sometimes influence his/her 

the cortical responses. Designing a suitable classifier capable of classifying touch into three 

class labels: unpleasant, acceptable, and pleasant, is an important concern for the present 

application. In order to accomplish this, we develop a special type feed-forward neural 

network, comprising two different types of basic neural architecture. The feed-forward 
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topology employs Radial basis Function (RBF) neurons, which consists of three layers: input, 

hidden and output layers. Input layer has nodes equal to the number of features used to 

classify each touch-nourishment, hidden layer comprises m (=4) number of RBF neurons for 

four different types of touch pattern, including soft touch, rubbing, massaging and embracing. 

Finally, output layer has three nodes representing three possible classes of pleasure for each 

touch-nourishment. Each neuron response is used to select a back propagation (BP) neural 

network [23] through a gating device. A variety of sequential RBF classifiers using minimal 

resource allocation network (MRAN) and growing and pruning algorithm for radial basis 

function (GAP-RBF) exist in the literature [24-27]. However, here we restrict the use of 

traditional RBF only to EEG classification of the pleasure obtained from four touch 

nourishments. RBF-BPNNs are used to recognize the degree of subjective pleasure, including 

unpleasant, acceptable, and pleasant, for each basic class/category of touch patterns 

mentioned above. The gating devices used in Fig. 4.2 are triggered by the RBF neurons to 

activate the devices in order to transfer the input feature vector indirectly to BPNNs.  

 

The RBF neurons used in Fig. 4.2 employ Gaussian type kernel function, where the 

parameters of the Kernel are obtained by the following procedure. The i-th component of the 

mean vector of the Kernel function is obtained by taking average of the i-th feature of all 

feature vectors for the given class. The variance of i-th component of the variance vector is 

also obtained by taking the variance of i-th feature of all feature vectors falling under class i. 

The BPNNs used employ Sigmoid-type non-linearity for all neurons including those in the 

last layer.  

 

 

Fig. 4.2 A schematic representation of classification scheme 
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4.3 DEGREE OF PERCEIVED PLEASURE  

This section provides a method of calculating the degree of pleasure perceived by a patient in 

presence of particular touch nourishment to him/her. The degree of pleasure perceived by k -

th patient due to nourishment provided by j -th nurse is presented in (4.1). 

k

i F

best
i

j
i

kj

j
i

FF Deviation  
 

 ||,                                             (4.1) 

Here, i  denotes a particular type of touch and  best
iF  is the best feature for a given class of 

touch nourishment provided to a subject irrespective of any nurses. 

The percentage measure of normalized degree of pleasure perceived by k -th patient due to 

nourishment provided by j -th nurse is given by (4.2).  
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The above equation is used in the next section to rank the nurse when they are engaged to 

provide touch nourishments to the patient. 

 

4.4 EXPERIMENTS AND RESULTS 

This section includes four experiments: 1) acquisition of filtered EEG signal within bands of 

interest, 2) selection of EEG features, 3) validation of subject-defined class labels, and 4) 

ranking of nurses to select best-performing nurse to examine the efficacy of touch perception 

for possible psycho-therapeutic/remedial applications for patients with left-right asymmetry in 

alpha-power. The experiments are performed on both normal subjects and schizophrenic 

patients with alpha-power asymmetry. These patients are selected based on the level of their 

asymmetry, detected by functional Near Infrared Spectroscopy (f-NIRS) machines in a 

different experiment.  The details of this experiment are dropped here to avoid discussing 

issues out of the main context.  

The experimental framework includes a 21 channel EEG machine (manufactured by 

Nihon Kohden), 5 nurses and 12 subjects (7 normal healthy subjects and 5 schizophrenic 

patients) in the age group of 20-32. The EEG system has a sampling rate of 200 Hz with a 

signal resolution of 100µV. Four distinct touch nourishments, including soft touch, rubbing, 

massaging and embracing are applied as the stimuli of touch nourishment for the 

experimental subjects. An experiment comprises 4 trials, where each trial refers to one 

specific touch nourishment. For touch nourishment classification by a normal healthy person 

and a schizophrenic patient, both experience 4 different touch stimuli for 40 times, each 

stimulus being given for 10 times. Since, we have 7 normal healthy persons and 
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5schizophrenic patients; we altogether obtain as many as 280 and 200 trials respectively. 

During the experiment, each of four touch nourishments is given to a subject (both normal 

and patient) for 20 seconds. Being the sampling rate of EEG of 200 Hz, we obtain 4000 

samples from 20 seconds.  For ranking of nurses, each of 5 nurses provides one specific touch 

stimulus, such as rubbing to a normal healthy person and a schizophrenic patient both for 10 

times, i.e., for all touch nourishments given by a single nurse, total number of input stimuli is 

40 for both normal healthy person and a schizophrenic patient. The change in brain-map 

patterns for each touch class is individually observed and recorded for both the healthy 

subject and the patient. One such instance for one specific touch class (here, soft touch), as 

provided by two nurses to a healthy subject and patient is given in Fig. 4.3. Similar figures for 

other healthy and non-healthy subjects are not included here for lack of space. After a 

thorough investigation of the scalp maps for all the healthy and schizophrenic patients, it is 

noted that the frontal part of the scalp map of healthy subjects carry more blood during touch 

perception than those obtained for the schizophrenic patients. Further, for pleasant feeling the 

blood concentration at the frontal region is higher than any other parts of the scalp map. This 

observation also holds for schizophrenic patients. 

Touch Nourishment- Soft Touch 

Subject Scalp maps of the subject within alpha band, as obtained for the above touch nourishment 

while supplied by 

Nurse 1 Nurse 2 

Healthy 

Subject 

S1 

 

       
        Delta               Theta              Alpha 

 

 

        
       Delta                 Theta                  Alpha 

 

Schizoph

renic 
Patient 

S2 

 

    
          Delta              Theta               Alpha 

 

     
       Delta                Theta                 Alpha 

Fig.4.3 Change in brain-map patterns of one healthy subject and one patient for one specific 

touch class (here, soft touch) 

 

4.4.1 Experiment 1: Acquisition of EEG Signals within Bands of Interest 

After data acquisition, noise removal is the next primary concern for classification of different 

touch nourishments. In order to perform this, filtering of EEG signal within the suitable 

frequency bands is necessary. The aim of this experiment is two-fold. First is the selection of 

appropriate filter to clean the raw EEG signal; and second is the selection of pass-band 

frequency of the chosen filter. The first problem has been taken care by designing four 

common infinite impulse response (IIR) filter realizations including Butterworth, Chebyshev 

type-1 and type-2, and elliptic. We here consider four competitive filters:  Butterworth of 
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order 6, Chebyshev type-1 and type-2 of order 4, and elliptic filter of order 4 and compare 

their filter characteristics. Fig. 4.4 presents the frequency response of these four IIR filters, 

which shows that the sharpest roll-off and good attenuation in stop band ripples are prominent 

for the elliptic filter for varied filter order. Therefore we selected the elliptic filter of order 4 

for our problem. The second problem has been solved by filtering the acquired EEG signals 

by the selected elliptic band pass filter having a suitable band pass frequencies. Since, the 

present problem itself has the novelty; we decide to observe the frequency response of the 

acquired EEG signal from 0.5 to 30 Hz comprising delta (0.5-3 Hz), theta (3-7 Hz), alpha (7-

13 Hz) and beta (13-30 Hz). Fig. 4.5 presents raw EEG signals for two touch nourishments: console 

and massage, whereas Fig. 4.6 provides the filtered EEG response for the above two touch 

nourishments. It is observed from Fig. 4.6 that filtered EEG signal response possesses its 

higher magnitude in the frequency range of 3-18 Hz. Hence, we confirm that the prominent 

features of touch nourishment are present in the EEG signals within the range of 3-18 Hz. 
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Fig. 4.5 Raw EEG signals for two touch nourishments: soft touch and massage    

 

 

 

Fig. 4.4 Frequency response of a Butterworth, Chebyshev-I, Chebyshev-II and 

Elliptic band pass filter with a pass band and stop band attenuation 
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4.4.2 Experiment 2: Selection of EEG Features 

This experiment aims at selecting the most significant features for classifying touch 

nourishments in two steps. First, EEG features are extracted using well-known feature 

extraction techniques including power spectral density (PSD), discrete wavelet transform 

(DWT) and approximate entropy (ApEn). The reason behind using them is to observe the 

temporal as well as frequency-domain feature discrimination of the recorded EEG signal, 

since PSD extracts frequency domain features, whereas DWT deals with time-frequency 

correlated features. In addition, ApEn quantifies the uncertainty of a time series data of 

physiological signals, and hence can be successfully combined with both PSD and DWT. 

After feature extraction, we obtain 513 PSD features, 2004 wavelet coefficients (approximate 

coefficient) and 1 ApEn coefficient.  

Fig. 4.7 shows a plot of PSD features and Fig. 4.8 (a)-(b) present two plots of DWT 

features respectively extracted from a patient for altogether for 50 trials for all kinds of touch 

nourishments. From Fig. 4.7, it is confirmed that few out of 513 PSD features, such as 5
th
, 

12
th
, 55

th
 and 58

th
 provide prominent feature level discrimination. In case of Fig. 4.8(a) and 

Fig. 4.8(b), feature level discriminations seem to be difficult only by observing the extracted 

approximate and detail coefficient, since the dimension of the features are very high, i.e., 

2004. To deal with the problem, we need to select only significant features from the high 

dimensional feature sets. Moreover, to obtain one single data-point as a representative of one 

specific touch nourishment class and to reduce computational complexity, we perform 

reduction in data-points (experimental trials). PCA will serve the both problems. 
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Fig. 4.6 Filtered EEG response for two touch nourishments: console and massage 
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For data-point reduction and feature selection, we form two separate feature sets: 1) PSD plus 

ApEn comprising 514 features, and 2) Wavelet coefficient plus ApEn comprising 2005 

features. PCA first selects one class-representative for each class from 10 experimental trials 

by reducing redundant data-points, and thus decreases computational overhead. Later, PCA 

selects 12 PSD plus ApEn, and 24 DWT plus ApEn features from the extracted feature sets.  

 

 

 

Fig.4.8(b) Detail wavelet coefficient features extracted for four distinct touch 

nourishments: massage, rubbing, soft touch and embrace 

 

 

 

 

Fig. 4.8(a) Approximate wavelet coefficient features extracted for four distinct 

touch nourishments: massage, rubbing, soft touch and embracing 

 

 

Fig. 4.7 PSD features extracted for five distinct touch nourishments: console, 

massage, rubbing, soft touch and embracing 
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Table 4.1 and Table 4.2 provide the true positives, true negatives, false positives, and false 

negatives along with average classification accuracies over 2400 trials of PSD plus ApEn 

features extracted touch nourishments without using and applying PCA respectively. 

Table 4.1 True Positive, True Negative, False Positive and False Negative rates along with average 

classification accuracy over 2400 trials without using PCA 

 

 

Touch 

Nourishm

ent Types 

RBF-BPNN Classifier with PSD +ApEn 

Coefficients 

True 

Pos. 

(%) 

True 

Neg. 

(%) 

False 

Pos. 

(%) 

False 

Neg. 

(%) 

Average 

Classificat

ion 

Accuracy 

(%) 

Soft touch 53.29 29.16 11.5 6.04  
 

71.54 

 

Massage 65.12 23.91 7.45 3.29 

Rubbing 76.33 20.41 2.5 0.007 

Embracing 91.45 7.08 0.009 0.005 

 

 

Table 4.2 True Positive, True Negative, False Positive and False Negative rates along with average 

classification accuracy over 2400 trials using PCA 

Touch 

Nourishment 

Types 

RBF-BPNN Classifier with PSD +ApEn 

Coefficients 

True 

Pos. 

(%) 

True 

Neg. 

(%) 

False 

Pos. 

(%) 

False 

Neg. 

(%) 

Average 

Classifier 

Accuracy 

(%) 

Soft touch 69.58 24.25 3.79 2.37 84.84 

Massage 81.45 15.91 1.54 1.08 

Rubbing 92.29 7.04 0.004 0.002 

Embracing 96.04 3.41 0.003 0.001  

4.4.3 Experiment 3: Validation of Subject-Defined Class Labels 

This experiment attempts to validate the subject-defined class labels (unpleasant, acceptable 

and pleasant) with feature vectors obtained for that class label from multiple experimental 

instances. This is undertaken by computing the similarity in the patterns of the same class, 

measured by the Euclidean norm of each feature vector with respect to the class mean, 

obtained by component-wise averaging of the feature vectors in each class. If the Euclidean 

norm of the furthest feature vector with respect to the mean is very small (of the order of 

0.001 or less), we accept that the class labels have parity with the observed feature 

distributions.  

   Table 4.3 offers percentage accuracies of touch nourishments according to the DPP 

(pleasant/acceptable/unpleasant) from both subjective oral and EEG responses. For lack of 

space, the following abbreviations have been used in Table 4.3: Soft Touch-ST, Rubbing-R, 

Massaging-M and Embracing-E. After a careful analysis from Table 4.3, it is observed that 

for normal subjects and patients, the average percentage accuracy in classification of all the 

three classes: pleasant/acceptable/unpleasant is comparable with their respective oral 

responses. In addition, for schizophrenic patients, the percentage accuracy for acceptable class 

is very poor of the order of below 10%, which for normal subjects is quite high (46%).  
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Table 4.3 Touch nourishment classifications by averaging over 5 nurses 

Subject 
Type of 

Nourishments 

Average Percentage (%) Accuracy of Nourishment Subclass 

Pleasant Acceptable Unpleasant 

From oral 

response 

From 

EEG 

From oral 

response 

From 

EEG 

From oral 

response 

From 

EEG 

One 

healthy 

(normal) 
ST/M/R/E 

48% 50% 46% 44% 6% 6% 

One 

schizophr

enic 

patient 

ST/M/R/E 
64% 65% 10% 9% 26% 25% 

4.4.4 Experiment 4: Ranking of Nurses Based on EEG Features Performance 

This experiment attempts to select the best-performing nurse for the psychotherapeutic 

(schizophrenic) patients when the patients perceive pleasant touch from any subject. The rank 

of a nurse is computed from the DPP measure, averaged over all subjects by the pleasant 

touch. 

 During this experiment, each nurse is advised to provide all four kinds of pleasant touch 

nourishments to all schizophrenic patients and best
iF for a given class of touch nourishment 

has been calculated irrespective of any nurses. Based on the deviation of the features 

extracted from the k -th patient for the nourishments given by j -th nurse, degree of pleasure 

perceived by the patient k , )( k DPP is obtained. Table 4.4 presents deviation, k DPP  measure 

and ranking of five nurses for a given subject kS . To compute rank, we sorted two entries of 

the Table 4.4: nurse number, and k DPP measure, and sort the list of entries in descending 

order of the k DPP measure. The last column in Table 4.4 provides the computed rank of 

individual nurse. The best-performing nurse with rank 1 is given in bold.   

 

Table 4.4 Ranking of nurses based on degree of pleasure perceived from pleasant touch nourishment 

Nurse best
iF

 

k
 Deviation  

k DPP (%) 
Rank 

1 7.3256 0.5610 92.34 3 

2 0.3285 95.51 2 

3 0.9604 86.88 5 

4 0.2168 97.04 1 

5 0.7157 90.23 4 

4.4.5 Experiment 5: Classifier Performance and Validation 

The performance of the proposed classifier is compared with a few well-known standard 

classifiers including linear support vector machines (LSVM) [28], k-nearest neighbor [29] and 

naïve bayes [30]. For offline training, after PCA, a ten-fold cross-validation technique has 

been implemented using 480 trials over healthy and schizophrenic patients, where nine-folds 

are used for training, and the remaining fold is used for validation purpose. The result of the 
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online testing is tabulated in Table 4.5, where RBF-BPNN outperforms standard classifiers in 

presence of both feature sets. Last column of Table 4.5 provides the statistical significance of 

the classifier performance using t-test. 

McNemar‟s test [31] has been applied to validate the classifier performance, where, we 

define a null hypothesis suggesting that the two algorithms A and B should have same error 

rate, i.e., n01= n10, where n01 denotes the number of examples misclassified by A but not by B 

and n10 denotes the number of examples misclassified by B but not by A. Let Af  and Bf  are 

classifiers‟ output obtained by algorithms A and B respectively when both the algorithms run 

on a common training dataset. We now define a statistic as 2
  with 1 degree of freedom, 

called Z scores, which is given by (4.3). 

1001

2
1001 )1(

nn

|n|n
Z




                                           

   At the end of the test, the Z scores will indicate whether the null hypothesis is accepted 

and the alternative hypothesis is rejected or vice-versa.  

Table 4.5 Mean classifier accuracy and statistical significance of testing data using PCA algorithm 

along with feature sets 

Features Pleasure level Percentage Classifier Accuracy (in %) for  Statistical 

Siignificance 
PCA-

LSVM 

PCA-

k-NN 

PCA-Naïve 

Bayes 

PCA-RBF-

BPNN 

PSD+ApEn  Pleasant 77.4 

 

76.2 85.48 90.45 t=51.4890 

standard error of 

difference= 
0.002 

Acceptable 78.64 81.08 86.56 92.29 

Unpleasant 82.52 81.12 87.52 94.04 

DWT+ApEn  Pleasant 77.44 82.08 86.20 

 
90.92 t = 9.9720 

standard error of 

difference= 
0.007 

Acceptable 82.08 83.76 
 

87.56 94.08 

 

Unpleasant 83.04 

 

84.56 89.92 96.98 

We evaluate Z which represents the comparator statistic of misclassification between the 

DE-hybridized recurrent network-based classification algorithm (Algorithm: A) and any one 

of the competitor algorithms (Algorithm: B) for the Indian dataset for desired number of 

features equal to 36. From Table 4.6, it is confirmed from that the proposed classifier 

outperforms all its competitors. 

4.5 CONCLUSIONS 

This study offers two interesting outcome for future researchers in brain/cognitive sciences 

interested to pursue research on touch perception on patients suffering from schizophrenia.  
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Table 4.6 Statistical comparison of classifiers using McNemar‟s test 

REFERENCE ALGORITHM: PCA-RBF-BPNN 

CLASSIFIER ALGORITHM USED 

FOR COMPARISON USING 

DESIRED FEATURES D=50 

PARAMETERS USED FOR 

MCNEMAR TEST 
Z p 

 01n   10n  

PCA-LSVM 
26 49 

7.68 
p< 0.00001 

PCA-k-NN 31 52 
5.831 

p< 0.00001 

PCA-NAÏVE BAYES 21 35 4.0178 P< 0.00001 

A thorough investigation undertaken reveals two most fundamental aspects of the present 

research. The first aspect reveals that the frontal part of the scalp map of healthy subjects 

carry more blood during touch perception than those obtained for the schizophrenic patients. 

Further, for pleasant feeling the blood concentration at the frontal region is higher than any 

other parts of the scalp map. This observation also holds for both schizophrenic patients and 

normal healthy subjects. The second inference we derive from Table 4.2 includes that for 

normal subjects and schizophrenic patients, the average percentage accuracy in classification 

of all the three classes: pleasant/acceptable/unpleasant is comparable with their respective oral 

responses. In addition, for schizophrenic patients, the percentage accuracy for acceptable class 

is very poor of the order of below 10%, which for normal subjects is quite high (46%). 

McNemar‟ test confirms that the proposed classifier outperforms all its competitors including 

PCA-LSVM, PCA-KNN and PCA-Naïve bayes.   

 

REFERENCES 

1. G. K. Essick, F. McGlone, C. Dancer, D. Fabricant, Y. Ragin, N. Phillips, T. Jones and S. Guest, 

“Quantitative assessment of pleasant touch,”  Neuroscience & Biobehavioral Reviews, vol. 34, no. 

2, pp. 192-203, 2010. 

2. A. Gallace and C. Spence, “The science of interpersonal touch: an overview,” Neuroscience & 

Biobehavioral Reviews, vol. 34, no. 2, pp. 246-259, 2010. 

3. F.  McGlone, J. Wessberg and H. Olausson, “Discriminative and affective touch: sensing and 

feeling,” Neuron, vol. 82, pp. 737–755, 2014.   

4. M. Peltoranta and Gert Pfurtscheller, “Neural network based classification of non-averaged event-

related EEG responses,” Medical and Biological Engineering and cComputing, vol. 32, no. 2, pp. 

189-196, 1994. 

5. T. Nakamura, Y. Tomita, S. I. Ito and Y. Mitsukura, “A method of obtaining sense of touch by 

using EEG,” In RO-MAN, pp. 276-281, 2010. 



 

164 

 

6. H. Singh, M. Bauer, W. Chowanski, Y. Sui, D. Atkinson, S. Baurley, M. Fry, J. Evans and N. 

Bianchi-Berthouze, “The brain‟s response to pleasant touch: an EEG investigation of tactile 

caressing,” Frontiers in Human Neuroscience, vol. 8, 2014. 

7. M. Bauer, R. Oostenveld, M. Peeters and P. Fries, “Tactile spatial attention enhances gamma-band 

activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital 

areas,” The Journal of Neuroscience, vol. 26, no. 2, pp. 490-501, 2006. 

8. M. Feurra, W. Paulus, V. Walsh and R. Kanai, “Frequency specific modulation of human 

somatosensory cortex,” Frontiers in Psychology, vol. 2, 2011. 

9. C. E. Chapman, “Active versus passive touch: factors influencing the transmission of 

somatosensory signals to primary somatosensory cortex,” Canadian Journal of Physiology and 

Pharmacology, vol. 72, no. 5, pp. 558-570, 1994. 

10. J. E. Huggins, C. Guger, B. Allison, C. W. Anderson, A. Batista, A. M. Brouwer and C. Brunner, 

“Workshops of the fifth international brain-computer interface meeting: defining the future,” 

Brain-Computer Interfaces, vol. 1, no. 1 pp. 27-49, 2014. 

11. M. Ploner, J. Gross, L. Timmermann and A. Schnitzler, “Cortical representation of first and second 

pain sensation in humans,” in Proc. of the National Academy of Sciences, vol. 99, no. 19, pp. 

12444-12448, 2002. 

12. E. G. Reed-Geaghan and S. M. Maricich, “Peripheral somatosensation: a touch of 

genetics,” Current Opinion in Genetics & Development, vol. 21, no. 3, pp. 240-248, 2011. 

13. F. van Ede, F. de Lange, O. Jensen and E. Maris, “Orienting attention to an upcoming tactile event 

involves a spatially and temporally specific modulation of sensorimotor alpha-and beta-band 

oscillations,” The Journal of Neuroscience, vol. 31, no. 6, pp. 2016-2024, 2011. 

14. E. Wacker, B. Spitzer, R. Lützkendorf, J. Bernarding and F. Blankenburg, “Tactile motion and 

pattern processing assessed with high-field FMRI,” PloS One, vol. 6, no. 9, pp. e24860, 2011. 

15. S. Chen, C. FN. Cowan and P. M. Grant, “Orthogonal least squares learning algorithm for radial 

basis function networks,” IEEE Transactions on  Neural Network, vol. 2, no. 2 pp. 302-309, 1991. 

16. N. E. Crone, D. L. Miglioretti, B. Gordon and R. P. Lesser, “Functional mapping of human 

sensorimotor cortex with electrocorticographic spectral analysis, II. Event-related synchronization 

in the gamma band,” Brain, vol. 121, no. 12, pp. 2301-2315, 1998. 

17. D. Cheyne, W. Gaetz, L. Garnero, J. P. Lachaux, A. Ducorps, D. Schwartz and F. J. Varela, 

“Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation,” Cognitive 

Brain Research, vol. 17, no. 3, pp. 599-611, 2003. 



 

165 

 

18. H. Zhao, P. C. Yuen and J. T. Kwok, “A novel incremental principal component analysis and its 

application for face recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: 

Cybernetics, vol. 36, no. 4, pp. 873-886, 2006. 

19. R. Martin, “Noise power spectral density estimation based on optimal smoothing and minimum 

statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, pp. 504-512, July, 

2001. 

20. L. M. Ai, W. Rui, H. D. Mei and Y. J. Fu, “Feature extraction and classification of mental EEG for 

motor imagery,” in Proc. IEEE Fifth International Conference on Natural Computation, vol. 2, pp. 

139-143, Tianjian, China, 2009. 

21. S. M. Pincus, “Approximate entropy as a measure of system complexity,” in Proc, of the National 

Academy of Sciences, vol. 88, no. 6, pp. 2297-2301, 1991. 

22. A. Saha, A. Konar, A. Ralescu and A. K. Nagar, “EEG analysis for classification of Olfactory 

signals Using a Recurent Neural Classifier,” IEEE Trans. on Human-Machine Systems, vol. 44, no. 

6, pp. 717-730, December, 2014. 

23. A. T. C. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial 

Intelligence in Engineering, vol. 9, no. 3 pp. 143-151, 1995. 

24. K. Salahshoor, Karim and A. S. Kamalabady, “On-line multivariable identification by adaptive 

RBF neural networks based on UKF learning algorithm,” in Proc. IEEE Control and Decision 

Conference (CCDC), pp. 4754-4759, 2008. 

25. G. B. Huang, P. Saratchandran and N. Sundararajan, “An efficient sequential learning algorithm 

for growing and pruning RBF (GAP-RBF) networks,” IEEE Transactions on Systems, Man, and 

Cybernetics, Part B: Cybernetics, vol. 34, no. 6, pp. 284-2292, 2004. 

26. R. Zhang, G. B. Huang, N. Sundararajan and P. Saratchandran, “Improved GAP-RBF network for 

classification problems,” Neurocomputing, vol. 70, no. 16, pp. 3011-3018, 2007. 

27. M. B. Li, G. B. Huang, P. Saratchandran and Narasimhan Sundararajan, “Performance evaluation 

of gap-rbf network in channel equalization,” Neural Processing Letters, vol. 22, no. 2, pp.  223-

233, 2005. 

28. C. Distante, N. Ancona and P. Siciliano, “Support vector machines for olfactory signals 

recognition,” Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 30-39, 2003. 

29. Y. Song, J. Huang, D. Zhou, H. Zha and C. L. Giles, IKNN: Informative k-nearest neighbor 

pattern classification, Springer-Verlag Berlin Heidelberg, pp. 248–264, 2007. 



 

166 

 

30.  D. Wei and L. X. Yang, “Weighted naive bayesian classifier model based on information gain,” in 

Proc. International Conference on Intelligent System Design and Engineering Application 

(ISDEA), vol.2, pp. 819-822, Changsha, China, 13-14 October, 2010. 

31. T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning 

algorithms,” Neural Computation, vol. 10, no. 7, pp. 1895-1923, 1998. 

 

 



167 

 

Chapter 5 

 

 

 

Conclusions and Future Directions 

 
This is the concluding chapter of the thesis. It provides a self-review of the thesis, 

highlighting the problems undertaken therein and to what level and to what degree of 

accuracy the problems have been solved. It also provides an overview of the problems 

still pending as part of the research works undertaken in the thesis along with a 

discussion covering the open problems, in general, which may be taken up as future 

research. 
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5.1 SELF-REVIEW OF THE THESIS 

The thesis addresses three interesting problems concerning perception and motor coordination. 

The first problem deals with olfactory perceptual-ability measurement of subjects stimulated with 

aromatic substances. The pertinent features of the problem include large class-size, noisy training 

instances and real-time computational facility. Traditional supervised learning classifiers usually 

are not appropriate to     handle large class-size. This inspired us to develop a recurrent neural 

network model, capable of addressing large class-size.    

       In traditional recurrent neural classifier, the neural dynamics is known, and we need a 

Lyapunov energy function to determine the condition of stability of the dynamics. Next, we set 

the condition of stability in the dynamics. In the present context, the dynamics is unknown. We 

simply had a Rastrigin-like energy function, containing several optima. We associated one smell 

class to one optimum. In other words, the EEG features of each smell class are assigned to 

individual optima of the energy surface. The problem here lies with determining the dynamics 

which is stable with respect to the Rastrigin-like energy function.   In the application phase, we 

initialize the dynamics at a point on the energy surface, the location of which is obtained from the 

EEG-features extracted for a given cognitive task.  The recurrent dynamics is now updated over 

time repeatedly until it converges to a local optimum, describing a smell class. The optimum 

where the dynamics converges is the unknown aroma.   

    The merit of the proposed technique lies in its simplicity. It outperforms traditional algorithms 

by a large margin with respect classification accuracy as the metric. The method has successfully 

been applied in tea-taster selection problem, where the basis of selection includes the intra-class 

and inter-class separation-ability of the subject from their acquired EEG signals during the period 

of stimulus presentation. 

   Chapter 3 deals with an interesting problem on cognitive failure detection in driving. Here, the 

main research goal is to detect three distinct types of cognitive failures, including visual attention 

failure (VAF), motor-planning failure (MPF) and motor execution failure (MEF) in real time and 

to generate necessary alarm at the verge of detection of an appropriate fault. For the VAF 

detection, we simply look for the presence of the P300 signal after 300 ms from the onset of any 

oddball visual stimulus, such as presence of a bumper or pedestrian on the street. For MEF 

detection, we look for the presence of the electromyogram (EMG) signal after 650 ms from the 

onset of the visual stimulus (or 250 ms from the execution of motor planning. The most 

challenging part of the present research, however, is MPF detection. This is important as there is 

no reference signal to detect MPF. One approach to overcome the problem is to develop a 

reference signal using one co-pilot, who is expected to generate the ground-truth of the possible 
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cognitive failures for on-line comparison with the actual cognitive actions undertaken by the 

driver. Thus the co-pilot acts as a resource person to the driver, which can be used as the 

reference for the driver.  

      The research contribution of the Chapter lies in the design of  an interval type-2 fuzzy set 

(IT2FS) and also a General type-2 fuzzy set (GT2FS) induced design of a classifier, capable of 

classifying brain signals in presence of noise.  It is important to mention here that motor planning 

instances for the four class problem introduced in the thesis have common signal features, where 

there exist small variations among the features for two distinct classes. So, apparently motor 

planning classification is hard. The complexity in motor planning is enhanced in presence of 

noise. The IT2FS- and GT2FS-induced classifiers have been designed to handle both intra-

personal and inter-personal level uncertainty that appears in the system because of the 

introduction of noise due to parallel thoughts, eye-blinking and others. In the IT2FS classifier, we 

evaluate the average of Upper and Lower Membership Functions at the measurement point to 

determine the firing strength of the rule.  In the present context, we have four classifier rules, each 

for one individual class, and we fire the classifier rule having the highest firing strength. It is 

interesting to note that the averaging process reduces the noise level to half of its strength and 

thus never overrides over the signal, thereby making it amenable for classification. The GT2FS 

induced classifiers here offer a higher level of advantage than its IT2FS counterpart for its 

capability in tuning primary memberships with secondary memberships, resulting in higher 

classification accuracy. 

      The type-2 classifiers introduced here offer a lead time of around 600 milliseconds before any 

emergency situations, such as collision with the car ahead, possible accidents of the pedestrians 

and traffic signal failures. 

    Chapter 4 proposes a novel approach to classify touch nourishments of Schizophrenic patients 

into three classes: pleasant, acceptable and unpleasant.  Four different touch nourishments, 

namely soft touch, rubbing, massaging and embracing are used as stimuli. The experiments are 

conducted only on women patients and all nurses participated in the experiments are also women. 

Same gender of both the patients and the nurses are required to keep the experimental results free 

from gender-related bias.  Radial Basis Function (RBF) induced Back-Propagation (BP) neural 

classifiers have been used to classify the touch nourishments. Here, RBF neural net is used to 

select one of the four BP neural classifiers reserved for the four touch nourishments indicated 

above. The classifier has high classification accuracy over 92%. One interesting observation that 

follows from the experiments include that for healthy/normal subjects, the classification accuracy 

for unpleasant class label is much lower than the same for schizophrenic patients. 
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    The thesis, to the best of the author’s knowledge, is the first of its kind that provides through 

experiments in both perception and sensory-motor coordination in driving environment. The ideas 

are original and the realizations too are original, particularly from the design aspects of classifiers 

and their applications in real-time systems. 

 

5.2 FUTURE RESEARCH DIRECTIONS 

  Olfactory and tactile perceptions are very primitive types of perception, where humans have less 

sensitivity than many other living organisms, such as lower class mammals like dogs. The thesis 

proposed solutions to three such interesting problems relating to perception and sensory-motor 

coordination. In the second problem, while   dealing with cognitive failure detection in driving, 

the thesis slightly touches upon   visual perception. There exists ample scope of future research in 

both extension of the existing work presented in the thesis, and other modalities of perception and 

sensory-motor coordination. The other modalities include primarily audio and visual perception. 

The primary focus of the future research thus is two-fold. It includes fundamental research to 

understand the biological basis of perception in all the basic modalities, and in the other hand to 

develop engineering systems to supplement where an individual lacks a particular modality. The 

latest brain-computer interfacing research offers solution to the above problem. A few interesting 

devices in this regard are artificial implant of retina and cochlea, where the retinal implant helps 

in transforming images formed on the retinal plane into electrical signals legible to the optic nerve 

system to recognize the visual stimuli. The implant of cochlea offers in transforming audio sound 

into electrical signals to be recognized by the human nervous system. There is immense scope of 

research on further development of artificial implants.  

     On the signal processing and classification side, there also exists quite a big opportunity to 

introduce latest technologies of machine learning and pattern classification to improve the 

performance of the neural classifiers. Recent studies on Deep Learning [1] reveals that 

classification tasks performed by artificial neural networks can be replaced by multi-layered 

convolution neural networks, which is expected to offer better performance as the architecture is 

more relevant to human information processing system.  

    There also exist immense opportunity to improve GT2FS classifiers by more precise modeling 

of the secondary membership function and better GT2FS reasoning mechanism. One recent study 

[2] reveals that a GT2FS can be represented as a collection of vertical slices, where each slice 

( x , u) includes a secondary membership function at a given value of the linguistic variable 

ix x  for varied type-1 membership u in [u1, uN], where u1… uN lie in [0, 1]. There exist new 
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reasoning formalisms with GT2FS [3] and Mendel [2], which, if used, as type-2 classifier might 

improve classification accuracy further.   
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