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Preface 
Coordination is a fundamental trait in lower level organisms as they used their collective effort 
to serve their goals. Hundreds of interesting examples of coordination are available in nature. 
For example, ants individually cannot carry a small food item, but they collectively carry quite 
a voluminous food to their nest. The tracing of the trajectory of motion of an ant following the 
pheromone deposited by its predecessor also is attractive. The queen bee in her nest directs the 
labor bees to specific directions by her dance patterns and gestures to collect food resources. 
These natural phenomena often remind us the scope of coordination among agents to utilize 
their collective intelligence and activities to serve complex goals.  

Coordination and planning are closely related terminologies from the domain of multi-robot 
system. Planning refers to the collection of feasible steps required to reach a predefined goal 
from a given position. However, coordination indicates the skillful interaction among the 
agents to generate a feasible planning step. Therefore, coordination is an important issue in 
the field of multi-robot coordination to address complex real-world problems. Coordination 
usually is of three different types: cooperation, competition and mixed. As evident from their 
names, cooperation refers to improving the performance of the agents to serve complex goals, 
which otherwise seems to be very hard for an individual agent because of the restricted 
availability of hardware/software resources of the agents or deadline/energy limits of the 
tasks. Unlike cooperation, competition refers to serving conflicting goals by two (team of) 
agents. For example, in robot soccer, the two teams compete to win the game. Here, each 
team plans both offensively and defensively to score goals and thus act competitively. Mixed 
coordination indicates a mixture of cooperation and competition. In the example of a soccer 
game, inter-team competition and intra-team cooperation is the mixed coordination. Most of 
the common usage of coordination in robotics lies in cooperation of agents to serve a common 
goal. The thesis deals with the cooperation of robots/robotic agents to efficiently complete a 
complex task.  

In recent times, researchers are taking keen interest to employ machine learning in multi-
robot cooperation. The primary advantage of machine learning is to generate the action plans 
in sequence from the available sensory readings of the robots. In case of a single robot, 
learning the action plans from the sensory readings is straight-forward. However, in the context 
of multi-robot, the positional changes of the other robots act as additional inputs for the learner 
robot, and thus learning is relatively difficult. Several machine learning and evolutionary 
algorithms have been adopted over the last two decades to handle the situations. The simplest 
of all is the supervised learning technique that requires an exhaustive list of sensory instances 
and the action plan by the robots. Usually, a human experimenter provides these data from his 
long acquaintance with such problems or by direct measurement of the sensory instances and 
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decisions. The training instances being too large, sometimes has a negative influence to the 
engineer, and he/she feels it uncomfortable not to miss a single instance that carries valuable 
mapping from sensory instance to action plan by the robots. 

Because of the difficulty of generating training instances and excessive computational 
overhead to learn those instances, coupled with the need for handling dynamic situations, 
researchers felt the importance of reinforcement learning (RL). In RL, we need not provide any 
training instance, but employ a critic who provides a feedback to the learning algorithm about 
the possible reward/penalty of the actions by the agent. The agent/s on receiving the 
approximate measure of penalty/reward understands which particular sensory-motor instances 
they need to learn for future planning applications. The dynamic nature of environment thus 
can easily be learned by RL. In the multi-agent scenario, RL needs to take care of learning in 
joint state/action space of the agents. Here, each agent learns the sensory-motor instances in 
the joint state/action space with an ultimate motive to learn the best actions for itself to 
optimize its rewards.  

The superiority of evolutionary algorithms (EA) in optimizing diverse objective functions is 
subjected to the No Free Lunch Theorem (NFLT). According to NFLT, the expected 
effectiveness of any two traditional EAs across all possible optimization problems is identical. 
A self-evident implication of NFLT is that the elevated performance of one EA, say A, over 
the other, say B, for one class of optimization problems is counterbalanced by their respective 
performances over another class. It is therefore practically difficult to devise a universal EA 
that would solve all the problems. This apparently paves the way for hybridization of EAs 
with other optimization strategies, machine learning techniques, and heuristics.  

In evolutionary computation paradigm, hybridization refers to the process of integrating the 
attractive features of two or more EAs synergistically to develop a new hybrid EA. The 
hybrid EA is expected to outperform its ancestors with respect to both accuracy and 
complexity over application-specific or general benchmark problems. The fusion of EAs 
through hybridization hence can be regarded as the key to overcome their individual 
limitations. 

Hence, apart from the RL, hybridization of the evolutionary algorithms (EA) is also an 
effective approach to serve the purpose of multi-robot coordination in a complex 
environment. The primary objective of an EA in the context of multi-robot coordination is 
concerned with the minimization of the time consumed by the robots (i.e., the length of the 
path to be traversed by the robots) for complete traversal of the planned trajectory. In other 
words, robots plan their local trajectory, so that robots shifted from given positions to the next 
positions (sub-goals) in a time-optimal sense avoiding collision with the obstacles or the 
boundary of the world-map. The optimization algorithm is executed in each local planning 
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step to move a small distance. Hence, cumulatively robots move to the desired goal position 
using the sequence of local planning. There are traces of literature on hybridization of the 
EAs. 

Several algorithms for multi-agent learning are available in the literature, each with one 
specific flavor to optimize certain learning intents of the agents. Of these algorithms, quite a 
few interesting works on the MAQL have been reported in the literature. Among the state-of-
the-art MAQL algorithms, the following need special mentions. Claus and Boutilier, aimed at 
solving the coordination problem using two types of reinforcement learners. The first one, 
called independent learner (IL), takes care of the learning behavior of individual agents by 
ignoring the presence of other agents. The second one, called joint action learner (JAL), 
considers all agents including the self to learn at joint action-space. Unlike JAL, in Team Q-
learning proposed by Littman, an agent updates its Q-value at a joint state-action pair without 
utilizing associated agents' reward; rather the value function of the agent at the next joint state 
is evaluated by obtaining the maximum Q-value among the joint actions at the next joint state. 
Ville proposed Asymmetric-Q learning (AQL) algorithm, where the leader agents are capable 
of maintaining all the agents Q-tables. However, the follower agents are not allowed to 
maintain all the agents’ Q-tables and hence, they just maximize their own rewards. In AQL, 
agents always achieve the pure strategy Nash equilibrium (NE), although there does exist 
mixed strategy NE. Hu and Wellman extended the Littman’s Minimax Q-learning to the 
general-sum stochastic game (where the summation of all agents’ payoff is neither zero nor 
constant) by taking into account of other agents’ dynamics using NE. They also offered a 
proof of convergence of their algorithm. In case of multiple NE occurrences, one is selected 
optimally. Littman proposed Friend-or-Foe Q-learning (FQL) algorithm for general-sum 
games. In this algorithm, the learner is instructed to treat each other agent either as a friend in 
Friend Q-learning or as a foe in Foe Q-learning. Friend-or-Foe Q-learning provides a stronger 
convergence guarantee in comparison to that of the existing NE based learning rule. 
Greenwald and Hall proposed correlated Q-learning (CQL) employing correlated equilibrium 
(CE) to generalize both Nash Q-learning (NQL) and FQL. The bottlenecks of the above 
MAQL algorithms are update policy selection for adaptation of the Q-tables in joint state-
action space and the curse of dimensionality with an increase in the number of learning 
agents. Several attempts have been made to handle the curse of dimensionality in MAQL. 
Jelle and Nikos proposed Sparse Cooperative Q-learning, where a sparse representation of the 
joint state-action space of the agents is done by identifying the need for coordination among 
the agents at a joint state. Here, agents undertake coordination by their actions only in a few 
joint states. Hence, each agent maintains two Q-tables: one is the individual-action Q-table for 
un-coordinated joint states and another one is the joint action Q-table to represent the 
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coordinated joint states. In case of uncoordinated states, a global Q-value is evaluated by 
adding the individual Q-values. Zinkevich offers a neural network based approach for 
generalized representation of the state-space for multi-agent coordination. By such 
generalization, agents (here robots) can avoid collision with an obstacle or other robots by 
collecting minimum information from the sensors. Reinaldo et al. proposed a novel algorithm 
to heuristically accelerate the TMAQL algorithms.  

In the literature of MAQL agents either converge to NE or CE. The equilibrium-based 
MAQL algorithms are most popular for their inherent ability to determine optimal strategy 
(equilibrium) at a given joint state. Hu et al. identified the phenomenon of similar equilibria in 
different joint states and introduced the concept of equilibrium transfer to accelerate the state-
of-the-art equilibrium-based MAQL (NQL and CQL). In equilibrium transfer, agents recycle 
the previously computed equilibria having very small transfer-loss. Recently Zhang et al. 
attempted to reduce the dimension of the Q-tables in NQL. The reduction is done by allowing 
the agents to store the Q-values in joint state-individual action space, instead of joint state-
action space.  

In the state-of-the-art MAQL (NQL and CQL), balancing exploration/exploitation 
during the learning phase is an important issue. Traditional approaches used to balance 
exploration/exploitation in MAQL are summarized here. The greedy exploration, 
although has wide publicity, needs to tune the value of which is time-costly. In the 
Boltzmann strategy, the action selection probability is controlled by tuning a control 
parameter (temperature) and by utilizing the Q-values due to all actions at a given state. 
Here, the setting of temperature to infinity (zero) implies pure exploration 
(exploitation). Unfortunately, the Boltzmann strategy antagonistically affects the speed 
of learning. Evolution of the Boltzmann strategy towards better performance is 
observed in a series of literature. However, the above selection mechanisms are not 
suitable for selecting a joint action preferred for the team (all the agents) because of the 
dissimilar joint Q-values offered by the agents at a common joint state-action pair. 
There are traces of literature concerning joint action selection at a joint state during 
learning. However, with the best of our knowledge, there is no work in the literature, 
which considers the work, presented in this thesis.  

The thesis includes six (6) chapters. Chapter 1 provides an introduction to the multi-robot 
coordination algorithms for complex real-world problems, including transportation of a 
box/stick, formation control for defense applications and soccer playing by multiple robots 
utilizing the principles of reinforcement learning, the theory of games, dynamic 
programming, and/or evolutionary algorithm. Naturally, this chapter provides a thorough 
survey of the existing literature of reinforcement learning with a brief overview of the 
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evolutionary optimization to examine the role of the algorithms in the context of multi-agent 
coordination. Chapter 1 includes multi-robot coordination employing evolutionary 
optimization, and especially reinforcement learning for cooperative, competitive, and their 
composition for application to static and dynamic games. The latter part of the chapter deals 
with an overview of the metrics used to compare the performance of the algorithms while 
coordinating. Fundamental metrics for performance analysis are defined to study the learning 
and planning algorithms. 

Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-
agent Q-learning algorithms (Nash Q-Learning and Correlated Q-Learning) for multi-robot 
coordination and planning. This extension is achieved by employing two interesting 
properties. The first property deals with the exploration of the team-goal (simultaneous 
success of all the robots) and the other property is related to the selection of joint action at a 
given joint state. The exploration of team-goal is realized by allowing the agents, capable of 
reaching their goals, to wait at their individual goal states, until remaining agents explore their 
individual goals synchronously or asynchronously. Selection of joint action, which is a crucial 
problem in traditional multi-agent Q-learning, is performed here by taking the intersection of 
individual preferred joint actions of all the agents. In case the resulting intersection is a null 
set, the individual actions are selected randomly or otherwise following classical techniques. 
The superiority of the proposed learning and learning-based planning algorithms are validated 
over contestant algorithms in terms of the speed of convergence and run-time complexity 
respectively.  

In chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of 
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above 
perspective, robots need to adapt to such a strategy, which can select the optimal equilibrium 
in each step of the learning and the planning. To address the bottleneck of the optimal 
equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-learning 
for multi-robot coordination, by extending the equilibrium-based multi-agent Q-learning 
algorithms. It is also shown that a consensus (joint action) jointly satisfies the conditions of 
the coordination type pure strategy Nash equilibrium and the pure strategy correlated 
equilibrium. The superiority of the proposed consensus Q-learning algorithm over traditional 
reference algorithms in terms of the average reward collection are shown in the experimental 
section. In addition, the proposed consensus-based planning algorithm is also verified 
considering the multi-robot stick-carrying problem as the testbed. 

Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite 
rewards of all the agents in one Q-table in joint state-action space during learning, and 
subsequently, these rewards are employed to compute correlated equilibrium in the planning 
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phase. Two separate models of multi-agent Q-learning have been proposed. If the success of 
only one agent is enough to make the team successful, then model-I is employed. However, if 
an agent’s success is contingent upon other agents and simultaneous success of the agents is 
required then model-II is employed. It is also shown that the correlated equilibrium obtained 
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order 
to restrict the exploration within the feasible joint states, constraint versions of the said 
algorithms are also proposed. Complexity analysis and experiments have been undertaken to 
validate the performance of the proposed algorithms in multi-robot planning on both 
simulated and real platforms. 

Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The 
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which 
is employed to determine the time-optimal trajectory of a stick, being carried by two robots, 
from a given starting position to a predefined goal position amidst static obstacles in a robot 
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the 
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also, the 
trade-off between the exploration and exploitation is balanced by modifying the random walk 
strategy based on the position of the candidate solutions in the search space. The superiority 
of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and 
accuracy as the performance metrics. Finally, the proposed algorithm has been verified in a 
real-time multi-robot stick-carrying problem.  

Chapter 6 concludes the thesis based on the analysis made, experimental and simulation 
results obtained from the earlier chapters. The chapter also examines the prospects of the 
thesis in view of the future research trends.  

In summary, the thesis aimed at developing multi-robot coordination algorithms with a 
minimum computational burden and less storage requirement as compared to the traditional 
algorithms. The novelty, originality, and applicability of the thesis are illustrated below.   

Chapter 1 introduces fundamentals of the multi-robot coordination. Chapter 2 offers two 
useful properties, which have been developed to speed-up the convergence of TMAQL 
algorithms in view of the team-goal exploration, where team-goal exploration refers to the 
simultaneous exploration of individual goals. The first property accelerates exploration of the 
team-goal. Here, each agent accumulates high (immediate) reward for team-goal state-
transition, thereby improving the entries in the Q-table for state-transitions leading to the 
team-goal. The Q-table thus obtained offers the team the additional benefit to identify the 
joint action leading to a transition to the team-goal during the planning, where TMAQL-based 
planning stops inadvertently. The second property directs an alternative approach to speed-up 
the convergence of TMAQL by identifying the preferred joint action for the team. Finding 
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preferred joint action for the team is crucial when robots are acting synchronously in a tight 
cooperative system. The superiority of the proposed algorithms in Chapter 2 is verified both 
theoretically as well as experimentally in terms of the convergence speed and the run-time 
complexity.  

Chapter 3 proposes the novel consensus Q-learning (CoQL), which addresses the 
equilibrium selection problem.  In case multiple equilibria exist at a joint state by adapting the 
Q-functions at a consensus. Analytically it is shown that a consensus at a joint state is a 
coordination type pure strategy NE as well as a pure strategy CE. Experimentally, it is shown 
that the average rewards earned by the robots are more when adapting at consensus, than by 
either NE or CE.  
Chapter 4 introduces a new dimension in the literature of the traditional CQL. In traditional 

CQL, CE is evaluated both in learning and planning phases. In Chapter 4, CE is computed 
partly in the learning and the rest in the planning phases, thereby requiring CE computation 
once only. It is shown in an analysis, that the CE obtained by the proposed techniques is same 
as that obtained by the traditional CQL algorithms. In addition, the computational cost to 
evaluate CE by the proposed techniques is much smaller than that obtained by traditional 
CQL algorithms for the following reasons. Computation of CE in the traditional CQL requires 
consulting m Q-tables in joint state-action space for m robots, whereas in the present context, 
we use a single Q-table in the joint state-action space for evaluation of CE. Complexity 
analysis (both time-and space-complexity) undertaken here confirms the last point. Two 
schemes are proposed: one for a loosely-and the other one for a tightly-coupled multi-robot 
system. Also, the problem-specific constraints are taken care of in Chapter 4 to avoid 
unwanted exploration of the infeasible state-space during the learning phase, thereby saving 
additional run-time complexity during the planning phase. Experiments are undertaken to 
validate the proposed concepts in simulated and practical multi-agent robotic platform (here 
Khepera-environment). 
Chapter 5 offers the evolutionary optimization approach to address the multi-robot stick-

carrying problem using the proposed Imperialist Competitive Firefly Algorithm (ICFA). 
ICFA is the synergistic fusion of the motion dynamics of a firefly in the Firefly Algorithm 
(FA) and the local exploration capabilities of the Imperialist Competitive Algorithm. In ICA, 
an evolving colony is not guided by the experience of more powerful colonies within the 
same empire.  However, in ICFA each colony attempts to contribute to the improvement of its 
governing empire by improving its socio-political attributes following the motion dynamics of 
a firefly in the FA. To improve the performance of the above mentioned hybrid algorithm 
further, the step-size for random movement of each firefly is modulated according to its 
relative position in the search space. An inferior solution is driven by the explorative force 
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while a qualitative solution should be confined to its local neighborhood in the search space. 
The chapter also recommends a novel approach of evaluating the threshold value for uniting 
empires without imposing any serious computational overhead on the traditional ICA. 
Simulation and experimental results confirm the superiority of the proposed ICFA over the 
state-of-art techniques. Chapter 6 concludes the thesis with interesting future research 
directions.  
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Chapter 1                                                   
Introduction: Multi-Robot Coordination by 
Machine Learning and Evolutionary Algorithms 
 

 

 

This chapter provides an introduction to the multi-robot coordination by reinforcement 
learning and evolutionary algorithms. A robot (agent) is an intelligent programmable 
manipulator capable of performing complex tasks and decision-making like the human 
beings. Mobility is part and parcel of modern robots. Mobile robots employ sensing-action 
cycles to sense the world around them with an aim to plan their journey to the desired 
destination. Coordination is an important issue in modern robotics. In recent times, 
researchers are taking keen interest to synthesize multi-agent-coordination in complex real-
world problems, including transportation of a box/stick, formation control for defense 
applications and soccer playing by multiple robots by utilizing the principles of reinforcement 
learning, theory of games, dynamic programming, and/or evolutionary optimization 
algorithms. This chapter provides a thorough survey of the exiting literature of reinforcement 
learning with a brief overview of evolutionary optimization to examine the role of the 
algorithms in the context of multi-agent coordination. The study includes the classification of 
multi-agent coordination based on different criterion, such as, the level of cooperation, 
knowledge sharing, communication, and the like. The chapter also includes multi-robot 
coordination employing evolutionary optimization, and specially reinforcement learning for 
cooperative, competitive, and their composition for application to static and dynamic games. 
The later part of the chapter deals with an overview of the metrics used to compare the 
performance of the algorithms in coordination. Two fundamental metrics of performance 
analysis are defined, where the first one is required to study the learning performance, while 
the other to measure the performance of the planning algorithm. Conclusions are listed at the 
end of the chapter with possible explorations for the future real-time applications. 
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1.1 Introduction 
A robot is an intelligent and programmable manipulator, targeted at developing the 
functionality similar to those of a living creature [1]. It can serve complex and/or repetitive 
tasks efficiently. Based on the ability of locomotion, robots are categorized into two basic 
types: fixed base robots and mobile robots. Depending upon the type of locomotion, mobile 
robots are categorized into three types: wheeled/legged robots, winged/flying robots, 
underwater robots, where for the last one, locomotion is controlled by water thrust. In this 
chapter, we would deal with wheeled robots only. 

Agency is a commonly used jargon in modern robotics [1]. An agent is a piece of 
program/hardware that helps a robot to serve a directed goal. Like humans, when complexity 
of the problem grows, collective intelligence of the agents is required to achieve the target. 
The thesis is on collective/group behavior of agents, who can sense and act rationally. On 
occasions, agents can share the sensory information or its decision with its teammates directly 
through a communication network or by displaying its gestural/postural patterns, carrying a 
specific signature, to communicate a message to its team members.  

Communication is a vital issue to generate plans by the agents. However, communication is 
time-costly and thus is often disregarded for real world robotic applications. In the present 
thesis, we attempted to learn the agent behavioral patterns by a process of learning, and thus 
avoid communication overhead in real-time planning [1]. 

There exists quite a vast literature on planning algorithms [2]-[30]. One of the early robot 
planning algorithms is due to Nilsson in connection with his research on reasoning based 
planning undertaken in Stanford AI research laboratory, which later was adopted in STRIPs 
[31]-[33]. In late 1980s to early 1990’s several planning algorithms, including A* [32], [33] 
Voronoi diagrams [34], Quad tree, and potential field [35] were evolved. These algorithms 
presume static world. At the beginning of 1990’s Michalewicz in one of his renowned papers 
introduced genetic operators to undertake dynamic planning with local adaptation in trial 
solutions by specialized mutation operators. The period: 1990-2000 has seen significant 
changes in the planning algorithm with the introduction of supervised/unsupervised neural 
learning in planning algorithms [33]. The neural algorithms worked in both static and 
dynamic environments. Typically, in dynamic environments they predict the direction and 
speed of motion to determine possible avoidance of collisions. However, they had limited 
learned experience, and thus were unable to handle planning in presence of random motions 
of dynamic obstacles/persons in the environment. Almost at the beginning of the first quarter 
of 1990’s, Sutton proposed reinforcement learning (RL) algorithm [36], which can help the 
robot learn its environment through semi-supervised learning. We would deal with multi-
agent RL (MARL) in this chapter. 
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Planning and coordination are two closely used terms in multi-agent robotics [31]. While 
planning is concerned with determining the sequence of steps to achieve a goal, coordination 
refers to skilful interaction among the agents to serve their individual short-run/long-run 
purposes. Apparently, coordination among the agents is required to implement the steps of 
planning. In centralized planning, the agents need not require coordination, as the central 
manager takes care of all the agents’ states as if its own state and generate a planning cycle by 
taking care of all the agents’ states and goals jointly. Unfortunately, centralized planning is 
very slow and single point failure may occur. Thus centralized planning is not amenable for 
real-time applications, when the number of agents is excessive. In distributed planning, each 
agent generates one step of planning by coordinating with other active agents.   

Coordination is broadly divided into two types: cooperation and competition [37]. As the 
names indicate, cooperation requires agents to work hand-in-hand to purposefully serve the 
common objective of the team. Competition, on the other hand, leads to the success of one 
team against the failure of its opponent. For instance, in robot soccer, teammates work 
harmoniously in a cooperative manner, while each team of agents competes for winning at the 
cost of defeat of the other team.  

Researchers are taking keen interest to model agent cooperation/competition by various 
models/tools. A few of these that need special mention include RL, theory of games (GT) 
[38]-[44], [84] dynamic programming (DP) [45], [46], evolutionary optimization (EO) [47]-
[55], and many others [16]-[30], [56]-[58]. In RL, agents learn the most profitable joint action 
at each joint state through a feedback from the environment, and use them for subsequent 
planning applications [36]. GT requires for strategic analysis in multi-agent domain. In GT, 
agents evaluate the equilibrium, representative of the most-profitable joint action for the team 
in a joint state, and execute the joint action for joint state-transition in a loop until the joint 
goal is explored [38], [41]-[43], [59]. In DP [45], a complex problem is divided into finite 
overlapping sub problems. Each sub problem is solved by a DP algorithm and the solution is 
stored in a database. In the subsequent iterations, if a sub problem already addressed 
reappears, then that sub problem is not readdressed, but its solution is exploited from the 
database. In EO algorithm [60]-[70] the constraint to satisfy the cooperation is checked on the 
members of the trial solutions before the solutions are entertained for the next generation. 
Recently, researchers aimed at developing multi-agent RL (MARL) fusing RL, DP, and GT 
[71], [72]. In this thesis, we would explore new algorithms of MARL and novel EO.  

1.2 Single agent planning 
In single agent planning [5], an agent searches for the sequence of actions, for which it 
reaches its predefined goal state from a given state optimally in terms of predefined 
performance metric. The section describes the single agent planning terminologies and 
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algorithms. Here single agent planning algorithm includes search-based and learning-based 
planning algorithms. 

1.2.1 Terminologies used in single agent planning 
Definition 1.1: An agent [1] is a mathematical entity that acts on its environment and senses 
the changes in the environment due to its action. The agent is realized by hardware/software 
means. A hardwired agent has an actuator (motors/levers) and a sensor to serve the purpose of 
actuation and sensing respectively.  

A learning agent learns its right action at a given location/grid, called state, from its 
sensory-action doublets. A planning agent identifies its best action at its current state to obtain 
maximum reward for its action in the given environment. 

In a single agent system, the environment includes a single agent. Naturally, the 
learning/planning steps/moves of the agent is undisturbed by the environment. Fig. 1.1 offers 
architecture of a single agent system. 

 

Environment

Actuation

Agent 1

 
Fig. 1.1 Single agent system 

 

Definition 1.2: The state of an agent represents a situation of the agent, concerning the 
position and/or orientation of the agent in the environment at an instant.  

A state-space is a collective set of states of an agent. The definition of the state-space is 
required a priori, to address a planning problem. Such description of the state-space is 
problem specific. The state-space may be discrete or continuous. We in this thesis, however, 
deal with discrete state-space. Fig. 1.2 illustrates three discrete states (s1, s2, and s3) of an 
environment.  
 

s1 s2 s3
 

Fig. 1.2 Three discrete states in an environment 

 

Definition 1.3: The action selection by an agent is done randomly or using specific strategies, 
such as ε-greedy strategy [36] or the Boltzmann strategy [73]. Random action selection 
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sometimes is inefficient, when the same action is selected repeatedly during the learning 
phase.  

The   greedy strategy [36] allows an agent to select random actions from a pool with a 
probability .  For example, if 0.2,   then the agent would select 20 actions randomly and 

80 greedy actions out of 100 trials from a pool of actions. 
Unlike the above, the Boltzmann strategy [73] employs a probability distribution based on 

the reward function value obtained for individual actions. Usually, an exponential distribution 
is used to determine the probability of an action in a pool of actions. The larger is the 
individual reward, the higher is the action selection probability. One control parameter 
temperature is used to tune the action selection probabilities. 
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Fig. 1.3 Robot executing action Right (R) at state s1 and moves to the next state s2 

 

In Fig. 1.3, we consider one agent capable of state-transitions using only four actions: Left-
move (L), Forward-move (F), Right-move (R) and Back-move (B). 
Definition 1.4: A state-transition [36] function at state { }s s  due to action { }a a  is a 

mapping from ( , )s a  to / { },s s  where /s  be a next state, i.e. 
/ ( , ).s s a                              (1.1) 

In deterministic system, for each pair of ( , )s a  we have a fixed / .s  In non-deterministic (or 

stochastic) situation, for each pair of ( , )s a  we may have different / .s  Traditionally, non-

determinism is handled in an easier way by assigning a probability mass for each state–
transition ( , ),s a  such that sum of the state-transition probabilities is equal to one. 

  Non-determinism creeps into the system by various ways. For instance, in robot planning 
application, the condition of floor, such as its “slippery condition” is a guiding factor to 
determine the transition probabilities.                 



6 
 

Suppose, in Fig. 1.4, a robot executes an action a  at state s  and moves to the next state 
/ ,s   receiving an immediate reward ( , )r s a  as a feedback from the environment. Suppose the 

floor on which the robot moves on is slippery. In that case, from a state s  because of an 
action a  the robot can have more than one state transition, each with a state-transition 
probability of /( | ( , )),P s s a  /

1 2 3[ , , ],s s s s  where, 

/

/( | ( , )) 1
s

P s s a


                              (1.2) 

as shown in Fig. 1.5 . For each state-transition agent receives an individual immediate reward 
( , )r s a  with its corresponding state-transition probability.    

a
( , )r s a

 
Fig. 1.4 Deterministic state-transition 

 

a

( , )r s a

( , )r s a

( , )r s a

/
1 2 3

/

{ , , }
( | ( , )) 1

s s s s
P s s a




3( | ( , ))P s s a

2( | ( , ))P s s a

1( | ( , ))P s s a

 
Fig. 1.5 Stochastic state-transition 

 

Definition 1.5: A policy [36]   is a decision making mapping function, representing the 
probability assignment to a set of actions { }a  at a given state { }s s  such that, 

( , ) 1,  i.e.,
a

s a


    

: { } [0,1],s a                                                                                                                (1.3) 
subject to ( , ) 1.

a
s a


                                                                                             (1.4) 

holds for each state .s  
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In Fig. 1.3, at state 1s  there is a set of finite possible actions: L, F, R and B. Now, random 
selection of an action from this finite set infinite times results in a policy, 

( 1, ) 0.25,  { , , , }.s a a L F R B     

In a planning problem, an agent starts by executing its individual action from a predefined 
state (starting state) with an aim to reach its individual predefined absorbing state (goal state), 
optimally in terms of time, path length, energy, and the like. Feasibility and optimality are 
two desired criterions need to be satisfied while addressing the planning problem [31].  
Definition 1.6: Feasibility refers to the locomotion of an agent to a feasible next state because 
of an action form the current state.  
Definition 1.7: Optimality indicates the performance optimization of the planning algorithm 
in each step, by minimizing the system resource utilization. 
Definition 1.8: The sequence of actions lead to the predefined goal state from a given starting 
state maintaining the feasibility and optimality jointly in each step is well-known as plan. 

To understand the concept of planning, Example 1.1 is given to realize the movement of a 
single agent (here robot) in a two dimensional discrete environment.  
Example 1.1: Suppose a robot moves in a two dimensional 5×5 grid environment as shown in  
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Fig. 1.6 Two dimensional 5×5 grid environment 

 

Fig. 1.6. There are 25 states and each state is represented by an integer or the Cartesian 
coordinate (x, y), where [1,5]x  and [1,5].y  An agent can execute one among the four 
possible actions { , , , }a L F R B  at a state [1,25].s  After executing an action a  at a state s  
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a state-transition takes place and the robot moves from s  to the next state / [1,25]s   by          

(1.1). The collection of state transitions for which the robot moves from its current state ‘1’ to 
the goal state ‘25’ is called a feasible path. Among the feasible paths the optimal one is 
chosen. One optimal path (here in terms of number of state transitions) is shown in Fig 1.6 by 
doted lines. The example can be made more interesting by adding obstacles in the optimal 
path.  

After finalizing a plan (sequence of actions) by an agent, the agent follows the plan either 
by execution, refinement, or hierarchical approach.  
Execution: In the execution phase, planner’s plan is executed in a simulator or by a robot 
connected to the real environment. There are two types of robots for execution. In the first 
type, the robot is programmable and acts as an autonomous agent. This approach has the 
provision of updating the plans after finite time interval. However, most planning algorithms 
are designed to tackle new situations during the planning phase and hence, the above type of 
execution is not preferred. The second one is the special-purpose robot designed to solve a 
specific task given to it.  
Refinement: Refinement is the evolution of the planning algorithms towards the better 
performance as shown in Fig. 1.7. In Fig. 1.7, agents first compute a collision-free path in 
presence of obstacles after that agents optimize (smoothen) the path. Finally, a trajectory is 
planned following the path and a feedback controller is added for that.   
 

 

Fig. 1.7 Refinement approach in robotics 

 

Hierarchical: In hierarchical model, each plan is considered as an action under a larger plan. 
The same plan may also be defined as a subroutine under the larger plan. In Fig. 1.8, the 
master plan is known as the root node. Remaining subsequent plans act as an action for the 
master plan or plan. There may be infinite number of plans under a master plan or plan. In 
Fig. 1.8, n, m, and p are the real positive integer number. In Fig. 1.9 (hierarchical model), 
agent 1 interacts with environment 1 and agent 2 with environment 2. Again in Fig. 1.9, 
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environment 2 includes agent 1 and environment 1. So, Agent 2 interacts with the 
environment 2 as well as 1.    
  

 
Fig. 1.8 Hierarchical tree 

 

 

Fig. 1.9 Hierarchical model 

 

The search-based planning algorithms are employed to evaluate low cost planning paths in 
terms of path length, time, energy and the like, for single-robot planning. The search-based 
planning algorithms are popular mainly because of their simplicity. The search-based 
algorithm compromises of the following two parts: 

1) In the first part, the realization of the goal following a number of feasible plans is done 
by employing a search algorithm.  
2) The second part is related to the optimal planning, which employs principle of optimality 
to reduce the computational effort in the planning algorithms.  

The search-based planning algorithms avoid the geometric models or differential equations. 
The search based algorithms also avoids uncertainty and hence it avoids complications due to 
probability calculation.  

1.2.2 Single agent search-based planning algorithms 
By search-based planning algorithms a plan (or sequence of feasible actions) is searched by 
one of the following methods: forward search, backward search, and bidirectional search [31]. 
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Forward search algorithm deals with the three variant of states. First one is the state which has 
not been visited yet or the unexplored one is known as unvisited state. If all possible state-
transitions are explored in a given state, then the state is referred to as a dead state. The state 
which has been visited but still there exist a few unexplored next state is defined as alive 
state. Breadth first [31], Depth first [31], Dijkstra’s [74], Best first search [31], Iterative 
deepening [31], A-star (A*) [33], D-star (D*) [6] are the examples of forward search 
algorithms. The above forward search algorithms are extendable to the backward search 
algorithm, by solving the same planning problem by traversing from the goal state to the 
starting state. The bidirectional search is the combination of forward and backward search. In 
every search-based planning algorithm, a tree is maintained. For the forward (backward) 
search initial (goal) state is the root node of the tree. The advantage of bidirectional search is 
the radical reduction in the exploration required. In this chapter, only the Dijkstra’s, A* and 
D* and STRIPS like algorithms are discussed as given below.   

1.2.2.1 Dijkstra’s algorithm 

Dijkstra’s algorithm was proposed by computer scientist Edsger W. Dijkstra’s in [74]. 
Dijkstra’s algorithm is employed to find out the shortest path between two nodes in a graph. 
In case of robotics, each state is represented by a node of the graph. The starting state is 
denoted by the source node and instead of finding the shortest path from the source node to all 
other nodes, shortest path is obtained from the source node to a specific goal node (goal state 
of the robot). 

 
Algorithm 1.1 Dijkstra’s algorithm 

Input: Mark all the unvisited nodes and the current node is set as the source node; 
Generate a search graph G, including the starting node x. Mark node x as an open; 
Output: The optimal path; 
Begin  
Initialize: Set a distance value to all the nodes in the graph. Set zero for the source node (here state 
1) and ∞ for the remaining nodes; 
  Repeat       
     1. From the current node, explore all the unvisited neighbors and evaluate their distances from  
         the initial node. (For example, let the current node, x has a distance of 3 unit from the source  
         node, and an edge connecting x with another node y has distance of 2. Now, the distance to y  
         through x from the source node becomes 3+2=5. Compare the currently evaluated distance        
         with the previously recorded distance (∞ at the beginning). If the currently evaluated distance  
         is less than previously recorded distance, then update the database by the currently evaluated  
         distance, otherwise do nothing. 
    2. Once all the neighbors of the current node have been explored, the current node is marked as  
        visited (not checked further), and the evaluated distances are recoded as the final and minimal  
        distances. 
    3.  Select one unvisited node with smallest distance as the next current node; 
  Until goal state reached; 
End. 
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Fig. 1.10 Two dimensional 3×3 grid environment 

 

The Dijkstra’s algorithm is explained for the 3×3 grid shown in Fig. 1.10. In Fig. 1.10, there 
are nine states (nodes). State 1 is the source node and state 9 is the goal node. From each node 
there are maximum four possible paths as shown in the graph (Fig. 1.11). Weights of all the 
edges are 1, ∞ and -1. 1 is assigned for a feasible edge. The self-loop and/or collision between 
robot and the boundary in Fig. 1.11 signify the penalty with reward of -1. ∞ is assigned for an 
invalid edge. The steps of Dijkstra’s algorithm are given in Algorithm 1.1. 

 

 

Fig. 1.11 Corresponding graph of Fig. 1.10 

 

The trace of the Dijkstra’s algorithm for robot path planning is given in Table 1.1. The bold 
numbers are the selected node corresponding to the column's node from the current node. The 
run-time complexity of the Dijkstra’s algorithm is (| | log | | | |).O V V E  Where | |V  and 
| |E are the number of edges and nodes respectively. 
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Table 1.1 Trace of Dijkstra’s algorithm for Fig. 1.11 

 
 Nodes    → 

1 2 3 4 5 6 7 8 9 

V
is

ite
d 

←
 

no
de

s 

{1} -1 1 ∞ 1 ∞ ∞ 
∞ ∞ ∞ 

{1,2} 1 -1 2 2 2 ∞ 
∞ ∞ ∞ 

{1,2,3} 2 1 -1 3 2 3 
∞ ∞ ∞ 

{1,2,3,6} 3 2 1 4 3 -1 5 6 4 

1.2.2.2 A* (A-star) Algorithm 

A* is a heuristic search-based algorithm [33]. In A* algorithm, the quality of a node is 
measured by introducing two cost functions: one is heuristic cost and another is the 
generation cost. The heuristic cost, denoted by h(x) is a measure of distance (here city block 
distance) between the current node x to the goal node. The generation cost of a node x 
denoted by g(x), measures the distance of node x from the source node. Total cost function at 
node x is the summation of f(x) and g(x). The following definitions are required before 
explaining the A* algorithm [33].  
Definition 1.9: A node x is called open if the node x has been generated and the heuristic cost 
h(x) has been computed over it but it has not been expanded yet. 
Definition 1.10: A node x is called closed if it has been expanded for generating offspring. 
The steps of A* algorithm is given Algorithm 1.2. Example 1.2 is given for better 
understanding of A* algorithm in the perspective of robot path planning problem.  
 

Algorithm 1.2 A* Algorithm 
Input: Generate a search graph G, including the starting node x. Mark node x as an open; 
Output: The optimal path; 
Begin  
 Initialize: Create a list of closed node keeping them initially empty; 
  Repeat       
     1. If list of open node is empty, then exit with failure; 
     2. Let node n is selected from the list of open nodes and removes it from the set. Put the node n on  
         the closed nodes list; 
     3. If n is the goal node, then exit and return the solution obtained to trace a path from the node n to   
         node x in the search graph G; 
     4. Expand node n and generate the set M, which contains its successors that are not already the  
         ancestors of n in G. Add the elements of M as successors of n in G; 
     5. Point n from each members of M, which does not belong to G and add them in the open list. If  
         for all the members of M already belong to open or closed list of nodes, then redirect the pointer  
         to n, subject to the shortest path is found through n. If all the members of M are belong to closed  
        list of nodes, then redirect the pointers of its entire offspring in G, so that they point  
        toward the back along the best paths found till now to these offspring; 
      6. Sort the elements of open list in order of increasing cost function (sum of heuristic cost and  
          generation cost); 
  Until goal state reached; 
End. 
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Example 1.2: In this example, the A* algorithm is employed to find the shortest path between 
source node 1 to the goal node 9 as shown in Fig. 1.10. The heuristic cost h(x) of node x (xx, 
xy) is given by the city-block distance and it is defined in (1.5). 

( ) | | | |,g x g xh x x x y y                                                                                                   (1.5) 

where, ( , )g gx y  is the goal coordinate.        

Table 1.2 Trace of A* algorithm from Fig. 1.10 
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The trace of the A* algorithm is given in Table 1.2. In step 0, robot starts from node 1 and its 
heuristic cost is 4 and generation cost is 0. Hence, total cost is 4. In step 1, node 1 is expanded 
by the action forward (F) to node 2 and by the action right (R) to node 4. The total cost of 
both the nodes 2 and 4 is 3+1=4. Node 2 is selected and it is expended further by the actions 
forward (F), right (R), and Back (B) to the nodes 3, 5 and 1 respectively. The total cost of the 
nodes 3 and 5 is 2+2=4. Node 1 is not selected following Definition 1.10. Node 3 is selected 
and it is extended further to node 2 and 6 by the action back (B) and right (R) respectively. 
Here, node 2 is a closed node by Definition 1.10 and hence, it is eradicated. So, node 6 is 
expanded to node 6 and 9 by the action back (B) and forward (F). Again node 6 is eradicated 
by Definition 1.10 and node 9 is the goal state. The total cost function of the node 9 is 4 with 
0 heuristic cost. Hence, optimal path is generated by sequentially following the nodes 1, 2, 3, 
6, and 9. 

1.2.2.3 D* (D-star) Algorithm 

Unlike, A* [68], D* [6] algorithm may be employed to efficiently plan in a dynamic unknown 
or partially known environments, by adjusting the weights of the edges (arcs). In the present 
path-planning application, each state is assumed as a node and weight of each edge (arc) 
connecting two nodes represents the cost of moving from one node to another. Initially, a path 
is planned from current node to the goal employing the A* algorithm using the known 
information. In the journey of the robot towards the goal state, it discovers the presence of 
obstacles in its path and the graph is modified by adapting the arc weight. The robot again 
computes the shortest path from its node position to the goal. The process continues until it 
reaches its goal position or it concludes that the goal is inaccessible. The Trace of the D* 
algorithm is shown below in Table 1.3 by adding an obstacle in state 3 of Fig. 1.10 as shown 
in Fig. 1.12. Step 0 and 1 are same as A* algorithm. In step 2, node 3 is expanded to node 1 
and 5 by action right (R) and back (B) respectively. 

 

Fig. 1.12 Two dimensional 3×3 grid environment with an obstacle 
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Table 1.3 Trace of D* algorithm from Fig. 1.12 

 
Step State-space Heuristic cost Generation cost Total cost 
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Node 3 is not accessible as there is an obstacle at node 3. So, node 5 is expanded by left (L), 
forward (F), right (R) and back (B) actions to nodes 2, 6, 8 and 4 respectively. Node 2 and 4 
are closed nodes following Definition 1.10. Selecting node 6 and expanding it to node 5 and 9 
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by actions back (B) and right (R) respectively, the goal node 9 is reached.  So, optimal path is 
generated by sequentially following the nodes 1, 2, 5, 6, and 9. 

1.2.2.4 Planning by STRIPS-like language 

Representation is the main bottleneck of the earlier explained search-based planning 
techniques due to enormous state-space. To address such representation problem, STRIPS-
like language [31] is proposed by the Stanford Research Institute Problem Solver group, 
which is expressive enough to characterize a planning problem logically. STRIPS stands for 
Stanford Research Institute Problem Solver. STRIPS is the first well-known logic-based 
representation of the discrete planning algorithm, which is the extension of first order logic 
(propositional logic). Following representations are employed in STRIPS.  
State: In STRIPS, agent decomposes the environment into logical conditions (TRUE or 
FALSE), and then the state is represented by conjunctions of function-free ground literals. 
Ground literal refers to the predicates, which cannot break any more. Suppose, a home service 
robot is instructed to bring a cup of tea with a biscuit and a magazine. So, in STRIPS, the 
initial state is formed using the following predicates “at(home),” “┐have(tea),” 
“┐have(biscuit),” “┐have(magazine).” Here, home represents the initial position. Now initial 
state is the conjunctions of the function free predicates (ground literals), i.e., 
“at(home)˄┐have(tea)˄ ┐have(biscuit)˄┐have(magazine).” However, the goal state is the 
“at(home)˄have(tea)˄have(biscuit)˄have(magazine)”. Now, the task is to find out the 
sequence of actions to reach from initial state to the goal state.  
Action: An action follows following two conditions: preconditions and effect. In 
precondition, an agent needs to satisfy certain feasibility condition before executing an action. 
For example, for “have(tea)” the agent must go to a nearby tea stall because tea is not 
available at(home). Also the preconditions are always positive ground literals. On the other 
hand, effects are the conjunction of positive and negative ground literals. For example, if 
there is an action “go(tea stall)” from “at(home)”, then the precondition is 
“at(home)˄path(here, there)” and the effect is “at(tea stall) )˄┐at(home)”.  Hence, to reach 
the goal state “at(home)˄have(tea)˄have(biscuit)˄have(magazine)” an agent must satisfy all 
the preconditions and effects.        

1.2.3 Single agent reinforcement learning 
In single agent RL [36], (Fig. 1.13) an agent receives a reward/penalty as a feedback due to an 
action at its present (current) state or situation from the surrounding (environment). Such 
scalar feedback measures the quality of the action in that state. In the literature of RL, this 
quality value is well-known as state-action value. The robot remembers or stores the <state, 
action, reward> profile as an experience for future reference. Once robot learns all possible 
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<state, action, reward> profiles, it plans optimally in terms of time and/or energy, from any 
state within the environment it learns. The single agent RL can be explained by the well-
known multi-armed bandit problem [75], [76]. 

 
Fig. 1.13 Structure of reinforcement learning 

 

1.2.3.1 Multi-Armed Bandit Problem 

In the literature of English, a bandit refers to a robber or gambler, who belongs to a gang 
typically isolated from the human society. If a bandit has only one arm, then the bandit is 
called one-armed bandit. The one-armed bandit is also well-known as a slot machine, because 
a slot machine is operated by a button located on the front panel of the machine. A slot 
machine is a casino gambling machine, which rolls three or more times once the button is 
pushed. As the slot machine stops rolling, it pays off the bandit based on the pattern formed 
by the symbols visible on the front side of the machine. A multi-armed bandit consists of a 
series of slot machines arranged in a row. In multi-armed bandit problem [75], [76], the 
bandit has to decide which slot machine to play and for how many times to maximize the sum 
of the rewards earned.  

The gambler starts playing the multi-armed bandit problem without any knowledge about 
the slot machines. In each trial, the gambler faces a trade-off between the “exploration” of a 
new slot machine to obtain better reward than the present rewards, and “exploitation” of a slot 
machine that has already obtained highest expected rewards. Similar trade-off is experienced 
by a reinforcement learner in RL. Hence, the multi-armed bandit is employed to manage 
several projects in a large organization, where initially the properties of the projects are 
partially known or unknown, but as time passes the properties becomes fully known to the 
bandit. 
Suppose, a multi-armed bandit [75], [76] has N-slot machines (or N-arms), which are being 
played by the bandit, and the bandit receives different reward for each arm, with an aim to 
determine the arm having the maximum reward. To choose the best arm, i.e., an arm 
corresponding to the maximum reward (or greedy reward); the agent (or bandit) may compute 
the running average of rewards of all the arms given in (1.6). 

1 2 ...
( ) ,k

t
r r r

Q a
k

  
                                                                                                           (1.6) 
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where ( )tQ a  refers to the estimated value of the action a  in t  trials (play). We assume that 
action  a  was played  k  times in  t  trials and kr  was the reward of choosing the action (arm) 

a at kth time step. As choosing an arm is analogous to choosing an action, the value of each 
arm may also be defined as the expected reward of the arm. Let the expected optimal reward 
of the action a  is *( ).Q a  Based on the greedy action selection policy, the optimal action *a is 

chosen by (1.7).  
* *arg max ( )

a
a Q a                                                                                                                (1.7) 

The said greedy action selection may trap the agent (bandit) in local minima. To overcome 
the problem of trapping in local minima, an agent has to explore a new arm to receive new 
reward (well-known as exploration), which might be better than the present reward. 
Randomization of the probability of choosing an arm, which is not the greedy one, is referred 
to as the exploration. In RL, always there is a trade-off between the exploration and 
exploitation. For example, let N=10 in the said multi-armed bandit problem. Each arm 
(analogous to an action) [1,10]a  has a random reward given in (1.8) drawn from a normal 
random distribution with mean zero and variance one, (0,1).N  (1.8) represents the true value 

or expected reward of the ten arms. 
*( ) [0.0325, 0.8530, 0.1341, 0.0620, -0.2040, 0.6525, 0.8927, -0.9418, -1.4122, 0.8089]Q a         (1.8) 

By (1.7) and (1.8) 
 * *arg max ( )

a
a Q a  

      arg max[0.0325, 0.8530, 0.1341, 0.0620, -0.2040, 0.6525, 0.8927, -0.9418, -1.4122, 0.8089]  

       7.                                                                                                                                  (1.9) 
By (1.9) seventh action is the optimal action denoted by *.a  The learning process is started by 
estimating the true values from the earlier distribution of (0,1)N  setting the exploration 

parameter   to 0.2 the first estimate is given in (1.10). 
0 ( ) [0.6761, -1.4321, -0.1824, 3.1140, -1.5285, -2.4264, -1.6687, -0.5252, -0.1021, -0.7124]estQ a   

          (1.10) 
By (1.7), (1.10) and assuming * 0( ) ( )estQ a Q a  

* *arg max ( )
a

a Q a  

      arg max[0.6761, -1.4321, -0.1824, 3.1140, -1.5285, -2.4264, -1.6687, -0.5252, -0.1021, -0.7124]  

       4.                                                                                                                               (1.11) 

By (1.11) bandit should choose the fourth action but by (1.9) the optimal action is the seventh 
one. So, the greedy choice is misleading the action selection. Several estimations are done to 
update the ( )estQ a  vector using (1.6). The learning process continues until the agent 

recognizes the seventh action as its best choice among the ten actions. The variation of 
average reward with the number of trial for different   is given in Fig. 1.14. 
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 Fig. 1.14  variation of average reward with the number of trial for different  in 10-Armed Bandit 

Problem 

1.2.3.2 Dynamic programming and Bellman equation 

DP [45] is an optimization technique, which transforms a large complex problem into a 
sequence of simple problems, by dividing it into finite overlapping sub problems; where 
overlapping indicates that the sub problems can recursively form the actual large complex 
problem. Breaking a large complex problem into finite overlapping sub problems is the 
condition of applying DP upon the large complex problem. In DP, there is a relation between 
the solution offered by the large problem and solutions offered by the sub problems. In the 
literature of optimization, this relationship is well-known as the Bellman equation (BE) or DP 
equation. 

Each sub problem is solved by a DP algorithm and the solution is stored in a database. In 
the subsequent iterations, if a sub problem already addressed reappears, then that sub problem 
is not readdressed, but its solution is exploited from the database. Finally, one optimal 
solution is chosen from the evaluated value functions. The basic four steps for a DP algorithm 
are given below [45]. 

1. Divide the large complex problem into finite overlapping sub problems. 
2. A value function is defined recursively based on the overlapping sub problems. 
3. Compute and memorize the value functions of the overlapping sub problems to avoid 
repetition. 
4.  Obtain an optimal solution from the evaluated value functions.  
Value function is the heart of DP, as it expresses the quality of a state because of an optimal 

action in terms of numerical value. If one needs to maximize the value function ( )v s  at a state 
{ },s s  then using the principle of DP, the problem can be expressed in the BE as given in                     

(1.12). 
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/( ) max[ ( , ) ( )],  (0,1)
a

v s r s a v s                                                   (1.12) 

where, ( , )r s a  refers to the reward received at state s  because of an action a  and /( )v s  

denotes the value function at next state / .s   

1.2.3.3 Correlation between reinforcement learning and Dynamic programming 

It is apparent from the earlier sections that the RL works on the principle of reward/penalty 
received by the agents as a feedback from the environment, DP is nothing but an optimization 
technique, which optimizes the BE [71], [72]. Fig. 1.15 indicates that the single agent Q-
learning (QL) is the combination of the RL and the DP. The details of single agent Q-learning 
are given in the next section. 

 
Fig. 1.15 Correlation between the RL and DP 

1.2.3.4 Single agent Q-learning 

Q-learning is one well-known paradigm among the RL techniques coined by Watkins and 
Dayan [77] in 1989. In Q-learning, an agent (robot) adapts in an unknown environment, and 
receives two types of reward due to an action at a given state within the environment. One 
reward is immediate reward received as a feedback from the environment as explained earlier 
in section 1.2.3. Another reward is evaluated at the next state. The evaluated reward at the 
next state is of two types based on the nature of the environment. If the environment is 
deterministic, then best (or optimal) future reward is evaluated at the next state, shown in Fig. 
1.16. Since, in deterministic environment, an agent can move from a given state to the next 
state with probability one due to an action. On the other hand, in stochastic environment, a 
robot moves from a given state to the next one by assigning a probability in [0, 1] due to an 
action. Hence, in stochastic environment, robot evaluates the expected best (or optimal) future 
reward at the next state. The expected best future reward in the next state is the expectation of 
selecting the best action in the next state in terms of numerical value. The mechanism of 
evaluating the expected best future reward in Q-learning is shown in Fig. 1.17.  
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In Fig. 1.16, initially all the Q-values at Q-table are set to zero. At the current state 1 robot 
executes an action right (R) and receives an immediate reward r(1, R)=0 from the 
environment. In the next state 3, maximum future reward is evaluated from the Q-table. Until 
(3, F) is not explored, in the next state, Q(3, L)=81 is the best future reward and updated Q-
value at (1, R) is Q(1, R)=72.9. On the other hand, once (3, F) is explored in the next state, 
Q(3, F)=100 is the best future reward and updated Q-value at (1, R) is Q(1, R)=90.  

In Fig. 1.17, ‘R’ inside the circle symbolizes a robot. Here, each state 1 to 3 has distinct 
frictional properties. In such stochastic environment, any one next state among the three 
possible next states may be reached due to left action executed by R at 1. So, there is a 
probability of moving to the next state from the current state due to an action. In the literature, 
such probability is well-known as the state-transition probability and the expected future 
reward is evaluated thereof.  

In Q-learning, the future reward prediction depends on the current state-action pair. It is 
apparent, that the future reward prediction in Q-learning of an agent depends exclusively 
upon the current state but not on the past state-action pairs, which is the Markov property. 
The Markov property is also well-known as the memory less property. This idea is framed 
inside the Markov Decision Process (MDP). In Q-learning, MDP plays a significant role in 
finding the optimal value function corresponding to the optimal policy .*π  The definition of 

MDP is given in Definition 1.11 [78].  
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Fig. 1.16  Single agent Q-learning 
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Definition 1.11: A Markov decision process (MDP) is a 4 - tuple S, A, r, p  [79], [80] where, 

S  refers to a finite set of states, A  denotes a finite set of actions, r : S A    refers to the 
reward function of the agent, and : [0,1]p S A   indicates the state transition probability. 

/

* / / *( , ) max[ ( , ) [ | ( , )] ( , )]
a s

v s r s a p s s a v s                                                                        (1.13) 

where, *( , )v s   and / *( , )v s   represent the value at current state s  and next state /S due to 

optimal policy *,    denotes the discounting factor, /[ | ( , )]p s s a  is the state-transition 

probability to reach next state /s from current state s  due to action ,a A  ( , )r s a  is the 

immediate reward at state s  due to action .a  

 

 

Fig. 1.17 Possible next state in stochastic situation 

 

If an agent directly learns its optimal strategy without knowing either reward function or the 
state-transition probability, then the learning policy is called model-free RL [81]. Q-learning 
is one such model-free learning, involving the basic equation given in (1.14). 

/

* / / *( , ) [ ( , ) [ | ( , )] ( , )].
s

Q s a r s a p s s a v s                                                                        (1.14) 

Here, *( , )Q s a  is the optimal Q-value. After infinite revisit of state S  due to action ,a  ( , )Q s a  
turns to * ( ,  ).Q s a  If next state is deterministically known for each action, then the Q-learning 

is called deterministic. In deterministic situation / /[ | ( , )] 1, .p s s a s   

Combining (1.13) and (1.14) we can write, 
* *( , ) max[ ( , )].

a
v s Q s a                                                                                                         (1.15) 

Hence, the problem transforms to determining *( , )Q s a  for all ( , ).s a  If *( , )Q s a  is found, one 
can identify the action which maximizes the *( , ).v s   So, the Q-learning update rule 

becomes, 

/
/( , ) ( , ) max [ ( , ), )]

a
Q s a r s a Q s a a                                                                                       (1.16) 

where, / ( , )s s a                                 (1.17)  
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be the state-transition function. Hence, / / /( , ) ( ( , ), ).Q s a Q s a a  By combining (1.16) and                     

(1.17) we obtain (1.18). 

/
/ /( , ) ( , ) max ( , ).

a
Q s a r s a Q s a                                                                                        (1.18) 

where, 
/

/ /max ( , )
a

Q s a  indicates the action /a A  for which maximum Q-value, / /( , )Q s a  is 

received at next state /s  Now, the Q-learning update rule with learning rate (0,1]   is given 

by (1.19). 
/ *( , ) (1 ) ( , ) [ ( , ) ( , )]Q s a Q s a r s a Q s a                                                                     (1.19) 

However, in the stochastic situation, the state-transition probability to reach the next state 
/ { }s s  from the state s  because of action ,a  is /[ | ( , )] 1.P s s a   So, Q-value adaption rule 

in the stochastic situation is given by (1.20): [81]  

//

/ / /( , ) (1 ) ( , ) [ ( , ) [ | ( , )]max ( , )].
as

Q s a Q s a r s a P s s a Q s a                                      (1.20)  

After infinite revisit of ( , ),s a  Q-value, ( , )Q s a  turns to the optimal Q-value *( , ).Q s a  The 

convergence proof of (1.20) is given in [2]. Single agent Q-learning steps are given in 
Algorithm 1.3. 
 

Algorithm 1.3: Single agent Q-learning 
Input: Current state s and action set  ;A  
Output: Optimal Q-value *( , ), ,  ;Q s a  s a   
Begin 
   Initialize: ( , ) 0, ,Q s a  s a    and [0,1) ;   
  Repeat       
        Select an action a A randomly and execute it;  
        Receive an immediate reward ( , );r s a  

       
 Evaluate next state / ( , );s s a   

         Update: ( , )Q s a by (1.19) for deterministic situation,  

        by (1.20) for stochastic situation and / ;s s  
    Until ( , )Q s a  converges; 

  Obtain: *( , ) ( , ),  ,  ;Q s a Q s a s a    
   End. 

1.2.3.5 Single agent planning using Q-learning 

Fig. 1.18 explains the single robot planning mechanism. At first the robot (R1) observes its 
current state 3 and its corresponding Q-values from the Q-table. Then at 3 the robot evaluates 
the action corresponding to the maximum Q-value using the learned Q-table. In Q-table, at 
the row of 3 the action R corresponds to the maximum Q-value. Robot executes the action R 
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and moves to the next state 4. The above steps are repeated until the robot reaches it goal 
state.  

State

 
Fig. 1.18 Single agent planning 

1.3 Multi-agent planning and coordination 
Multi-agent planning and coordination are two almost similar terminologies both belong to 
the multi-agent systems. Multi-agent planning refers to determining the sequence of feasible 
actions of the agents to achieve individual goals maintaining optimality. However, 
coordination refers to skilful and effective interaction among the agents to serve the purpose 
of all the agents. The section describes the multi-agent planning and coordination 
terminologies with corresponding algorithms.  

1.3.1 Terminologies related to multi-agent coordination  
A multi-agent system includes several agents. Naturally, action of an agent influences the 
rewards received by the other agents. This calls for special arrangement for learning and 
planning in a multi-agent system. Fig. 1.19 outlines the architecture of a multi-agent system. 

In multi-agent system, a state-space is a collective set of states of an agent. The definition of 
the state-space is required a priori, to address a planning problem. Such description of the 
state-space is problem specific. In a multi-robot coordination problem, instead of states, the 
joint state is defined.  
Definition 1.12: A joint state is the collection or union of individual states in a fixed order 
following the ascending order of the agents. 
 

Actuation

 
Fig. 1.19 Multi-agent system with m agents 
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Suppose, is  is the individual state of agent [1, ],i m  then the joint state for m agents system 

is given by 1 .m
i iS s          

Definition 1.13: The phrase: joint-action is a widely used term in multi-agent system and is 
defined by the collection or union of individual actions in a fixed order following the 
ascending order of the agents. 

 
Fig. 1.20 Robots executing joint action <R, L> at joint state <1, 8> and move to the next state <4, 5> 

 
Suppose, ia  is the individual action of agent [1, ],i m  then the joint action for the m agent 

system is given by 1 .m
i iA a    In Fig. 1.20, due to joint action <R, L> at <1, 8> robots 

move to the joint next state <4, 5> as shown in Fig. 1.20. 

1.3.2 Classification of multi-agent system 
There exist several state-of-the-art attributes, based on which the multi-agent system (MAS) 
is classified [1], [37]. Attributes relevant to the present thesis are employed here to classify 
the MAS. Basically MAS is of two types: cooperative and competitive. Like any social living 
beings an agent belongs to cooperative MAS cooperate with remaining agents. However, in 
the competitive MAS, agents do compete among themselves to acquire limited resources 
required for livelihood. In this chapter, we consider only the cooperative MAS.  
Classification based on cooperation: Classification of MAS based on the cooperative aspect 
of the agents is done by measuring the ability of an agent to cooperate with remaining agents 
while performing a task. Agents cooperate with the remaining agents are well-known as 
cooperative agent and those do not cooperate rather they compete with others are 
distinguished as non-cooperative agent. The goal of cooperative agents is to achieve a 
common objective. On the other hand, the non-cooperative agents have always conflicting 
objectives. Fig. 1.21 provides a detailed classification of cooperative agents only based on the 
knowledge level. 
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Classification based on knowledge level: Further classification of cooperative MAS can be 
done based on the knowledge level of an agent about the remaining agents in the same team. 
In Fig. 1.21, one is aware agent, which has knowledge about its teammates and the unaware 
agent does not have such knowledge about the remaining agents in the environment.   
Classification based on coordination: Next the aware agents are classified based on the 
coordination procedure employed by the agents. There are three types of coordination. In 
strong (weak) coordination, agents strictly (do not strictly) follow the coordination protocols. 
In the third type, i.e., not coordinated, agents do not coordinate with other agents. 
Classification based upon the coordination is shown in Fig. 1.21. 
 

 
Fig. 1.21 Classification of multi-robot systems 

 

Classification based on organization: Strongly coordinated agents are further classified 
based on the responsibilities of the agents in a team (or organization) as shown in Fig. 1.21. 
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By this aspect, the centralized approaches are distinguished from the distributed approaches. 
In centralized approach, an agent is elected as a leader for the entire team. The leader is 
responsible to distribute the task among all the agents in the team. The remaining agents 
(follower) act according to the instructions provided by the leader. However, in the distributed 
system, agents are completely autonomous in view of the decision making process, as there is 
no leader in the team. On the other hand, the centralized system can further be classified 
based upon the way the leader is elected among the team members. If only one robot leads the 
complete mission, then such centralized system is known as strongly centralized. However, in 
a weakly centralized system, more than one agent is allowed to lead the team towards the 
completion of the mission.  
Classification based on communication: Distributed robots are classified based upon the 
dependency on communication among the agents as shown in Fig. 1.21. There are two types 
of distributed agents, one is communication dependent, and another is communication 
independent. 

Besides the above classification, MAS can further be classified considering “Team 
Composition” (combination of heterogeneous and homogeneous robots), “System 
Architecture,” and “Team Size.”  

Several approaches are available in the literature of multi-robot coordination. Among them 
coordination by MAQL and EO algorithms are described in this chapter. To improve 
readability GT and DP are briefly described below. 

1.3.3 Game theory for multi-agent coordination 
GT formally analyzes the strategic situation of the multi-agent system, where each agent 
potentially affects the interests of other agents in the environment [38], [41], [42]. Two types 
of game are considered in the present thesis: static and dynamic. The definitions of static and 
dynamic games are given below. 
Definition 1.14: A static game with m player is defined by a tuple 

1 2 1 2, ..., , ,...m mm A , A , A  r , r r  [42],  

where,                                           
     , [1, ]iA i m  is the set of finite actions of player i   

      and  1 , [1, ]m
i iir : A i m    refers to the reward function of player ,i  where,   denotes     

      the Cartesian product. 
Definition 1.15: If a static game is played repeatedly, then the game is well-known as 
repeated game. 

In static game, multiple agents execute their actions at a joint state and agents do not have 
any state-transition. Hence, a static game is also known as state-less game. Now, to handle the 
games with state-transitions, another version of game called dynamic game is defined below. 
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Definition 1.16: A dynamic game with m  number of agents is defined as a 5-tuple 
,{ } { } i im S , A ,r , p   

   where, 1{ } m
iiS S   is the joint state-space,  

               1{ } m
iiA A   is the joint action-space,                   

                { } { }ir S A      is the reward function at joint state-action of agent ,i   

                and { } { } [0,1]iP S A    is state-transition function of agent .i   

Suppose, an agent [1, ]i m  selects an action ia  from the pool of its action set iA  and plays 

the repeated game. The conjunction of the individually chosen actions for all the agents form 
a joint action 1 .m

iiA A  Let ( )i ia  refers to the probability of selecting an action i ia A  

by agent ,i  where  
: [0,1].i iA                                                                                                                      (1.21) 

If ( ) 1,i ia  then the strategy of agent ,  ii   is deterministic for .i ia A  The strategy profile 

for m agents is given by  
{ : [1, ]},i i m                                                                                                                (1.22) 

The strategy profile  
1 1 1{ ,..., , ,..., }i i i m                                                                                                (1.23) 

denotes the strategy of all the agents except the strategy of agent ,i ,i where  
{ }.i i                                                                                                                        (1.24) 

It is apparent from Definition 1.14 and Definition 1.16 that a dynamic game is also a static 
game with state-transitions. In a static game, agents look for a balanced condition or 
equilibrium among them, such that no one would receive any incentive by unilateral 
deviation. In the literature, there are two well-known equilibria exist: Nash equilibrium (NE) 
and correlated equilibrium (CE). 

Before understanding equilibrium, let at a given state s  an agent (here robot) have an 
action set .A  An action *a A  corresponding to the maximum reward at state s  refers to the 

optimal or greedy action. Collection of such optimal actions executed at each state is termed 
as optimal policy or strategy. In a particular state, if a robot executes an action, then the action 
is well-known as a pure strategy. However, the mixed strategy is the randomization over the 
pure strategies. To understand mixed strategy rock-paper-scissor game is given in Example 
1.3. 
Example 1.3: Rock-paper-scissor [41], [42] is a two player hand game, played for fun by kids 
and sometimes for decision making by adults. Each player has three options: rock, paper or 
scissor and a player can choose one in a trial. The player expresses his/her choice to another 
player by using a hand to form one of the shapers as shown in Fig. 1.22. With these options 
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this game can have three possible outcomes excluding a tie. The three possible outcomes are 
given one by one.  

1. One rock crushes scissor. Here, player playing rock beats the player playing scissor.  
2. But if paper covers rock, then the player chooses to play paper beats the player playing  
rock.  
3. On the other hand, if scissors cut paper; then the play of paper is defeated by the play of 
scissor.  

However, if the choices of both the players are same, then a tie occurs and the game is 
replayed until the tie is broken.  

 

      
                   (a) rock                                       (b) paper                                        (c) scissor 

Fig. 1.22 Hands gestures in rock-paper-scissor game 

 

After finite trials of the game the rewards of both the players are given in the reward matrix 
as shown in Fig. 1.23. In Fig. 1.23, one cell contains two rewards. The first reward is for 
Player 1 and second one is for Player 2. In case of a tie, both the players receive zero (0) 
reward. If a player wins the game, then the player is rewarded by one (1). On the other hand, 
if the player loses, then the player is penalized by negated one (-1).   

 
 

 
  

 

                

 

               Fig. 1.23 rock-paper-scissor game 

It is apparent that in the rock-paper-scissor game (Fig. 1.22 and Fig. 1.23), optimal mixed 
strategy of Player 1 and 2 is to execute each action with a probability 1/3. Now, suppose, 

Pl
ay

er
 1

   
  

 

 Player 2 
 rock paper  scissor 

rock (0,0) (-1,1) (1,-1) 
paper (1,-1) (0,0) (-1,1) 

Scissor (-1,1) (1,-1) (0,0) 
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Player 1 knows in advance that the Player 2 is playing the pure strategy "paper," then optimal 
pure strategy for Player 1 is “scissor" as it provides maximum reward to Player 1. 

1.3.3.1 Nash equilibrium (NE) 

NE is a solution concept of the multi-agent interactive system from where no player deviates 
to maintain its current reward, which is the maximum one. The Definition of NE is given in 
Definition 1.17. NE is of two types: pure strategy NE (PSNE) and mixed strategy NE 
(MSNE). To evaluate PSNE at a joint state, an agent selects an action from its own action set, 
which corresponds to its maximum reward due to joint action, where remaining agents’ 
actions are kept fixed. The joint action at a joint state for which all the agents receive 
maximum reward and no one has any selfish intension to deviate from its chosen action is 
well-known as PSNE at that joint state. An example is considered in Fig. 1.24 and Fig. 1.25 to 
evaluate PSNE in a static game or state-less or one-stage or normal-form game [82].   
Definition 1.17: Nash equilibrium is a stable joint action (or strategy) at a given joint state 
( )S  of a system that involves m  interacting agents, such that no unilateral deviation 

(deviation of an agent independently) can occur as long as all the agents follow the same 
optimal joint action *

1
m

N i iA a    at a joint state { }S S  for pure strategy NE. Further, for 

a mixed strategy NE agents perform the joint action 1
m

i iA a    with a probability 

* *
1

( ) ( ),
m

i i
i

p A p a


  where * :{ } [0,1],i ip a  * :{ } [0,1]p A  . 

Let * { }i ia a  be the optimal action of agent i  at is  and *
iA A   be the optimal joint action 

profile of all agents except agent i  at joint state 1,
m

j j j iS s     and ( , )iQ S A  be the joint 

Q-value of agent i  at S  because of joint action { }.A A Then the condition of pure strategy 

NE at S  is  
    * * *( , , ) ( , , ),  i i i i i iQ S a A Q S a A i                                                     

/( , ) ( , ),    i N iQ S A Q S A i   * * / *[where ,  and , ]N i i i iA a A A a A                      (1.25) 

and condition of mixed strategy NE at S is  
* * *( , , ) ( , , ),  ,i i i i i iQ S p p Q S p p i                                                                                      (1.26) 

where, ( , ) ( ) ( , )i i
A

Q S p p A Q S A


  and * *
1,

( ) ( )
m

i i j j
j j i

p A p a 
 

  be the joint probability of 

selecting joint action profile of all agents except agent i  denoted by iA A  . 

Agents follow Fig. 1.25 to evaluate PSNE * *,N i iA a A   and Fig. (1.26) for mixed 

strategy NE * *( ), ( )i i i ip a p A    respectively at joint state .S   
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1.3.3.1.1 Pure strategy NE (PSNE) 

Assuming in the one-stage game there are two robots R1, R2 and each has two actions. Robot 
1 (R1) selects one action from the set {L, F} and robot 2 (R2) selects one from {L, F}. As a 
result there is a joint action set. The joint action set {LL, LF, FL, FF} is the all possible 
combinations (the Cartesian product) of {L, F} and {L, F}. Fig. 1.24(a) and (b) provide the 
reward tables of R1 and R2 at joint state-action space respectively. The rows of the state-
action tables indicate the joint state. Joint state is the conjunction of individual states, here S 
and S/. Each column corresponds to a joint action A. A can be any one from the set {LL, LF, 
FL, FF}. The entries for each joint state-action pair are called joint state-action value. To 
evaluate PSNE at joint state S/ the rewards at S/ due to joint actions are mapped in the reward 
matrix, as shown in Fig. 1.24(c) and (d). In Fig. 1.24(c) and (d), each cell of the reward 
matrices displays the rewards at a joint state S/ due to individual actions respectively for R1 
and R2. In Fig. 1.24(c) to (e), rows indicate the actions of R1 and columns indicate the actions 
of R2. However, in Fig. 1.24(e), each cell shows the rewards of both the agent. First entry is 
for R1 and the second one is for R2.  

 

L
L

F

F
L
F

L F

LL LF FL FF
/S

S

LL LF FL FF
/S

S

L

L

F

F

 

Fig. 1.24 Reward mapping from joint Q-table to reward matrix 

 

Fig. 1.25(a) to (d) show the reward matrices of R1 and R2 at joint state S/. In Fig. 1.25(a), 
R1 selects its best action assuming that R2 has been selected L indicated by solid black 
arrows. In this situation, R1 prefers action F and receives 1 as a reward indicated in Fig. 
1.25(a). Similarly, R1 receives 20 as a reward assuming that R2 has been selected F as shown 
in Fig. 1.25(b). Similarly, R2 earns 20 and 1, when R1 selects L and F respectively as 
indicated in Fig. 1.25(c) and (d). Finally, Fig. 1.25(e) shows the common solution producing 
cells, which are the PSNE. Computation of PSNE for two agents is performed by the 
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following three steps.  
1. Fix the action of R1, then select the best reward of R2, considering all possible actions of 
itself. 
2. Fix the action of R2, then select the best reward of R1, considering all possible actions of 
itself. 
3. If the results of selection fall in the same cell, then PSNE = joint actions corresponding to 
the selected common grid. 
 

L

L

F

F

L

L

F

F

L

L

F

F

L

L

F

F

L

L

F

F

(a) Fix 2=  and 1= /A L A L F (b) Fix 2=  and 1= /A F A L F

(c) Fix 1=  and 2= /A L A L F (d) Fix 1=  and 2= /A F A L F

(e) Nash equilibrium  and FL LF  

Fig. 1.25 Pure strategy Nash equilibrium evaluation 

 

Here, two PSNE are obtained: <F, L> and <L, F>. Let us examine them one by one. For the 
<F, L> both the robots receive 1. Now, if any one robot selfishly attempts to change its action 
aiming at maximizing its own reward, then the robot, which changes its action, causes to 
decrease its reward from 1 to -10. Besides, if R1 changes its action from F to L then R2’s 
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reward improves from 1 to 10. Again, if R2 changes its action from F to L then R1’s reward 
improves from 1 to 10. So, the joint action <F, L> is an adversarial equilibrium. Adversarial 
equilibrium is a PSNE in competitive situation. Now, the joint action <L, F> is coordination 
equilibrium, where both the robots receive maximum reward selflessly i.e., 20. Coordination 
equilibrium is a PSNE in cooperative situation. The present thesis considers coordination 
equilibrium only. 

1.3.3.1.2 Mixed strategy NE (MSNE) 

MSNE is stochastic. In MSNE, each robot randomizes its own pure strategies by assigning a 
probability in between zero and one for each pure strategy. Let R1 selects its actions L and F 
with a probability p and (1-p) respectively. Also, let R2 selects its actions L and F with a 
probability q and (1- q) respectively. The summary of rewards at MSNE is given in Fig. 1.26. 
At MSNE the expected reward of L and F against q are equal. Equating these two expected 
rewards yield p and (1-p) as shown in Fig. 1.26(a). Similarly, one can find q and (1-q) as 
shown in Fig. 1.26(b). The expected reward of a mixed strategy is the weighted sun of the 
expected rewards of all the pure strategies in the mix. Finally, the expected reward of R1 by 
employing p against q and the expected reward of R2 by employing q against p are given in 
Table 1.4. Also it is listed in Fig. 1.26(d). Finally, the MSNE is <(p, (1-p)); (q, (1-q))> given 
in Fig. 1.26(c). Table 1.4 provides the expected reward at MSNE for two players. Example 
1.4 provides an example of MSNE for a two player tennis game. Example 1.4 is given below 
to illuminate MSNE.  
 

 

 

 
Example 1.4: Fig. 1.27 shows the reward matrix for a two player tennis game between Venus 
and Serena. Let in Fig. 1.27, Venus is the row player and Serena is the column player. If 
Venus chooses Left (L), then she attempts to pass Serena to Serena’s left (l). If Venus decides 
Right(R), then she is attempting to pass Serena to Serena’s right (r). Serena chooses l, means 
that she bends slightly towards her l. Similarly, Serena chooses r means she slightly bends 
towards her r. There is no PSNE in Fig. 1.27. Let’s find MSNE for the tennis game. In 
MSNE, each agent’s mix should be the best for the remaining agents’ mix. To find Serena’s 
NE mix ( ,1 )q q  look at Venus’s rewards. Now, Venus’s rewards against q  while choosing 
L and R is given by 50 80(1 )q q   and 90 20(1 )q q   respectively. In MSNE, L and R both 
themselves must be the best response against .q  So,         

50 80(1 ) 90 20(1 ).q q q q                                             (1.27) 

Table 1.4 Expected reward of R1 and R2 at MSNE 
expected reward of R1 by employing p  against q  [ 10 20(1 )] (1 )[1 10(1 )]p q q p q q        
expected reward of R2 by employing q  against p  [10 1(1 )] (1 )[20 10(1 )]q p p q p p       
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F

10 20(1 )q q   1 10(1 )q q 

                    At NE
10 20(1 ) 1 10(1 )q q q q     
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q  111
21

q 

L

L

F

F

L

L

F

F

10 1(1 )p p 

                    At NE
10 1(1 ) 20 10(1 )p p q p    

11
21

p  101
21

p 

20 10(1 )p p 

NE=<(p,(1-p));(q,(1-q))>
11 10 10 11     =<( , );( , )>
21 21 21 21

 
Fig. 1.26 Evaluation of mixed strategy Nash equilibrium 
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Therefore, solving (1.27) we obtain 0.6q   and 1 0.4.q  Now, to find Venus’s NE mix 
( ,1 )p p look at Serena’s rewards. Serena’s reward against p  while choosing l and r is given 
by 50 10(1 )p p   and 10 80(1 )p p   respectively. In MSNE, l and r both themselves must 
be the best response against .p  So,         

50 10(1 ) 10 80(1 )p p p p                                          (1.28) 

Therefore, solving (1.28) we obtain 0.7p  and 1 0.3.p   Hence, the MSNE is given by 
[( ,1 );( ,1 )] [(0.7,0.3);(0.6,0.4)].p p q q    

 
 
 
 
 

Fig. 1.27 reward matrix for tennis game 

 

For multi-agent coordination without any communication among the agents, agents face 
coordination problem in the presence of multiple coordination equilibria [72]. Here, 
coordination problem refers to the problem of selecting unique equilibrium by all the robots. 
Such problem can be resolved by selecting a joint action based on a signal (e.g., traffic 
signal), which is commonly accessible by all the robots. Before discussing about the remedies 
of equilibrium selection Example 1.5 is provided to realize the problem.    
Example 1.5: The reward matrix for a common reward two-agent static game is given in Fig. 
1.28, where both a and b are the rewards. There are two action sets { 0, 1}x x  and { 0, 1}y y  for 
agent X and Y respectively. Now, if 0,a b   then there are two equilibria 0, 0x y   and 

1, 1 .x y   But, only 0, 0x y   is the optimal and hence, one would expect that the agents 
play 0, 0 .x y   If 0,a b  then none of the agents’ have any reason to prefer any one action.  
 

 

 

 

Fig. 1.28 Reward matrix of in a common reward two-agent static game 

 

In such situation, there exist multiple equilibria. Choosing one equilibrium among multiple 
equilibria by random selection or by focusing personal basing may leads to suboptimal (or 
uncoordinated) equilibrium.  

A
ge

nt
 X

   
  Agent Y 

 0y  1y  
0x  a  0  
1x  0  b  

V
en

us
   

  

Serena  

 l  r   

L  50, 50 80, 20 p  

R  90, 10 20, 80 1 p  

  q  1 q   
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A robot can resolve the problem of equilibrium selection [38] in a coordinated game by 
repeatedly playing a game by the same robot. In the literature, correlated equilibrium (CE) 
addresses the problem of equilibrium selection.  

1.3.3.2 Correlated equilibrium (CE) 

CE is more general than the NE [72]. There are four variants of CE: Utilitarian, Egalitarian, 
Republican, and Libertarian equilibria [72]. In each variant, a numerical value is 
maximized and its corresponding index (joint action) is well-known as CE. The former 
numerical value may be evaluated by one of the following techniques.            

1. In Utilitarian equilibrium, the numerical value to be maximized is evaluated by adding all 
robots’ rewards.  
2. The least efficient robot’s reward is maximized in the Egalitarian equilibrium.  
3. Most efficient robot’s reward maximized in Republican equilibrium.  
4. In Libertarian equilibrium, the numerical value to be maximized is evaluated by 
multiplying all the robots’ rewards.  
Like NE in CE, there are pure strategy and mixed strategy CE. The definition of CE is 

given in Definition 1.18. The pure strategy Egalitarian equilibrium evaluation is shown in 
Fig. 1.29. 

 
Fig. 1.29 Pure strategy Egalitarian equilibrium, which is one variant of CE 
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Definition 1.18: Correlated equilibrium (CE) at a joint state, 1
m

i iS s    with m  

interacting agents is the pure strategy CE, CA  and mixed strategy CE, *( )Cp A  if agents 

follow (1.29) and (1.30) respectively. 
arg max[ ( ( , ))]C i

A
A Q S A                                                                                                      (1.29) 

*
( )

( ) arg max[ [ ( )( ( , ))]]C i
Ap A

p A p A Q S A                                                                                   (1.30)     

where, 
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

                                  (1.31)   

Game of chicken reflects the idea of CE and is illustrated in Example 1.6.         
Example 1.6: In game of chicken, two players play by heading toward each other as shown in 
Fig. 1.30. If both the players move (M) on the same way, then they collide, which results in 
penalty for both the agents. If one player moves and another player waits (cooperate (C)), 
then both the players are rewarded. The player which successfully moves receives more 
reward, than the player which cooperates. Both the players receive zero reward if none of 
them move. In Fig. 1.31, both the joint action ( , )M C and ( , )C M is the PSNE. To achieve 

PSNE without establishing any communication among the players, they should follow a 
signal (like traffic signal), which is commonly accessible for both the players.   
 

 
Fig. 1.30 Game of Chicken 

 

 

 

 

 

Fig. 1.31 Reward matrix in Game of Chicken 

1.3.3.3 Static game examples 

A few examples of static games are given below.  

Pl
ay

er
 1

   
   Player 2 

 M  C  

M  -5, -5 10, 5 

C  5, 10 0, 0 
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Constant-sum-game: In constant-sum-game [41], summation of the two players’ rewards is 
constant as shown in Fig. 1.32, where ,a b   and ,x y   are the action sets of player 1 and 

2 respectively. In Fig. 1.32, the value of the constant is 1.  
 
 
 
 

Fig. 1.32 Constant-sum-game 

 

Zero-sum-game: Zero-sum-game is a special case of constant-sum-game [41]. It is a two 
player game, where the summation of the two players’ reward is always zero. This indicates 
that one player’s gain is equivalent to another player’s loss. Hence, net change in reward is 
zero. Chess and tennis are the examples of zero-sum-game, where there is a winner and a 
loser. Financial market is also an example of zero-sum-game. In the literature of GT, 
matching pennies and rock-paper-scissor (given in Example 1.3) are the well-known 
examples of zero-sum-game. Example 1.7 illustrates the game of matching pennies.  
Example 1.7: In matching pennies, two pennies are thrown by two players simultaneously. 
The rewards of the players depend on whether the pennies match or not. If both pennies result 
in head (H) or tail (T), then player 1 wins and rewarded by player 2’s penny. If there is a 
mismatch, then player 2 wins and rewarded by player 1’s penny. As one player’s gain is other 
player’s loss, hence, matching pennies is a zero-sum-game as shown in Fig. 1.33. In matching 
pennies, there is no PSNE instead there exists MSNE.  
 
       

 

 

 

Fig. 1.33 matching pennies 

 

In some situation, a game does not have a PSNE but every game have a MSNE [42]. For 
example in rock-paper-scissor game, there is no PSNE but there exists MSNE. 
General-sum-stochastic game: In general-sum-stochastic game, the summation of all the 
players’ rewards is neither zero nor constant. Prisoner’s Dilemma is an example of general-
sum-stochastic game and is illustrated in Example 1.8.  
Example 1.8: In Prisoner’s Dilemma two criminals are suspected of committing a crime and 
are being interrogated in two separate cells. From human physiology both the criminals want 
to minimize their jail sentence. Both of them face the same scenarios as follows (Fig. 1.34): 

Pl
ay

er
 1

   
   Player 2 

 H  T  

H  1, -1 -1, 1 

T  -1, 1 1, -1 

Pl
ay

er
 1

   
   Player 2 

 x  y  

a  5, -4 -7, 8 

b  -2, 3 4, -3 
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 If Player 1 and 2 each Deny (D) each other, then each of them are sentenced by 9 year 
jails. 

 If Player 1 Deny (D) but Player 2 remains Confess (C), then Player 1 will be set free and 
Player 2 will serve 10 years jails (and vice versa). 

 If both Player 1 and 2 remain Confess (C), then both of them will only serve 1 years jail. 
Hence, in Prisoner’s Dilemma game, (C, C) is the PSNE.  
 
 

 

 

 

Fig. 1.34 Reward matrix in Prisoner’s Dilemma Game 

 

1.3.4 Correlation among RL, DP, and GT 
It is apparent from the earlier sections that the RL works on the principle of reward/penalty 
received by the agents as a feedback from the environment. DP is nothing but an optimization 
technique, which optimizes the BE. On the other hand, GT helps in analyzing the strategic 
situation of the agents in multi-agent system, where an agent significantly affects the interests 
of other agents in the environment. Fig. 1.35 indicates that the multi-agent Q-learning 
(MAQL) comprising of the MARL, GT and DP. However, in the literature, MARL is well-
known as MAQL for simplicity. 
 

 

Fig. 1.35 Correlation among the MARL, DP, and GT 

 

1.3.5 Classification of MARL 
Based on the task type, MARL is classified as cooperative, competitive, and mixed as shown 
in Fig. 1.36 [82]. Now, the cooperative and mixed algorithms may be designed for static 
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   Player 2 

 C  D  
C  -1, -1 -10, 0 

D  0, -10 -9, -9 
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(stateless) games or for stagewise (dynamic) games. However, there are only two competitive 
algorithms for two agents namely Minimax-Q and heuristically accelerated multi-agent RL 
(HAMRL). 
 

MARL

Cooperative Competitive Mixed

Minimax-QStatic Dynamic Static Dynamic

JAL
FMQ

Team-Q
Distributed-Q
OAL
SCQL

Belief-based 
Learning rule

Direct policy 
search based

SQL

HAMRL

FMRQ

FP
Meta Strategy
AWESOME
Hyper-Q Fixed 

learning rate
Variable 

learning rate

IGA GIGA WoLF-
IGA

GIGA-
WoLF

Equilibrium 
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NQL
CQL

Asymmetric-Q
FFQ

NegoQ
MAQLET

Variable 
learning rate

Fixed 
learning rate

WoLF-PHC
PD-WoLF

NSCP
EXORL  

 
Fig. 1.36 Classification of multi-agent reinforcement learning 

 

Joint Action Learners (JAL) and Frequency Maximum Q-value (FMQ) heuristic are 
classified as cooperative static algorithm. Team-Q, Distributed-Q, Optimal Adaptive Learning 
(OAL), Sparse Cooperative Q-learning (SCQL), Sequential Q-learning (SQL), and Frequency 
of the maximum reward Q-learning (FMRQ) fall within the scope of cooperative dynamic 
algorithms. 
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The mixed static algorithms are classified based on the belief on the other agents’ policy of 
an agent and the steps required in searching the optimal policy (direct policy search). Belief 
based learning include Fictitious play (FP), Meta Strategy, AWESOME and Hyper-Q. The 
direct policy search based algorithms are classified based on variation of the learning rate: 
fixed learning rate and variable learning rate. Fixed learning rate includes Infinitesimal 
Gradient Ascent (IGA) and Generalized IGA (GIGA). Win-or-Learn-Fast-IGA (WoLF-IGA) 
and GIGA-WoLF are under the variable learning rate. The dynamic mixed strategy 
algorithms are classified as equilibrium dependent and equilibrium independent. Equilibrium 
dependent algorithms are Nash Q-Learning (NQL), Correlated Q-Learning (CQL), 
Asymmetric-Q learning, Friend-or-Foe Q-Learning (FFQ) (for more than two agents), 
Negotiation-based Q-learning (NegoQ) and MAQL with equilibrium transfer (MAQLET). 
Again equilibrium independent learning algorithms are classified as fixed learning rate and 
variable learning rate. Fixed learning rate includes Nonstationary Converging Policies 
(NSCP) and Extended Optimal Response (EXORL) heuristic. WoLF Policy Hill-Climbing 
(WoLF-PHC) and PD-WoLF are under the variable learning rate. The details of all the 
algorithms are given in the subsequent sections.  

1.3.5.1 Cooperative multi-agent reinforcement learning 

The cooperative MARL algorithms are given below as listed in Fig. 1.36.  

1.3.5.1.1 Static 

The static MARL does not involve any state transitions as described in Section 1.3.3. The 
static MARL algorithms are discussed below.   

1.3.5.1.1.1 Independent Learner (IL) and Joint Action Learner (JAL) 

In [78], Claus and Boutilier proposed two variants of learners. One is the Independent Learner 
(IL) and another is the Joint Action Learner (JAL). IL learns Q-value at its own action–space 
employing the classical single agent Q-learning rule ignoring the presence of other agents. 
For an IL i  the single agent Q-learning rule (1.19) becomes (1.32) with ,a r   as the 
experience profile. Also the Q-value earned by IL denoted by ( )i iQ a  converges to the 

optimal Q-value *( )i iQ a  for all action i ia A  in the single agent system.  
( ) ( ) [ ( ) ( )]i i i i i i i iQ a Q a r a Q a                                                                                     (1.32) 

In multi-agent system, all the agents are adapting simultaneously and hence, the 
environment is no longer stationary, which does not ensure the convergence of Q-values any 
more. Reconsidering the 1.5, in IL, Agent X learns for the actions 0x  and 1.x  However, if 
Agent X is a JAL, then it learns for the four joint actions. It is interesting that the expected 
value of selecting 0x  and 1x  exclusively depends on the strategy played by Y. In 1.5, if 

10,a b  then Agent X’s expected Q-value for 0x  is 
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0 0 0 0 0 0 1 1 0( ) ( , ) ( | ) ( , ) ( | )x x xQ x Q x y P y x Q x y P y x   
  

 

             0 0 1 010 ( | ) 0 ( | )P y x P y x    [by 1.5 0 0 0 1( , ) 10 and ( , ) 0x xQ x y Q x y 
 

] 

             10 0.5 0 0.5     
             5,                                                                                                                          (1.33) 
where 0 0( | )P y x  and 1 0( | )P y x  refer to the probability of 0y  and 1y  are being executed 

respectively by agent Y subject to 0x  is being selected by agent X. To handle the above 

explained dynamics in multi-agent systems, the JAL maintains a belief about the other agents’ 
strategies and the expected value of action ia  by agent i  is given below. 

[ ]
ˆ ( ) ( , )

jii i

i
i i i i i aa A j i

Q a Q a a P
 

 
 

                                                                              (1.34) 

where, ( , ) ( , ) [ ( , ) ( , )]i i i i i i i i i i i iQ a a Q a a r a a Q a a                                                 (1.35) 
The experience tuple of JAL is denoted by , , .i i ia a r   

So, JAL learns the Q-value at joint action-space considering the presence of other agents by 
synergistically combining the RL and equilibrium (or coordination) learning methods [83]-
[86]. Learning equilibrium depends on the rewards corresponding to the joint actions at a 
given joint state and these rewards are obtained by the well-known RL more especially by Q-
learning. The convergence of Q-learning does depend on the already explained trade-off 
between the exploration and exploitation. If an agent i  chooses an action ia  with 
probability ( ),i iP a  then probability of choosing remaining actions is 1 ( ).i iP a  The said 

trade-off can be balanced by tuning the temperature parameter T of the Boltzmann strategy 
given by (1.36). The variation of T is done in such a way so that the convergence is 
guaranteed [134].  

( )/

( )/( )
i i

i i

i

Q a T
i i Q a T

a

eP a
e



 


                                                                                                        (1.36) 

Following conditions are required to satisfy for convergence of both the IL and JAL [78]: 
1. The learning rate  decreases with respect to time  

i.e., 0
t
     and 

21
0 .      

2. Each agent selects each of its actions infinitely.  
3. The probability of choosing action a by agent ,i  ( ) 0.i

tP a   

4. All the agent’s exploration strategy is exploitive. That is, lim ( ) 0,i
t t tP X   where 

tX is a random variable denoting the event that some non-optimal action was taken 

based on 'i s estimated value at time .t  
Finally, myopic heuristic based optimistic exploration strategies are proposed in [78] for 

optimal action selection.  
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1 Optimistic Boltzmann (OB): Choose the action ia  using the Boltzmann strategy, 
assuming  ( )  ( , ),i i i i iMax Q a Max Q a a   

2 Weight OB (WOB): Explore using the Boltzmann strategy using the factor 
(optimal match  for )i i iP a a  i.e.,   ( ). (optimal match  for ).i i i i iMax Q a P a a  

3 Combined: Employ the Boltzmann strategy, assuming 
( )   ( ) (1 ) ( )i i i iV a Max Q a EV a     as the value of action ia , where [0,1].  

Considering the biasing 0.5   in [78], it is shown that combined exploration strategy 

outperforms the OB, WOB and the Boltzmann strategy in terms of the average accumulated 
reward. The algorithm for IL and JAL are given in Algorithm 1.4 and 1.5 respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1.4: Independent Learners 
Input: Action set of agent , ,ii A [0,1);   

Output: Optimal Q-value of agent ,i *( ), ;i i i iQ a a A  

Initialize: ( ) 0;i iQ a   
Begin  
      Repeat  
          Execute an action ia  by agent i employing the  
          Boltzmann strategy; 
          Receive immediate reward ( );i ir a   

          Update: ( ) ( ) [ ( ) ( )];i i i i i i i iQ a Q a r a Q a    

         *( ) ( );i i i iQ a Q a  

       Until ( )i iQ a converges; 
   End. 

Algorithm 1.5: Joint Action Learners 
Input: Action set , ,iA i [0,1);   

Output: Optimal joint Q-value *( , ), ;i i iQ a a i   

Initialize: ( , ) 0;i i iQ a a   
Begin  
      Repeat  
          Execute an action ia  by agent i employing the  
          Boltzmann strategy; 
          Receive immediate reward ( , )i i ir a a  by  
          observing other agents’ rewards; 

          Update: 
( , ) ( , )

[ ( , ) ( , )]
i i i i i i

i i i i i i

Q a a Q a a
r a a Q a a

 

 

 


 and  

        ˆ, ( )
j

i
i iaP Q a by (1.50), (1.51) respectively;  

         *( , ) ( , );i i i i i iQ a a Q a a   

       Until ( , )i i iQ a a converges; 
   End. 



44 
 

Unfortunately, the above conditions do not guarantee convergence to equilibrium in the 
practical and complicated games such as in the climbing game [3], [78] and the penalty game 
[3], [78]. 

1.3.5.1.1.2 Frequency maximum Q-value (FMQ) heuristic 

The independent agent in [87] and [2] including the JAL in [78], does not guarantee 
convergence to the optimal joint action in the absence of coordination with high penalties. In 
the Frequency Maximum Q-value (FMQ) heuristic [3], a novel action selection strategy is 
proposed assuming agents can observe other agents actions and are tested in two coordination 
problems mentioned in [78]: the climbing game and the penalty game. The said games are 
repeated cooperative single-stage games and they provide suitable platforms for studying the 
multi-agent coordination problem.  
Climbing game: It is apparent from Fig. 1.37 that in the climbing game [3], [78], ( , )x x is the 

optimal joint action and both the agent should go for it. Now, if Agent 1 plays x  and Agent 2 
plays ,y then both the agents receive negative reward (-30). After learning this situation both 
the agents avoid joint action ( , ).x y  Later, if Agent 1 plays action ,z then Agent 2 plays 
either y or z  as due to both the joint action ( , )z y  and ( , )z z  agents receive positive rewards 

of 6 and 5 respectively. Suppose, Agent 2 is playing x  but Agent 1 does not play x  as it 
receives negative reward in the past due to ,x  and also Agent 1 does not play y as it provides 

negative reward. Hence, Agent 1 plays z  and both the agents receive reward of 0. Similarly, 
if Agent 2 plays ,z then agents receive at least 0 independent of Agent 1’s choice. From the 

above analysis it is apparent that in the climbing game, agents always move away from the 
optimal joint action.   
 

 

 

 

Fig. 1.37 The climbing game reward matrix 

 

Penalty game: Similar to the climbing game presence of multiple equilibria in the penalty 
game [3], [78] is also challenging to check the performance of the coordination in multi-agent 
system. In penalty game (Fig. 1.38), both the agents should avoid the joint actions ( , )x z and 
( , )z x to avoid the negative reward of -10. Now, in penalty game, there are two optimal joint 
actions ( , )x x  and ( , ).z z  Agents can play for any one of them. Suppose, Agent 1 plays x  with 

an expectation that Agent 2 also plays x  to receive maximum reward of 10. In this situation, 
if Agent 2 plays ,z  expecting Agent 1 plays z  to receive maximum reward of 10. In the 
above circumstances, y  is the safe choice for both the agents regardless of what other agent’s 
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 x  y  z  
x  11 -30 0 
y  -30 7 0 
z  0 6 5 
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play and is guaranteed to receive a reward of 0 or 2. Hence, it is challenging to identify the 
optimal joint action in penalty game for multi-agent coordination.  
 
 
 
 

Fig. 1.38 The penalty game reward matrix 

 

From the climbing game and the penalty game it is apparent that an agent should select its 
action wisely for convergence. Maintaining a balance between the exploration and 
exploitation is an intelligent approach for action selection. Balancing the 
exploration/exploitation is a trade-off and is addressed by the well-known Boltzmann strategy 
given in (1.36). In (1.36), the probability of selecting an action ia  for agent i  is evaluated by 

utilizing the Q-value and the tuning parameter temperature ( ).T  If  ,T   then each action 

has an equal probability to execute and hence, pure exploration occur. If  0,T   then the 

action has a probability of one to execute and hence, exploitation occur. In [3], T is given by  

max( ) 1,stT t e T                                                                                                           (1.37) 

where t  is the learning epoch, s is a parameter to control the exploration rate and maxT is 

initial value of temperature.  
In [92], an optimistic assumption based algorithm is proposed. By optimistic assumption an 

agent updates its Q-value only if the new value is greater than the current one. Unfortunately, 
the optimistic assumption fails to converge to the optimal joint action due to misleading 
maximum reward. FMQ heuristic is based on the experience of the agent. Agent counts the 
frequency of the action which yields the best reward. Instead of optimistic assumption an 
agent i  uses the Boltzmann strategy with the modified Q-value ( )iQ A given in (1.38). 

max
max

( )
( ) ( ) ( ),

( )i i
c A

Q A Q A f r A
c A

                                                                              (1.38) 

 

 
 
 

Fig. 1.39 The penalty game reward matrix 

 
where max ( )c A  is the number of times agent i  receives maximum reward max ( )r A  after 

executing the action A  ( )c A  times. f  refers to the control parameter to control the 

   
 A

ge
nt

 1
   

   Agent 2 
 x  y  z  

x  10 0 -10 
y  0 2 0 
z  -10 0 10 

   
  A

ge
nt

 2
   

  Agent 1 
 x  y  z  
x  11 -30 0 
y  -30 14/0 6 
z  0 0 5 



46 
 

importance of the FMQ heuristic. The value of f  increases proportionally with the increase 

in problem difficulty.  
 

Algorithm 1.6: FMQ heuristic 
Input: Action set , ,iA i [0,1),  [0,1), ;f   

Output: Optimal joint Q-value *( ), , [1, ];iQ A i i m   

Initialize: ( ) 0, ;iQ A i   
Begin  
      Repeat  
          Execute action ,i ia A i  employing FMQ heuristic;  

          Receive immediate reward ( ), ;ir A i   

          Update: ( ) ( ) [ ( ) ( )]i i i iQ A Q A r A Q A   and modify Q-value ( ),i iQ a i  by (1.54) for  
          modified Boltzmann strategy (FMQ heuristic); 

        *( ) ( );i iQ A Q A  

       Until ( ),iQ A i converge; 
   End. 

 
It is observed from the experiments that the FMQ heuristic outperforms the baseline 

experiments in terms of the convergence to the optimal joint action both in the climbing game 
and the penalty game [3]. To compare the FMQ heuristic with optimistic assumption a 
partially stochastic version of the climbing game is given in Fig. 1.39. In the partially 
stochastic climbing game, at least one of the rewards is stochastic as shown in Fig. 1.39. In 
Fig. 1.39, the joint action ( , )y y  yields a reward of 14 or 0 with probability 0.5. So, in the 
long run both the agents receive a reward of 7 due to joint action ( , ).y y  Hence, the reward 

matrix given in Fig. 1.37 and 1.39 are equivalent in the long run. The FMQ heuristic also 
outperforms the baseline experiment and the optimistic assumption in the partially stochastic 
climbing game, in terms of the convergence to optimal joint action. Unfortunately, the FMQ 
heuristic fails to convergence to optimal joint action in the fully stochastic penalty game and 
climbing game. The algorithm for FMQ heuristic is given in Algorithm 1.6. 

1.3.5.1.2 Dynamic 

Dynamic RL is stochastic Markov game with more than one joint state. 

1.3.5.1.2.1 Team-Q 

Team-Q is a cooperative dynamic Q-learning algorithm. Dynamic indicates the existence of 
state transitions. In [88], Littman proposed Team-Q learning designed for team games in the 
framework of team Markov games (Coordination game). In Team-Q learning, the value 
function /( )iVQ S  of agent [1, ]i m  at joint next state /S  for the m  agents’ team is given in 

(1.39).  
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1 2

/
1 2

, ,...,
( ) ( ; , ,..., )

m
i i m

a a a
VQ S Max Q S a a a                                        (1.39) 

The update rule in Team-Q learning for agent i  is given in (1.40), without using reaming 
agents’ model like in [78]. 

/( , ) (1 ) ( , ) [ ( , ) ( ),i i i iQ S A Q S A r S A VQ S                                                               (1.40) 
where 1 2, ,..., mA a a a  be the joint action at joint state 1 2, ,..., .mS s s s   The Team-Q 

learning is convergent following the generalized Q-learning algorithm [90], [91]. Team-Q 
learning is similar to Nash Q-Learning (NQL) [89] for the coordination games. Still there 
exists a challenge regarding the equilibrium selection among multiple equilibria in noisy 
environment. The algorithm for Team-Q learning is given in Algorithm 1.7.  
 

Algorithm 1.7: Team-Q 
Input: Action set , ,iA i [0,1),  [0,1);   

Output: Optimal joint Q-value *( , ), , [1, ];iQ S A i i m   

Initialize: ( , ) 0, ;iQ S A i   
Begin  
      Repeat  
          Execute action , ;i ia A i   

          Receive immediate reward ( , ), ;ir S A i   

          Update: ( , ) (1 ) ( , ) [ ( , ) max ( ; )]i i i i
A

Q S A Q S A r S A Q S A        

         and / ;S S  

        *( , ) ( , );i iQ S A Q S A  

    Until ( , ),iQ S A i converge; 
   End. 

1.3.5.1.2.2 Distributed –Q 

In [92], model-free Distributed Q-learning is proposed for cooperative multi-agent system in 
deterministic situation with a motivation to compute an optimal policy in a cooperative multi-
agent environment. The Distributed Q-learner solves two problems. The first problem is 
concerned with determination of the optimal policy. The second problem deals with selection 
of one optimal policy among alternatives, which is optimal for the entire team.  

To handle multi-agent dynamics MDP is extended to Multi-agent MDP (MMDP), where 
each agent maximizes its own reward having different goals (i.e. reward-function). However, 
in the cooperative MMDP, all the agents have identical reward function. Such identical 
reward-functions are advantageous in finding an equilibrium point, which is an optimal joint 
action and it maximizes the reward of all the agents. In cooperative MMDP, the learning 
algorithm is responsible in making cooperation among the agents. Here, also two types of 
agents are considered: one is JAL and another is IL as mentioned in [78]. IL cannot 
distinguish the difference between the individual (elementary) action [92] and joint action. 
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Hence, IL maintains a Q-table of smaller size i.e., ,S A  instead of maintaining the Q-table at 

joint state-action space, .mS A  In [92], the smaller Q-tables are assumed as the projection 
from the larger central Q-table with a conjecture about the strategies of teammates. So, in 
[92], a projection approach is proposed by evaluating the individual Q-table in a distributed 
way without adapting Q-table in joint state-action space by weighting the Q-values from 
larger Q-table given in (1.41). 

/
1

/ /( , ) [ ( , | ).[ ( , )  max ( , )]],
m ii i

i i i i i i i
aA a

q S a P S A a r S a q S a




  

                                   (1.41) 

where, ( , | )iP S A a  refers to the probability of joint action A  to be executed at joint state S  
including the action of agent ,i .ia  

Another way of projection is the ‘pessimistic assumption.’ By pessimistic assumption the 
individual smaller Q-value is the least efficient agent’s Q-value obtained from larger central 
Q-value. Such approach creates robust policies but is not extended in [92], because of its 
cautious nature. Instead of pessimistic assumption its dual form is utilized to obtain the 
smaller Q-value from the central Q-table as given in (1.42). 

( , ) max ( , )i i
A

q S a Q S A                                                                                                      (1.42) 

It can also be written in terms of small Q-table given in (1.43). 
( , ) max  ( , )

i
i i i i

a A
q S a q S a


                                                                                                    (1.43) 

 
Algorithm 1.8: Distributed Q-learning 

Input: Action set , ,iA i [0,1);   

Output: Optimal Q-value *( , ), , [1, ], ;i i iq S a i i m a A    

Initialize: ( , ) 0, ;i iq S a i   
Begin  
      Repeat  
          Execute action , ;i ia A i   

          Receive immediate reward ( , ), ;i ir S a i   

          Update: 
/

/ /( , ) max{ ( , ), ( , ) max ( , )}
i

i i i i i i i i
a

q S a q S a r S a q S a   and / ;S S  

         *( , ) ( , );i i i iq S a q S a  

       Until ( , ),i iq S a i converge; 
   End. 

 
The projection technique introduced in (1.43) is also known as optimistic assumption. It is 

assumed that all agents are acting optimally and the conjunction of the individual optimal 
actions is also an optimal joint action. However, such assumption is necessarily not true. This 
inspires the researchers in [92], to propose a Proposition, which states that in cooperative 
deterministic MMDP  
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1

( , ) max ( , )
m

i i

t t
i i

A a
q S a Q S A

 
                                                                                            (1.44) 

holds and also its prove is given in [92], where t  is the learning epoch. The steps of the 
Distributed Q-learning are given in Algorithm 1.8. The climbing game and the penalty game 
are extended for the Distributed Q-learning respectively in Example 1.9 and Example 1.10. 
Example 1.9: To extend the climbing game for Distributed Q-learning as shown in Fig. 1.40, 
let both the agents are at joint state S and for brevity discount factor   is set to 0. The reward 
function ( , )i iq S a  is evaluated employing Algorithm 1.8. Such greedy approach of Algorithm 

1.8 yields highest Q-value for both the agents as shown in Fig. 1.40. In Fig. 1.40, the optimal 
joint action is ( , ).x x  However, in the IL, JAL, and the FMQ-heuristic algorithm agents 
supposed to find the sub-optimal joint action ( , )y y  as explained in Fig. 1.37.  

 
                                                 
 

            

Fig. 1.40 Individual Q-values obtained in the climbing game reward matrix by Distributed Q-learning 

Example 1.10: Like Example 1.9 to extend the penalty game for Distributed Q-learning as 
shown in Fig. 1.42, the discount factor   is set to 0 and the Algorithm 1.8 is employed to 

evaluate distributed rewards. In the FMQ-heuristic algorithm (Fig. 1.41), there are four 
optimal joint actions: ( , ),x x ( , ),x z ( , )z x  and ( , )z z  but only ( , )x x  and ( , )z z  are optimal 

joint actions with reward 10 as shown in Fig. 1.42 offered by Algorithm 1.8. Unfortunately 
application of the Distributed Q-learning is limited to the deterministic system only. 
 
 
 
 
 

Fig. 1.41 The penalty game reward matrix 

 

   
 
 

 

Fig. 1.42 Individual Q-values obtained in the penalty game reward matrix by Distributed Q-learning 
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1.3.5.1.2.3 Optimal Adaptive Learning 

There are many straight forward solutions to choose optimal equilibrium among multiple 
equilibrium solutions, like enforce convention [93] and fictitious play [78], [39]. In [78], the 
JAL guarantees the convergence to NE in a team game. However, it is not guaranteed that the 
selected NE is the optimal one. Similar problem arises in game theory like Adaptive play 
(AP) [94] and evolutionary model proposed in [40].  

In model-free RL, agents do not have any idea about the environment; in addition they may 
receive noisy rewards. Hence, it is impossible to converge properly. In [92], [95], the MDP is 
extended to Team Markov Game (cooperative MMDP) with an aim to find a deterministic 
joint strategy to maximize the expected sum of discounted rewards. In [95], Optimal Adaptive 
Learning (OAL) algorithm is proposed with convergence proof where agents learn to choose 
the optimal NE among multiple NE with probability one. Let in a three-player coordination 
game, 1 2, ,a a  1 2,b b   and 1 2,c c   be the individual action sets of agent 1, 2, and 3 

respectively. The reward matrix of this coordination game is shown in Fig. 1.43. It is apparent 
from Fig. 1.43, that there are three pure strategy NEs 1 1 1 2 2 2 3 3 3, ,a b c a b c a b c   and six sub-

optimal NEs. The rewards corresponding to the sub-optimal NE are italicized. 
 

Fig. 1.43 Reward matrix of a three player coordination game 

 

Before discussing about the OAL algorithm, the AP algorithm [94] is discussed. In AP 
game, it is assumed that agents know the game before playing it and one virtual game (VG) is 
designed. In Team Markov Game, to eliminate the sub-optimal NE, the following 
arrangement is made. Suppose, in cooperative situation ( , )VG S A  be the payoff of the agents 

at joint state S  because of joint action .A  In VG, it is assumed that at optimal NE the reward 
denoted by *( , )VG S A  is equal to one and else it is set to zero, e.g. in Fig. 1.43, *( , )VG S A  is 
equal to one if A  is an optimal NE, i.e. 1 1 1 2 2 2 3 3 3{ , , }A a b c a b c a b c  and else it is zero. 

Considering weakly acyclic game (WAG) [94] as a VG, where each joint action { }A A  is 

considered as a vertex. The vertices are connected with the directed edge avoiding self loop, 
where for an agent i  the action i ia A  is the best response to ,iA  here i  stands for all 

except agent .i  By the principle of WAG represented as a best-response graph, from any 
starting vertex A  there exists a directed path to some vertex * { }A A  and from *A there is no 

outgoing path [94].    
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                  Joint actions of Agent 2 and 3  → 

1 1b c  1 2b c  1 3b c  2 1b c  2 2b c  2 3b c  3 1b c  3 2b c  3 3b c  

1a  10 -20 -20 -20 -20 5 -20 5 -20 

2a  -20 -20 5 -20 10 -20 5 -20 -20 

3a  -20 5 -20 5 -20 -20 -20 -20 10 
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To eliminate the sub-optimal NE or tackle the equilibrium selection problem in WAG, 
Young proposed AP in [94]. In AP, suppose in a m  player matrix game the joint action at 
time t  is denoted by { }.tA A  Also assume two integers k  and n  such that 1 k n   and 

.t n  After acting randomly agents look at its experience and restart the learning at 1.t n   
At 1t n  each agent looks reverse at their most recent n  experiences and randomly choose 
k  samples from that. Now, the expected reward of agent 'i s  action ia  is given in (1.45). 
After evolution of ( )iER a  randomly an action is chosen from a set of best response given in 

(1.46).  
1

{ }

( )
( ) ({ } ) ,

i i

t i
i i i i

A A

K A
ER a u a A

k
 

 



                                                                           (1.45) 

 where, 1( )t iK A   refers to the count the joint action iA  in the k  samples and 
({ } ) ( )i i i iu a A u A   is the reward of agent i  because of joint action .A   

/

/{ | arg max ( )}
i i

t
i i i i

a A
BR a a ER a


                                                                                              (1.46)  

    It is shown in [94], that by AP WAG converges to a strict NE. Unfortunately, all the VGs 
are not WAG and hence, the AP may not converge to a strict NE for all VGs. To address the 
said problem the WAG and AP algorithms are modified as follows.  

The WAG and AP are modified as WAG with respect to a biased set (WAGB). In WAGB, 
there is a set D  containing a few Nash equilibria of the WAGB. A game is a WAGB if from 
any vertex A one path exists leading to the NE belongs to set D  or a strict NE [95]. In AP, 
agents randomly select the NE among multiple best responses of the agents. On the other 
hand, in biased AP (BAP) [95], agents deterministically select the best-response action as a 
NE belongs to .D   Suppose, tW  denotes the set of k  samples drawn from the most recent n  

joint actions. The following two conditions are satisfied. First condition is that the joint action 
/A D  such that, ,A ,t iA W A A   and / .iA A   Second condition is that there must exist 

at least a joint action A D  so that tA W  and .A D  If the above two conditions are 

satisfied, then agent i  chooses its best response action ia  such that ,t
ia a  where  

max{ | }.T T
tt T a W a D                                                                                                  (1.47) 

    The philosophy of (1.47) is that the action ia  is the component of the most recent NE 

belonging to .D  If the above two conditions are not satisfied, then AP is implemented. Hence, 

it can be concluded that the BAP on WAGB converges to either a NE belongs to D  or a strict 
NE. The above techniques are applicable only when the game structure is known. To learn in 
an unknown game structure multi-agent  optimality is employed. By definition a joint 
action is  optimality at joint state S  and time t  if  

/
/ /( , )  max ( , ), { }.t t

A
Q S A Q S A A A     

Let the set of  optimal joint action, which converges tQ  to *Q  with slower rate then tVG  
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converges to *.VG Here,   varies proportionately to the function ( ) [0,1],tB N   where ( )tB N  
decreases slowly and monotonically to zero with .tN tN  refers to the minimum time required 

to sample a state-action pair. The algorithm for OAL is given in Algorithm 1.9 [95]. The 
convergence proof of the OAL algorithm is given in [95]. 
 

Algorithm 1.9: Optimal Adaptive Learning 
Input: Action set ,iA i at joint state ,S [0,1);    

Output: Optimal Q-value *( , );Q S A  

Initialize: / 10,  ( , ) 1,  ( | ( , )) ,  ( , ) 0,  ,  ( ) ,  ;
| |

tt t t tt n S A T S S A R S A C A S A D A
S

         

Repeat         // ( , )tn S A is the number of times the joint action A has been executed in joint state S up to time t  
If ,t m  
     Then randomly select an action , ;ia i  
Else do 
     Begin 
     Update the virtual game tVG at joint state ;S  
     Randomly select records from n  recent observations of other agents' joint actions played at joint state ;S  
     Evaluate expected payoff of individual action ia of the VG at joint state S by (1.45) and construct the best  
     response set by (1.46); 
     If condition 1 and 2 in BAP are TRUE 
         Then choose best response action with respect to the biased set ;D  

     Else randomly select a best response action from ( );t
iBR S  

     End If. 
     End. 
End If. 

     Receive immediate reward ( , );t
ir S A  

     Update: ( , ) ( , ) 1,t tn S A n S A 
1( , ) ( , ) ( ( , ) ( , )),

( , )
t

t t i t
t

R S A R S A r S A R S A
n S A

    

     / / /1( | ( , )) ( | ( , )) (1 ( | ( , )),
( , )t t t

t
T S S A T S S A T S S A

n S A
     

     

//
/ / /

1
,{ }{ }

( , ) ( , ) ( | ( , )) max ( , ),  1, min ( , );t t t t t t
S AA AS S

Q S A R S A T S S A Q S A t t N n S A
  

       

      If  ( )t tCB N   
           Then do 
                   Begin 

                  ( ),t tCB N  *( , ) ( , ),Q S A Q S A i   and 
/

/

{ }
( ) { | ( , ) max ( , )};t t t t

A A
A S A Q S A Q S A


    

                  End; 
    End If. 
Until ( , ),Q S A i converge;  

1.3.5.1.2.4 Sparse cooperative Q-learning (SCQL) 

One of the principle bottlenecks of the MAS is the exponential increase in the space and time 
complexity, with the increase in number of agents. Kok et al. [96] observed that in most of 
the MAS agents are required to coordinate their actions only in a few states and in the 
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remaining they act independently. In the coordinated joint state S, the Q-value of an agent i  is 
denoted by ( , ).iQ S A  However, if S be the uncoordinated joint state, then the Q-value of agent 
i  is denoted by ( , ).i iQ S a  In case of uncoordinated joint state, the global Q-value ( , )Q S A  for 

m number of agents is defined as the summation of individual Q-values given by (1.48). 

 
1

( , ) ( , ).
m

i i
i

Q S A Q S a


                                       (1.48) 

Based on the above observations, in [96], Kok and Vlassis proposed Sparse Cooperative Q-
learning (SCQL), where the Q-tables of the agents are sparsely maintained as discussed 
above.     

1.3.5.1.2.5 Sequential Q-learning (SQL) 

In [97], Wang and Silva proposed Sequential Q-learning (SQL) to handle conflicting behavior 
of the agents that arises in tightly coupled multi-robot object transportation. In SQL, robots do 
not select their actions simultaneously; rather they do it sequentially based on their predefined 
priorities. In SQL, the problem of behavior conflict is addressed by avoiding the selection of 
same actions those already selected by the preceding robots. Assuming thi robot is denoted by 

, [1, ]iR i m  and all the robots are arranged in a special sequence. The subscript i  in iR  

indicates its position in the sequence. All the robots repeat steps given in Algorithm 1.10 to 
form a joint action avoiding the conventional steps in the classical steps MAQL. The joint 
action offered by Algorithm 1.10 avoids the bottleneck of behavior conflict in tightly coupled 
multi-robot object transportation. 

 
Algorithm 1.10: Joint action formation in SQL 

Initialize ;    //  be the empty set. 
Observe current joint state ;S  
For 1i  to m  
   Evaluate the currently available action set ,i where iA the action set of robot be .i    

  ( ( ));i i iA A     

  iR selects the action j
iia   by probability 

( , )

|{ }| ( , )

1

( ) .
j

i i

r
i i

Q S a
j

i i Q S a

r

eP a
e









   

    Include the action j
ia to the set ;  

End For 

Execute the corresponding selected action , ;j
ia i  

1.3.5.1.2.6 Frequency of the maximum reward Q-learning (FMRQ) 

In [98], Zhang et al. proposed a MARL algorithm for fully cooperative tasks, namely 
frequency of the maximum reward Q-learning (FMRQ), which aims at achieving the optimal 
NE to maximize the system performance with respect to the metric of interest. In FMRQ, a 
modified immediate reward signal is used, which is obtained by identifying the highest global 
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immediate reward. In FMRQ, an agent needs to share only its state and reward at each 
learning epoch with remaining agents.    

In FMRQ, authors considered two issues: first they investigated whether the NE is good 
enough for the fully cooperative MAS, secondly the curse of dimensionality of the MARL is 
considered by storing the Q-value at joint state-individual action space.  

To describe the dynamics of the FMRQ differential equations are formulated for the four 
cases including two-agent two-action repeated game, and a three-agent two action repeated 
game. In each case, the critical points of the differential equations are analyzed and it is 
observed that FMRQ converges to equilibrium with maximum global rewards in all the five 
cases [98]. In case 1, there exists only one global immediate reward. Case 2 and 3 have two 
maximum immediate rewards in diagonal positions and in the same row respectively. In case 
4, three maximum immediate rewards exist and in case 5, only one global immediate reward 
exists [98].   

 
Algorithm 1.11: FMRQ for an agent i  in repeated games 

Input: Action set ,i ia A i  and learning rate [0,1);   

Output: Optimal Q-value *( );iQ a  

Initialize: ( ) 0,iQ a  count of selecting action ,ia 0,ian  number of times maximum global immediate 

reward received by action ,ia max_ 0ian   and frequency of getting maximum immediate reward after 

selecting action ,ia ( ) 0;ifre a    
Repeat            
     Select an action ia  by the Boltzmann exploration scheme; 

   1;i ia an n   

    Execute the action ia and update max_ ian and ( );irh a     

     For each action i ia A  do      // ( )irh a refers to history of global immediate reward obtained by action ia  
        Begin 
          Evaluate ( )ifre a by (1.49); 

         ( ) ( ) ( ( ) ( ));i i i iQ a Q a fre a Q a    

         Set 0,ian  max_ 0ian  and ( ) 0;ifre a   

        End 
     End For 

Until *( );iQ a converges;  

 
In FMRQ, the size of a Q-table for an agent i  is |{ } | |{ }| .iS A  In FMRQ, algorithm 

(Algorithm 1.11), the immediate reward of an agent ,i  denoted by ( )i ir a  is replaced by the 
frequency of getting the maximum global immediate reward by the same action ,ia denoted 
by ( ).ifre a  
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max_( ) ,i

i

a
i

a

n
fre a

n
                                  (1.49) 

where ian refers to the number of times action ia  is selected by agent i  and max_ ian is the 

number of times agent i  achieves the maximum global immediate reward. Moreover, the 

superiority of the FMRQ algorithm is verified by two case studies: one is the 12-vertex box-
pushing by 4-agents and the other one is the distributed sensor network optimization problem. 
The FMRQ algorithm is provided in Algorithm 1.11 for an agent i  in repeated games.  

1.3.5.2 Competitive multi-agent reinforcement learning 

The competitive MARL algorithms are discussed below. Here two competitive MARL 
algorithms are discussed. One is Minimax Q-learning for two agents and its extension for 
general sum game for more than two agents called Heuristically–accelerated multi-agent 
reinforcement learning.  

1.3.5.2.1 Minimax-Q Learning 

In [99], Littman proposed a competitive algorithm namely minimax-Q learning for two 
agents. In minimax-Q learning, both the agents have conflicting goals with an objective of 
maximizing the sum of its own discounted expected reward. In other words, an agent tries to 
maximize a reward function and simultaneously the opponent agent tries to minimize it. In [2] 
and [87] authors realized that an agent must interact with other agents and the environment 
during the learning phase without proposing any supporting mathematical model. In addition, 
the theory of MDP [81], [45], which is an extension of game theory, also cannot handle the 
multi-agent dynamics. Even sometime it is assumed that the environment is stationary. 
Littman in [99] considered only two-player zero-sum Markov game. In zero-sum game, the 
summation of the rewards of two agents is zero [41]. In every MDP, there is at least one 
strategy that is stationary, deterministic, and optimal [99]. But most of the cases the optimal 
strategies are probabilistic. For example in Fig. 1.23, (rock, paper, and scissor, Example 1.3) 
selection of a deterministic policy by any one player leads to punishment and hence, the 
player is defeated. The probabilistic strategy is required to represent the uncertainty about the 
agents’ action choice. Suppose, the opponent agent has an action { }O O  and Q-value is 
denoted by ( , , )Q S A O  as introduced in  (1.50).  

/
/ /( , , ) ( , , ) ( | ( , )) ( ),

S
Q S A O r S A O P S S A V S                                                                   (1.50) 

where /
{ }({ })

( ) max min . ( , , ).A
O OP A

V S Q S A O





                                                                        (1.51) 

(1.51) indicates the expected reward to the agent for playing strategy  against the opponent’s 
choice { }.O O ({ })P A refers to the probability distribution over the action set { }.A  The 
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algorithm for Minimax Q-learning is given in Algorithm 1.12 [99]. Algorithm 1.12 is tested in 
a two-player Markov game and it is compared with Q-learning. The convergence of 
Minimax-Q learning is guaranteed and the strategy offered by it is a safe choice against the 
opponent even in the worst situation.  
 

Algorithm 1.12: Minimax Q-learning 
Input: Action { },A A  opponent’s action { }O O  at joint state ,S [0,1)  and [0,1);   

Output: Optimal Q-value *( , , );Q S A O  

Initialize: 
1( , , ) 0,  ( , ) ;

| |
Q S A O S A

A
   

Begin  
      Repeat  
          Choose an action to execute by ( , );S A  

          Receive immediate reward ( , , );r S A O   

          Update: /( , , ) (1 ) ( , , ) [ ( , , ) ( )],Q S A O Q S A O r S A O V S      / ,S S   

        
( , )

( , ) arg max[ ( , ) ( , , )]
O AS A

S A Min S A Q S A O


 


   and /
{ }({ })

( ) max min . ( , , );A
O OP A

V S Q S A O





     

       *( , , ) ( , , );Q S A O Q S A O  
       Until ( , , )Q S A O converges; 
   End. 

1.3.5.2.2 Heuristically–accelerated multi-agent reinforcement learning 

In [100], Bianchi et al. proposed Heuristically–accelerated multi-agent reinforcement 
(HAMRL), which attempts to speed up in convergence of MARL, by balancing 
exploration/exploitation employing a heuristic function for action selection. There exist a 
series of literature [100]-[103], where heuristic functions are used to increase the convergence 
speed of the MARL. The work of [100] is the extension of [103], whereas in [103], Littman’s 
Minimax-Q is heuristically accelerated. Bianchi et al. defined a heuristic function 

:{ } { } { } ,H S A O    which influences the action selection of the agents during the learning 
phase, when an agent executes an action { }A A  at state { }S S  against the opponent’s action 

{ }.O O  In [100], authors employ the modified ε–greedy learning rule including the heuristic 
function ( , , )H S A O  given by (1.52).  

( ) arg max min[ ( , , ) ( , , ) ]c
OA

S Q S A O H S A O                                              (1.52) 

and ,     are the weightage on the confidence of the heuristic function. In (1.52), if 
0,   then (1.52) becomes (1.53), which is the standard   greedy.  

 ( ),                                if    ,  [0,1]( ) ,
select an action randomly,  otherwise

c S pS   
   


                           (1.53) 

where [0,1]p  is a random number. Considering 1    the heuristic function is given by 
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max ( , , ) ( , , ) ,     if  = ( )

( , , ) ,
0,                                              otherwise

H
i

Q S i O Q S A O A S
H S A O

    


                                         (1.54) 

where ,  ( )H S  is the heuristic policy. The superiority of the HAMRL (Algorithm 1.13) 

is validated by conducting the experiments in two robots soccer game.   
 

Algorithm 1.13: HAMRL for Zero sum game 
Input: Action { },A A  opponent’s action { }O O  at joint state ,S [0,1),  [0,1)  and [0,1);   

Output: Optimal Q-value *( , , );Q S A O  

Initialize: ( , , ) 0,  ( , , ), , ;HQ S A O H S A O    
Begin  
      Repeat  
          Choose an action { }A A using the modified  –greedy rule; 

          Execute { },A A observe the opponent’s action { };O O  

          Receive immediate reward ( , , );r S A O   

          Update: /( , , ) (1 ) ( , , ) [ ( , , ) ( )],Q S A O Q S A O r S A O V S      /S S and ( , , ),H S A O   

        where /
{ }{ }

( ) max min ( , , );
O OA A

V S Q S A O


     

       *( , , ) ( , , );Q S A O Q S A O  
       Until ( , , )Q S A O converges; 
   End. 

1.3.5.3 Mixed multi-agent reinforcement learning 

Mixed MARL includes the following algorithms. The mixed MARL may be cooperative or 
competitive. It can be categorized based on the number of joint states involved: static and 
dynamic. 

1.3.5.3.1 Static 
The static MARL algorithms are further extended in Fig. 1.36.  

1.3.5.3.1.1 Belief-based Learning rule 

In belief based learning algorithm, an agent maintains a belief about the remaining agents’ 
strategy. This section illustrates the belief-based learning rule. 
1.3.5.3.1.1.1 Fictitious play  
Fictitious play (FP) [104] is a belief-based learning rule. Here belief indicates that a player 
adapts with the strategy about opponent players’ and behaves as per the strategy learned. In 
FP, a robot can resolve the problem of equilibrium selection [38] in a coordinated game by 
repeatedly playing the game by the same robot. FP is an effective and efficient approach to 
reach equilibrium in a coordinated game. As per FP, agent i  learns the models of all the other 
agents j i by the model given in (1.55). 
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j
ai

a j
aa

C
P

C



 

                                                                                                                                (1.55) 

where 
j

i
aP refers to the model of agent 'j s strategy evaluated by agent i  or agent 

'i s assumption of playing j ja A  by agent j  or i  and 
j

j
aC be the number of times agent 

i  observed agent j executing action .ja  In cooperative games, the strategy offered by (1.55) 

leads to an equilibrium, where in case of multiple equilibrium, agents randomly choose any 
one. Also, in FP, a player does not need to learn about opponent players’ reward rather it 
maintains a belief about the opponents’ feature strategy. If a FP converges to *, then * is a 

NE. 
1.3.5.3.1.1.2 Meta strategy 
In [105], Powers and Shoham proposed a straight forward MARL algorithm for repeated 
games, which have the following two requirements. The first requirement is to specify a class 
of opponents and against them the algorithm yields a reward that approaches the reward 
corresponding to the best response. Second requirement is that the reward offered by the 
algorithm fulfills a threshold of security level reward. Constraining the above requirements 
the algorithm achieves a close to optimal payoff in self-play. Based on the above conditions 
an algorithm is proposed in [105], for stationary opponents only. However, to learn in a 
repeated game a learning algorithm is required. In the learning algorithm, an agent plays its 
best response with a prior probability of its opponent's strategy. GAMUT [59] is employed to 
test the superiority of the proposed algorithm in [105].  

In [106], two properties are presented related to the rationality and convergence. By 
rationality in a stage game, if the other players' strategies converge to stationary strategy, then 
the learning algorithm will converge to a stationary strategy and it is the best response to the 
other players' strategies. Another property is related to the convergence. By this property the 
learner will necessarily converge to a stationary strategy. 

In [106], Bowling and Veloso proposed an algorithm for known repeated game having two 
players and two actions. Conitzer and Sandholm in [107], extends the work in [106] for all 
repeated games. It is investigated in [105] that the algorithms considering self-play proposed 
in [106] and [107] are not convergent against all possible opponents. In Fig. 1.30, 1.31 and 
1.34, by Tit-for-Tat algorithm for the Prisoner's Dilemma and game of Chicken offers higher 
average reward in self-play than the rewards at NE. To avoid encounter the opponent outside 
the target set, security value sV  is defined in (1.56). 

1 1 2 2
1 2

{ } { }
max  max ( , )s eV V

   
 

 
                                                                                              (1.56) 
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In summary, Powers and Shoham synergistically fuse the FP [39], Bully [108] and 
Minimax [99] strategy with an aim to create most powerful hybrid algorithm [105].  

 
Algorithm 1.14: Bully Algorithm 

Begin  
      An agent i  initiates an election; 
      Agent i  sends election message to all agents with higher IDs and waits for feedback; 
      If feedback is not OK 
         Then agent i becomes coordinator and sends coordination message to all agents with lower IDs; 
      Else 
          The agent i drops out and waits for a coordination message;   
      End; 
      If an agent receives an election message  
          Then immediately sends coordination message subject to that the agent has highest ID; 
      Else 
           Return OK and starts an election; 
      If an agent receives a coordination message  
           Then the agent i  treats the sender as the coordination; 
  End. 

By FP an agent plays best response against its stationary opponent utilizing the likelihood 
of other agents to select an action from history. In [105], the best response 

( ) arg max( ( , ))r e
x X

B OV x 


                                                                                                  (1.57) 

where,
1

1{ : ( , ) max( ( , )) }
z

X y EV y EV z


  


                                                                  (1.58) 

 
Algorithm 1.15: Meta Strategy Algorithm 

Begin 
Set strategy = BullyMixed 
   Play strategy at time step 1;t  

   Play strategy at time step 2t ;  

   If strategy=BullyMixed AND 1H BullyAVGValue V   with probability P  

       Then set strategy= 2 0( )t
rB d and play; 

   End If 

   If 1
1 3|| ||t t

o t td d    

        Set best Strategy 2 0( );t
rB d  

   Else if strategy=BullyMixed AND 1H BullyAVGValue V     
      Then set Best strategy=BullyMixed; 
   Else 
        Set best Strategy=Best Response; 
   End If 
   Until end of the game; 
   If  0 ec 0t t s urityAVGValue V     

         Play Maximin strategy for 3t time steps 
   Else 
         Play best Strategy for 3t  time steps; 
   End If 
End 
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In [105], Bully algorithm (Algorithm 1.14) is extended to handle multiple strategies with 
equal reward by maximizing opponent's values. In Bully algorithm, a full set of mixed 
strategies are 

arg max( ( , ( ))),e r
x X

BullyMixed OV x B x


                                                                                   (1.59) 

1
1 0 0{ : ( , ( )) max ( ( , ( )))}e r e r

z
X y V y B y V z B z


                                                                    (1.60) 

Bully algorithm is one, which is employed to elect a coordinator dynamically among m  

number of agents with unique identify (ID) in the field of distributed computing. In 
distributed artificial intelligence, an algorithm needs to act as a leader (or coordinator). In 
distributed algorithm, it is assumed that each agent has a unique ID and goal of the algorithm 
is to find out the agent with highest ID. The Bully algorithm is given in Algorithm 1.14. 
Finally, the Minimax strategy is defined as  

21 1
1 2maximin arg max  min ( , )eV


 


                                                                                       (1.61) 

Initial portion of the Algorithm 1.15 is related to coordination/exploration to identify the class 
of opponent and choose one strategy among three. If neither stationary strategy nor Bully 
strategy holds, then best response strategy is applied. The algorithm plays with one of the 
three strategies maintaining the average reward within the security level and improving the 
maximum strategy when it is too low, where 2

1
t
td  refers to the distribution of opponent actions 

for the period from 1t  to 2 .t nAvg  represents the average value achieved by the agent during 
the last n  epoch. BullyV  represents 0( , ( )).e rV BullyMixed B BullyMixed  

1.3.5.3.1.1.3 Adapt When Everybody is Stationary, Otherwise Move to Equilibrium 
(AWESOME) 

As per [109] the minimum requirements of multi-agent system are that agents learn optimally 
against stationary opponents and converge to a NE when all the agents are playing the same 
algorithm. WoLF-IGA [110] has been satisfied the above criteria in a two-agent two-action 
repeated game assuming that the opponents' strategies are observable. In [109], Conitzer and 
Sandholm proposed Adapt When Everybody is Stationary, Otherwise Move to Equilibrium 
(AWESOME), which is guaranteed to have the above properties for more than two agents and 
actions assuming that the opponents' actions (not strategies) are observable. In AWESOME, 
either agents' aim at adapting with the present strategies of the opponent agents or they 
converge to an already learned NE. Once, both of the above hypotheses are discarded, agents' 
restart the learning by the AWESOME algorithm. 

The basic idea of the AWESOME is straight forward. If other agents’ are following 
stationary strategies, then AWESOME offers its best strategy to the other agents. On the other 
hand, if other agents’ adapt their strategies, then AWESOME follows an already learned 
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equilibrium. In spite of the above basic idea, the following additional specifications are made 
before proposing the AWESOME algorithm.  

 
Algorithm 1.16: AWESOME Algorithm 

For 1 to i m  

      * ( );i ComEquStrategy i    //compute equilibrium strategy for agent i 
End For; 
Repeat 
    For 1 to i m  

         2 ( );prev
iIni Empty h   2 ( );curr

iIni Empty h  
    End For; 

;APPE true    // All players playing Equilibrium  
;APS true    // All players stationary  

;false      //   is true if the equilibrium hypothesis is just rejected 

0;t    // denotes the tht epoch and is initializes to zero in every restart.  
* ;Me    // refers to the AWESOME player’s current strategy 

While APPE 

       For  1 to tj N  

            ( );Play      //Play the strategy    
            For 1 to i m  

                 ( );curr
iUpdate h   

            End For; 
       End For; 
       If APPE=false 
          If   =false 
               For 1 to i m  

                   If (|| || )prevcur t
i sih h    

                       Then ;APS false      
                   End If; 
               End For; 
            End If; 

            Then ;false  arg max ( , );curr
Me

a
a V a h  

            If 1( , ) ( , ) | | ;curr cur t
sMe MeV a h V h n A  

    

              Then ;a   
            End If; 
       End If; 
       If APPE=true 
          For 1 to i m  

              If (|| || )pcur t
i eih     

                 Then ;APS false ();RandAct  ;true   
              End If; 
           End For; End If; 
       For 1 to i m  

           ;prevcur
i ih h 2 ( );curr

iIni Empty h  

       End For;  1;t t   
End While;  
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 From the beginning it is specified which equilibrium to repeat and restart learning by the 
AWESOME to avoid confusion.  

 After restarting the learning agents forget whatever it learned for simplicity. 
 Following one equilibrium strategy among the already computed other equilibrium 

strategies may lead to divergence from equilibrium. Although, a null hypothesis exists, 
AWESOME does not reject the hypothesis without sufficient confirmations. 

 If an agent selects its own action by its own mixed strategy, then AWESOME rejects the 
equilibrium strategy to avoid the nonequilibrium strategy.    

 After rejecting the equilibrium strategy by AWESOME, randomly an action is chosen 
from a pool and changes its strategy.  

 In AWESOME, except actions the strategies of the remaining agents are not observable. 
Hence, one needs to specify how to reject an equilibrium strategy which is common to all 
the agents.   

The AWESOME algorithm is given in Algorithm 1.16 [109], and is developed based on the 
above specifications. It is shown in [109], AWESOME learns best responses against the 
stationary opponents, and AWESOME converges to NE in self-play.  
1.3.5.3.1.1.4 Hyper-Q  
Q-learning is a well-known technique to learn optimal strategies by an agent utilizing the 
cumulative rewards earned by it in an infinite trial-and-error. Unfortunately, this is not 
applicable for nonstationary environment with multiple adaptive agents. Most of the multi-
agent Q-learner [72], [89], [99] requires knowledge about other agents’ rewards and Q-
function at each learning epoch. These MAQL algorithms are convergent subject to the 
following conditions which are not realizable in practice. Firstly, an agent can observe all 
agents’ rewards. Second, all the learning agents follow the same learning algorithms. In [111], 
Gerald proposed Hyper-Q learning. Hyper-Q learner learns only the mixed strategies and the 
strategies of the remaining agents are estimated employing the Bayesian inference. Hyper-Q 
learner aims at overcoming the above limitations of multi-agent system by modeling the 
environment as repeated stochastic game, where only the remaining agents' actions are 
observable but the rewards received due to the actions are not observable.      

Assuming the Hyper-Q learner is playing in a stochastic Markov game and hence, the 
reward functions of the agents become the function the available joint actions. Now, instead 
of choosing the best joint action with probability one (pure strategy), in stochastic Markov 
game, an agent chooses actions with the best probability (mixed strategy). The Hyper-Q 
learning update rule is given in (1.62). 

/
/ /( , , ) [ ( , , ) max ( , , ) ( , , )],

i
i i i i i i i i

a
Q S p p r S p p Q S p p Q S p p                                            (1.62) 
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where ip and /
ip denote the mixed strategy to select action ia  and /

ia  at joint state S and joint 

next state /S respectively. ip  and /
ip  refer to the joint mixed strategy of all the agents 

except i to select joint action iA  and /
iA  at joint state S and joint next state /S respectively. 

It is indicated in [111] that establishing the convergence for the function approximation based 
Q-learning is more difficult than the same for the Q-learning. If all the agents do explore in a 
similar exploration strategy, then like Q-learning in Hyper-Q learning, agents may fail to spot 
the optimal mixed strategy in the strategy space after infinite visit of the joint states. In case 
of stationary opponent strategy, the stochastic game becomes a MDP with stationary state 
transitions and stationary rewards. Under the above circumstance Hyper-Q learning 
converges. Remaining convergence conditions are given in [111]. To estimate opponent 
strategy Bayesian strategy estimation is done in [111]. By Bayesian estimation one can write 

/
/ /

( | ) ( )( | ) ,
( | ) ( )

S

P H S P SP S H
P H S P S




                                                                                               (1.63) 

where H refers the history of observed actions, S  and /S  are the discrete state and next state 

respectively. The outstanding performance of Hyper-Q learning in terms of convergence rate 
and opponent agent’s strategy modeling is tested in the framework of two-player, three-action 
matrix game Rock-Paper-Scissors game (Example 1.3).   

1.3.5.3.1.2 Direct policy search based 

Direct policy search based algorithms are further classified as fixed learning rate and variable 
learning rate as shown in Fig. 1.36.  

1.3.5.3.1.2.1 Fixed learning rate 
The algorithms with fixed learning rates are given below 

1.3.5.3.1.2.1.1 Infinitesimal Gradient Ascent (IGA) 

In [112], Singh and Kearns proposed (Infinitesimal Gradient Ascent) IGA based on the 
positive changes in expected reward of the agents. The IGA is tested in a two player, two-
action iterated general-sum-games. It is shown in [112], that agents  converge to NE but once 
they fail to converge to NE they can never reach the NE. Literature shows that agents 
converge to NE but with restriction and limiting the applicability of the NE [113]. Following 
the gradient ascent (positive change) is the most common trend in machine learning 
algorithm. It is not guaranteed that the strategies computed by gradient ascent in two-player, 
two-action iterated games will converge to NE. However, the average reward is guaranteed to 
converge NE. For example let there is a two-player, two-action general-sum game. The 
reward matrix of the row (R) and column (C) player is given in Fig. 1.44.  
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Fig. 1.44 reward matrix in a two-player two-agent game 

 
Let row player choose action 1a  stochastically with probability 0 1r  and column player 
choose action 1a  stochastically with probability 0 1.c   The expected payoff of the row and 

column player is given by (1.64) and (1.65) respectively. 
 11 22 12 21( , ) ( ) ((1 )(1 )) ( (1 )) ((1 ) )RV r c r rc r r c r r c r r c                                                      (1.64) 

11 22 12 21( , ) ( ) ((1 )(1 )) ( (1 )) ((1 ) )CV r c c rc c r c c r c c r c                                                     (1.65) 
Here, the strategy pair ( , )r c  is called NE if and only if, the following two conditions hold.  

1) if for any mixed strategy /r (1.66) holds: i.e., 
/( , ) ( , )R RV r c V r c                  (1.66)                                                                                              

and 2) for any mixed strategy /c (1.67) holds: i.e., 
/( , ) ( , ).C RV r c V r c                                                                                                              (1.67)                                                 

Gradient for the row player and column player is given by (1.66) and (1.69) respectively 
considering 11 22 21 12( ) ( )u r r r r     and /

11 22 21 12( ) ( ).u c c c c     

22 12
( , )

( )RV r c
cu r r

r



                                                                                                       (1.68) 

/
22 12

( , )
( )CV r c

ru c c
c




                                                                                                     (1.69) 

The mixed strategy update rules are given by (1.70) and (1.71), where   refers to the step 

size. 
( , )RV r c

r r
r





                                                                                                                 (1.70) 

( , )CV r c
c c

c





                                                                                                                 (1.71) 

Assuming that the gradient ascent algorithm is a full information game and hence, both the 
players know the game matrices and the mixed strategies played by the opponent players in 
the previous step.  

By game theory [43] the sequences of strategies over time may never converge to NE. 
However, in [112], it is shown that the average rewards of both the players always converge. 
The basic logic behind the analysis of two players acting according to IGA is a two 
dimensional dynamic system. Considering the infinitesimal step size of  ( 0),   IGA is 
proposed in [112]. By (1.66)-(1.71) and setting 0   the unconstraint dynamics of the 

strategy pair can be expressed as a function of time in (1.72). 

R

 

 C  
 1a  2a  

1a  11 11,  r c  12 12,  r c  

2a  21 21,  r c  22 22,  r c  
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22 12
/ 22 21

0 ( )
0 ( )

r
r ru rt

c c c cu
t






 
       

                
  

                                                                                      (1.72) 

If the matrix U given in (1.73) is invertible, then trajectories of the unconstraint strategies of 

the two-player two-action stochastic game are of having either limit cycle behavior or have 
divergent nature. The direction and structure of these trajectories depend on the exact values 
of u and / .u   

/
0

0
u

U
u

 
  
  

                                                                                                                         (1.73) 

By solving (1.72) * *( , )r c  is given in (1.74) 
* * 22 21 22 12

/( , ) [ , ]c c r rr c
uu

 
                                                                                                (1.74) 

The average expected reward of the IGA player converges to a NE following one of the 
following conditions. First condition is that the trajectories of the strategy pair will 
automatically converge to a NE. The other condition is that the trajectories due to the strategy 
pair will not converge but the average reward of the two players reward will converge to the 
NE. To prove these conditions following exclusive and exhaustive cases are considered [114]. 
1. U is non-invertible, if /0/ 0u u  or /0,  0.u u   Such cases can appear in team, zero-sum 

and general-sum games.  
2. U is invertible, if the Eigen values of (1.75) are imaginary with zero real part, i.e., when 

/ 0.uu   

/
0

0
u x x

y yu


     
     

     
                                                                                                              (1.75) 

3. U is invertible, if its Eigen values are real with zero imaginary part. This condition may 
appear in team and general-sum games but not is zero-sum games, i.e., when / 0.uu   

If U has imaginary Eigen values with zero real part, then based on the location of the center 
(i.e., * *( , )r c ) in the two-dimensional plane there are three possibilities.  

1. The center * *( , )r c is in the interior of the unit square, 2. Center * *( , )r c  is on the boundary 

of the unit square and 3. Center * *( , )r c  is outside of the unit square. 

1.3.5.3.1.2.1.2 Generalized Infinitesimal Gradient Ascent (GIGA) 

Convex programming is the generalization of the linear programming having several 
applications in machine learning domain [115]-[117]. The convex programming aims at 
searching a point F which maximizes the cost function.  

: R.c F                                                                                                                               (1.76) 
A convex programming comprises a feasible set nF R  and a convex cost function given in 

(1.76). In applications like industrial optimization, nonlinear facility location problems [115], 
network routing problems [118] and consumer optimization problems [119], the value of the 
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end product is unknown until end product is created. In [120], an online convex optimization 
programming is undertaken with identical feasible set but having dissimilar cost functions. An 
algorithm is proposed in [120], namely generalized IGA (GIGA), which is generally reliable 
to solve former problems. GIGA is the extension of IGA [112] applicable for more than two 
agents. Following the definitions of convex, convex programming problem, online convex 
programming problem and the assumptions made in [110], make clear idea about the online 
convex optimization. Interestingly, it is shown in [110] that the repeated games are online 
linear programming. Finally, GIGA tries to minimize regret [120].   
1.3.5.3.1.2.2 Variable learning rate 
The algorithms with variable learning rates are given below. 

1.3.5.3.1.2.2.1 Win or Learn Fast-IGA (WoLF-IGA)  

Referring from section 1.3.5.3.1.2.1.1 if the center * *( , )r c  is inside the unit square with 

imaginary Eigen values, then the performance of IGA and WoLF-IGA differs in terms of 
convergence. It is shown in [110], that IGA does not converge if  * *( , )r c  lies inside the unit 

square. But WoLF-IGA converges in such situation. The strategy-space where the player wins 
and loses is also indicated in the proof. In addition, it is shown in [110], that the trajectories 
due to Eigen values are pricewise elliptical in nature and take a spiral shapes towards the 
center. In [110], lemmas are proposed assuming that there are only imaginary Eigen values.  

By Lemma 6 in [110], if the learning rate for the row player ( )r and the learning rate for 
the column player ( )c  remain constant, then the trajectory due to strategy pair forms an 

ellipse considering * *( , )r c  as the center and 
/

       0
1

| | ,
0

| |
c

r

u

u





 
   
   

  
 

 are as the axes of the ellipse. In 

[110], Lemma 7 concludes that a player is winning if the strategy of the player is moving 
away from the center. It is also mentioned in [110], that in a two-person, two-action iterated 
general-sum game both the players follow the WoLF-IGA algorithm with learning rates 

max and min , then their strategies will converge to a NE subject to 

min min

max max
1.

r c

r c
 

 
                                                                                                                      (1.77) 

1.3.5.3.1.2.2.2 GIGA-Win or Learn Fast (GIGA-WoLF) 

The most common problem in MARL, regret and convergence are addressed in gradient-
based GIGA-WoLF [121]. GIGA-WoLF is the synergism of GIGA’s no-regret property and 
WoLF-IGA’s convergence property [121]. A bound is assigned to test the GIGA-WoLF’s 
regret against the unknown strategy of an opponent agent. For a two-agent, two-action 
normal-form game, if one agent follows the GIGA-WoLF algorithm and another agent 
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follows the GIGA algorithm, then their strategies does converge to NE. Both the properties 
are validated theoretically and experimentally in [121]. In GIGA-WoLF agents must know 
about the game and should have the model of opponent agent. In almost all the games (except 
“problematic” Shapley’s game) unlike GIGA’s strategies GIGA-WoLF’s strategies does 
converge in self-play to equilibrium.  

1.3.5.3.2 Dynamic 

The dynamic algorithms are categorized as equilibrium dependent and independent. The 
algorithms based on the equilibrium solution concept are listed below.   

1.3.5.3.2.1 Equilibrium dependent 

The equilibrium dependent MARL algorithms are given below.  
1.3.5.3.2.1.1 Nash-Q Learning 
Nash Q-learning (NQL) is the extension of Littman's Minimax-Q learning [99]. In other 
words, it’s the extension of zero-sum stochastic game to the general sum stochastic game. 
NQL is a MAQL algorithm, which converges under specific conditions. It looks for optimal 
joint action (NE) in a game. For multiple NEs in the game, the NQL algorithm is fused with 
other learning techniques to obtain optimal strategies for the entire team. The adopted 
framework in [89] is stochastic/Markov games. Markov game is the generalization of the 
MDP with more than two agents. Unlike, zero-sum-game, here in general sum stochastic 
game, an agent's gain is no longer its opponent agent's loss. In general-sum-game, an agent's 
reward depends on other agent's choices and hence, the NE is employed. In NE, an agent 
cannot deviate unilaterally and it is assumed that there is no communication among the 
agents. Only agents can observe other agents' strategies and rewards. In addition, the state 
transition probabilities and reward functions are unknown. The NQL algorithm is designed in 
such a way so that all the agents converge to the NE with restrictions. NQL is guaranteed that 
all the agents converge to the NE. But for multiple NE solutions it is not guaranteed that all 
the agents converge the same NE. In [77], Filar and Vrieze proposed that every general-sum 
discounted stochastic game posses at least one equilibrium point in stationary strategy. Unlike 
single agent Q-learning [81] and Minimax Q-learning [99], in NQL the Q-learning update 
rule for agent i  is given in (1.78).  

/( , ) (1 ) ( , ) [ ( , )  ( )],i i i iQ S A Q S A r S A NashQ S i                                                            (1.78) 

where / / / /
1( ) ( ).... ( ). ( ).i m iNashQ S S S Q S                                                                          (1.79) 

An online version of NQL and simulation results on Grid game 1 and 2 are given in [71]. The 
NQL for general sum stochastic game is given in Algorithm 1.17. The convergence proof of 
Algorithm 1.17 is given [71]. 
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Algorithm 1.17: NQL in general-sum game 

Input: Action i ia A at , ,i is S i  learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *
1 1( , ), ;    / / { } , { } ;m m

i i ii iQ S A i S s A a     

Initialize: ( , ) 0, ;iQ A A i   
Begin  
      Repeat  
          Choose an action , ;i ia A i   

          Receive immediate reward ( , ), ;ir S A i   

          Update: /( , ) (1 ) ( , ) [ ( , )  ( )],i i i iQ S A Q S A r S A NashQ S i       and / ;S S  

         *( , ) ( , ), ;i iQ S A Q S A i                           // / / / /
1( ) ( ).... ( ). ( )i m iNashQ S S S Q S   

       Until ( , ),iQ S A i converge; 
  End. 

1.3.5.3.2.1.2 Correlated-Q Learning (CQL) 
In [72], Greenwald and Hall introduced a MAQL algorithm namely Correlated-Q Learning 
(CQL). In CQL, Q-value of an agent updates at Correlated equilibrium (CE). CQL 
generalizes both NQL and FFQ (discussed in section 0) in general-sum stochastic games. If 
NE and CE do not intersect, then the agent receives less reward at NE compared to the same 
at CE. Four variant of CE are defined in [72] and the definition of CE is given in Definition 
1.18. The algorithm for CQL is given in Algorithm 1.18. Convergence analysis of the above 
equilibria in the framework of Markov games are done in [72]. 
 

Algorithm 1.18: Correlated-Q Learning 
Input: Action i ia A at state i is S  for all the agents learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *( , ), ;iQ S A i  

Initialize: ( , ) 0, ;iQ S A i   
Begin  
      Repeat  
          Choose an action , ;ia A i    

          Receive immediate reward ( , ), ;ir S A i   

          Update: /( , ) (1 ) ( , ) [ ( , ) ( )],i i i iQ S A Q S A r S A V S i        and / ;S S  

                     / / / /
1 2( ) ( ( ), ( ),..., ( )), ;i mV S CE Q S Q S Q S i   

       *( , ) ( , ), ;i iQ S A Q S A i   
       Until ( , ), ;iQ S A i converge; 
   End. 

1.3.5.3.2.1.3 Asymmetric-Q Learning (AQL) 
In [122], Ville proposed Asymmetric-Q Learning (AQL) algorithm, where an agent leads the 
follower agents by providing the information about the follower agents’ strategy to the 
follower agents. AQL offers the following benefits:    
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Algorithm 1.19: Asymmetric-Q learning for the leader 
Input: Action i ia A at state i is S  for all the agents learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *( , ), ;iQ S A i  

Initialize: ( , ) 0, ;iQ S A i   
Begin  
      Repeat  
          Choose an action , ;ia A i    

          Receive immediate reward ( , ), ;ir S A i   

          Update: /( , ) (1 ) ( , ) [ ( , ) ( )],i i i iQ S A Q S A r S A V S i        and / ;S S  

                     / / / /
1 2( ) ( ( ), ( ),..., ( )), ;i mV S SE Q S Q S Q S i   

       *( , ) ( , ), ;i iQ S A Q S A i   
       Until ( , ), ;iQ S A i converge; 
   End. 

 In each state the leader has unique equilibrium point.  
 Asymmetric Q-learner always achieves the pure strategy NE very fast. Though mixed 

strategy NE exists.  
 The AQL algorithm enjoys the lower space and computational requirements than 

conventional algorithms.  
 

Algorithm 1.20: Asymmetric-Q learning for the follower 
Input: Action i ia A at state i is S  for all the agents learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *( , ), ;iQ S A i  

Initialize: ( , ) 0, ;iQ S A i   
Begin  
      Repeat  
          Choose an action , ;ia A i    

          Receive immediate reward ( , ), ;ir S A i   

          Update: 
/

/ /( , ) (1 ) ( , ) [ ( , ) max ( , )]i i i i
A

Q S A Q S A r S A Q S A       and / ;S S  

       *( , ) ( , ), ;i iQ S A Q S A i   
       Until ( , ), ;iQ S A i converge; 
   End. 

 
In [122], the existing MAQL algorithms are divided in three clusters. One is the methods 

utilizing the direct gradients of agents’ value function. Second one is the methods that 
estimate the value functions and then use this estimate to compute equilibrium of the process. 
Last one is the use of direct policy gradients. The AQL algorithm is developed by Stackelberg 
equilibrium (SE) [44]. The algorithm for the leader and the follower are given in Algorithm 
1.19 and 1.20. The leader agents are capable to maintain all the agents Q-tables. However, the 
follower agents are not able to maintain all the agents’ Q-values and hence, they just 
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maximize their reward. Experiments are performed in the grid world environment to 
demonstrate the superiority of the AQL algorithm. 
1.3.5.3.2.1.4 Friend-or-Foe Q-learning 
In [123], Littman proposed one variant of MAQL algorithm namely Friend-or-Foe Q-learning 
(FFQ) algorithm with a strong convergence guarantee compared to NE in the framework of 
general-sum stochastic game, where agents are instructed to consider other agents’ either as a 
friend or foe. Though, FFQ learning is an improvement over the Nash-Q. In FFQ, two 
variants’ of NE are employed. One is adversarial equilibrium and another is coordination 
equilibrium. In Minimax-Q (zero-sum-game) [99] all the equilibria are adversarial 
equilibrium. However, in general-sum game all the equilibria are not coordination 
equilibrium. Coordination equilibrium provides the highest possible reward of agent 
, [1, ]i i m  is given in (1.80) [123]. 

 
1 1

1 1
,...,

( ,..., ) max ( ,..., )
m m

i m i m
a A a A

R R a a 
 

                                                                   (1.80) 

Except fully cooperative game, coordination equilibrium need not always exist. The 
adversarial and coordination equilibria are explained in Fig. 1.25. The difference between the 
Nash operation and the maximization or minimax operations is that the latter two have unique 
solutions. However, the Nash operation offers two variant of solutions: adversarial and 
coordination equilibrium depending on the problem type. 

Two Propositions are proposed and proved in [123]. As per the Propositions if a one–stage 
game has a coordination/adversarial equilibrium, then all of the coordination/adversarial 
equilibrium have same value. There exist two conditions for convergence [123]. In summary, 
the conditions statement is that for a game there exists either adversarial/coordination 
equilibrium. Later two stronger conditions of convergence are proposed in [89], [123]. These 
conditions can be summarized as follow. There exists an adversarial/coordination equilibrium 
in a game and every game is defined by the Q-functions adapted during the learning phase. 
The later conditions are also not sufficient to guarantee convergence. Hu and Wellman in 
[89], states two theorems that by the later two conditions Nash-Q converges to Nash-Q 
equilibrium until all the equilibria are adapted during the learning phase are unique. Also by 
the later two conditions Nash-Q converges to NE, until the required equilibria is employed in 
(1.82).   

Now, in FFQ algorithm / ( )iNash Q S  are given in (1.81) and (1.82) for Friend-Q 

(coordination equilibrium) and Foe-Q (adversarial equilibrium) respectively.  

/ /
/ / / / ( ) max ( ). ( , )i i

A A
Nash Q S P A Q S A                                                                                   (1.81) 

11 //

/ / / / / /
,...,,...,

 ( ) max min ( ) ( , ).
yx A

i i
a aa a

Nash Q S P A Q S A



                                                               (1.82) 
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where, /
1,..., ,mA a a   //

1 1,..., , ,...,x yA a a a a   and y refers to the number of foes 

(opponent agents). The convergence of FFQ learning is subject to that the Nash operator is 
max or minimax operator [123]. Like NQL, for simulation purpose two grid games are 
employed [89], [123] in FFQ. Six different variants’ of opponents are described in [123]. 
Though, Nash-Q and FFQ cannot fix the problem of finding equilibria, if neither coordination 
nor adversarial equilibrium exists. The algorithm for FFQ learning is given in Algorithm 1.21.  

 
Algorithm 1.21:  Friend-or Foe-Q Learning 

Input: Action i ia A at state i is S  for all the agents learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *( , ), ;iQ S A i  

Initialize: ( , ) 0, ;iQ S A i   
Begin  
      Repeat  
          Choose an action , ;ia A i    

          Receive immediate reward ( , ), ;ir S A i   

          Evaluate / ( ),iNash Q S i  by (1.81) and (1.82) respectively for Friend-Q and Foe-Q 

          Update: /( , ) (1 ) ( , ) [ ( , )  ( )],i i i iQ S A Q S A r S A Nash Q S i        and / ;S S  

       *( , ) ( , ), ;i iQ S A Q S A i       

       Until ( , ), ;iQ S A i converge; 
   End. 

1.3.5.3.2.1.5 Negotiation-based Q-learning 
In [124], Hu et al. proposed a MARL without mutually sharing their value functions. Authors 
in [124] mentioned that mutual exchange of value function is impractical because of the local 
restriction of the system and privacy of the agents in case of distributed agents. Doing so 
appears impossible to evaluate equilibrium in a one short game. In the above circumstances, 
authors propose a multi-step negotiation process to evaluate three types of pure strategies: 
PSNE, equilibrium-dominating strategy profile (EDNP) and nonstrict EDNP, instead of 
computing the computationally expensive MSNE. It is also shown that above mentioned three 
strategies are symmetric Meta strategies. Fusing the above techniques Hu et al. proposed 
negotiation-based Q-learning (NegoQ) in [124].  
  NegoQ deals with pure strategy equilibrium. However, in some game (e.g., rock-paper-
scissor game, Example 1.3) PSNE does not exist. Another hindrance is that a strategy may be 
Pareto dominated and so not a PSNE. In Prisoners’ Dilemma, only one PSNE (C, C) exist as 
shown in Fig. 1.34. Though (D, D) is the better choice, but (D, D) is the Pareto optimal and 
not a PSNE. In this regard, a strategy profile Pareto dominates NE, i.e., EDNP is defined in 
Definition 1.19.  
Definition 1.19: In an m  agent ( 2)m   normal-form game, a joint action { }A A  is an 
EDNP if there is a PSNE { }NA A  such that  
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( ) ( ), [1, ].i i NQ A Q A i m                                             (1.83) 

By Definition 1.19 one can conclude that each agent following EDNP receives more reward 
than the same of by following PNSE.      
 

Algorithm 1.22: Negotiation to evaluate the PSNE for agent i in a Normal-form game 

Input: Action i ia A only for the agent [1, ]i m and ( );iQ A   // 1{ } m
iiA A A    

Output: PSNE set { };NA  

Initialize: { }  ;NA   

Evaluate maximal reward set for agent i ;iMS  

For all { }i iA A   

 
/

/arg max ( , );
i

i i i
a

a Q a A  

 { } { } { , };N N i iA A a A   
End For 
For all joint action { }NA A  

 Ask remaining agents that is { }NA includes ;A a 

 If { }NA  does not include A then 

  { } { } \{ };N NA A A  

  Inform other agents to exclude A from their { }NA sets 
 End If 
End For 

For all joint action /A received from remaining agents  

 If /A belongs to iMS then 
  Response as yes to the remaining agents; 
 else 
  Response as no to the remaining agents; 
 End If 
End For 

 
Before defining the nonstrict EDSP a normal-form game with the same is given in Fig. 

1.45. In Fig. 1.45, there are two PSNE: (a1, b1) and (a2, b2). It is apparent that the strategy 
profile (a1, b3) and (a3, b3) provide a greater reward to A than (a1, b1) and a greater reward to 
B than (a2, b2) respectively. So, the priority of (a1, b3) and (a3, b3) are more than (a1, b1) for A 
and (a2, b2) for B respectively. Hence, for A and B the nonequilibrium strategy profile (a1, b3) 
and (a3, b3) partially dominate the existing PSNE. In [124], Hu et al. defined them as nonstrict 
EDSP as given in Definition 1.20.  
Definition 1.20: In an m  agent ( 2)m   normal-form game, a joint action { }A A  is an 

EDNP if there is a PSNE { }i
NA A  such that  

( ) ( ), [1, ].i
i i NQ A Q A i m                                           (1.84) 
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Fig. 1.45 Nonstrict EDNP in Normal-form game 

 
Algorithm 1.23: Negotiation to evaluate the nonstrict EDSP for agent i in a Normal-form game 

Input: Action i ia A only for the agent [1, ],i m { }NA from Algorithm 1.13 and ( );iQ A   

// 1{ } m
iiA A A    

Output: nonstrict EDSP set { };nPA  

Initialize: { }  ;nPA   

{ } \{ };NX A A  

For each PSNE { }N NA A  

 For each joint action { };A X  

  If ( ) ( )i i NQ A Q A then 

   { } { } \{ };X X A  

   { } { } { };nP nPA A A   
  End If 
 End For 
End For 
For all joint action { }nPA A  

 Ask remaining agents that is nPA  includes ;A  
 If answer is no then 
  { } { } \{ };nP nPA A A  
 End If 
End For 

For all joint action /A received from remaining agents  

 If /A belongs to nPA then 
  Response as yes to the remaining agents; 
 else 
  Response as no to the remaining agents; 
 End If 
End For 

 
In the multistep negotiation process of computing the above mentioned three pure strategy 

profiles, agents exchange their preferences of joint actions among themselves in terms of 
binary answers. An illustration of the multistep negotiation process is given in Fig. 1.46. In 
Fig. 1.46, ‘Y’ and ‘N’ represent as yes and no respectively. A joint action is pure strategy 
profile if and only if both the agents’ responses are yes. The negotiation process comprises of 
three types: 1) negotiation for finding the set of PSNE, 2) negotiation for finding the set of 
nonstrict EDSP and 3) negotiation for choosing equilibrium (joint action) from the sets 
obtained by the above two steps. Evaluation of EDSP follows from the evaluation of the 

A
  

 B 
 b1 b2 b3 

a1 (20,40) (4,22) (29,30) 
a2 (18,9) (36,19) (7,4) 
a3 (17,26) (15,38) (27,38) 
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nonstrict EDSP, as EDSP is a special case of nonstrict EDSP. The negotiation to evaluate the 
PSNE for agent i  is given in Algorithm 1.22. The negotiation to evaluate the nonstrict EDSP 
for agent i  is given in Algorithm 1.23. Based on the Negotiation algorithms (Algorithm 1.22 
and 1.23) to evaluate the pure strategy profiles the NegoQ algorithm for a Markov game is 
given in Algorithm 1.24. The superiority of the Algorithm 1.24 is tested in grid-world maps 
over the state-of-the-art reference algorithms.  

 
 

 

 

Fig. 1.46 multistep negotiation process between agent A and B 

 
Algorithm 1.24: Negotiation-Q learning for agent i in a Markov game 

Input: Joint action space{ },A number of agents' ,m stste space { },S learning rate , discounting factor   
and exploration rate ;   

Output: Optimal joint Q-value *( , );iQ S A  

Initialize: ( , ) 0;iQ S A   
Begin  
      Repeat  
          Negotiate with remaining agents employing Algorithm 1.13 and 1.14;  

          Select the pure strategy equilibrium /A using   greedy; 

          Receive experience tuple /, , ( , ), ;iS A r S A S   // ( , )ir S A and /S are the immediate reward and next 
joint state 

          Update: / /( , ) (1 ) ( , ) [ ( , ) ( , )],i i i iQ S A Q S A r S A Q S A       and / ;S S  

        *( , ) ( , );i iQ S A Q S A  
     Until ( , );iQ S A converges; 
   End. 

1.3.5.3.2.1.6 MAQL with equilibrium transfer 
Hu et al. in [125] identified, that agents’ evaluate the same equilibrium (NE or CE) at a joint 
state for different one-shot games. Here, two equilibria are declared as same if and only if the 
Euclidian distance between the probability distribution of the strategies is less than a 
predefined threshold. Reuse of the previously computed equilibrium (or equilibrium transfer) 
decreases the convergence time of the equilibrium-based MAQL decreases with negligible 
transfer loss. Suppose G and G/ are two one-short games visits the same joint state S. Now, the 
Euclidian distance between the equilibrium strategy p of G and p/ of G/ are given in (1.85) and 
(1.86) respectively for NE and CE.  

/ / 2

1
( , ) ( ( ) ( ))

i i

nNE
i i i i

i a A
d p p p a p a

 
                                                                               (1.85) 

A
   

   

B 

 C  D  
C  Y, Y Y, N 

D  N, Y Y, Y 
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/ / 2

{ }
( , ) ( ( ) ( ))CE

A A
d p p q A q A


                                                                                     (1.86) 

If the /( , )NEd p p  or /( , )CEd p p  is smaller than a threshold, then p and /p are considered as 
identical in G and G/. Hence, by equilibrium transfer one can directly use p  in G/. As 

computation of equilibrium is more expensive than checking, hence, there is a significant 
saving in computational cost. Hu et al. in [125], measures the equilibrium transfer loss and 
based on that loss the equilibrium transfer condition is defined. Let *p  and *q  denote the NE 

and CE of G and G/ respectively. Now, loss because of transferring the equilibrium *p and 
*q from G to G/ is given by (1.87) and (1.88) respectively. 

 
Algorithm 1.25: Equilibrium transfer-based MAQL 

 

Input: Action i ia A at state i is S  for all the agents learning rate [0,1),  discount factor 

[0,1),  exploration factor , threshold of transfer loss , Gc be the one-short game at joint state S and 
*p previously computed equilibrium at S;  

Output: Optimal joint Q-value ( , ), ;iQ S A i // 1{ } m
iiS S S   and 1{ } m

iiA A A    

Initialize: ( , ) 0, ;iQ S A i   
Repeat  
  If joint state S has been visited  

     then evaluate maximum utility loss , { , }NE CE  for transferring  to Gc; 
  Else  

     ;    
  End if 

  If     

      Then evaluate *p  for Gc ; 
  Else 

    Reuse *p in Gc; 
  End if 

Select joint action, A sampled from *;p  

Receive experience /( , , , ), ;iS A r S i  

Evaluate equilibrium /p for the next joint state / ;S  

Evaluate /( )iV S  expected value of /p in / ,S /( , ) (1 ) ( , ) ( ( ))i i i iQ S A Q S A r V S      and 
/ ;S S  

Until ( , ),iQ S A i converge; 

 
/ /* *max max ( ( , ) ( ))

i i

NE G G
i i i i

i N a A
Q a p Q p 

 
                                                                              (1.87) 

/ /

/
* / /max max max ( , ) [ ( , ) ( , )]

i i ii i

CE G G
i i i i i i i i

i N a A Aa A
q a A Q a A Q a A


  

  
                                        (1.88) 

Here, 
/G

iQ refers to the Q-value of agent i in G/. 
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Now the transfer loss condition for NE, *p for an agent i  is given by 
/ / / /* * * *( ) ( ) max ( ( , ) ( ))

i i

G NE G G G
i i i i i i

a A
Q p Q p Q a p Q p 


     

                        
/ / /* * *( ) max ( , ) ( )

i i

G G G
i i i i i

a A
Q p Q a p Q p


    

                        
/ *max ( , ).

i i

G
i i i

a A
Q a p


                                                       (1.89) 

Similarly, for CE following condition can be derived  
/ /* * /( , )  ( , ) ( , )  ( , ).

i i

G CE G
i i i i i i i i i i

A A
q a A Q a A q a A Q a A

 
                                            (1.90) 

The algorithm for equilibrium transfer-based MAQL is given in Algorithm 1.25. Superiority 
of Algorithm 1.25 is tested in Grid World game, Wall game and Soccer game. 

1.3.5.3.2.2 Equilibrium independent 

Equilibrium independent MARL algorithms again categorized based on the learning rate 
selection given below.  
1.3.5.3.2.2.1 Variable learning rate 
RL Algorithms with variable learning rate are given below.  

1.3.5.3.2.2.1.1 Win or Learn Fast Policy hill-climbing (WoLF-PHC) 

In [126], Bowling and Veloso proposed WoLF policy hill climbing algorithm for stochastic 
game in presence of other adaptive agents, satisfying rationality and convergence. Rationality 
indicates that all agents' policies converge to stationary policies and then the learning 
algorithm will converge to a stationary policy, which is best response to their policies [126]. 
The convergence property states that agents necessarily converge to a stationary policy. Also, 
if all agents are rational and convergent, then it is guaranteed to converge NE. The learning 
algorithms in [32] and [127], either converges to a sub-optimal policy or does not converge. 
Proposed WoLF is based on the principle of "learn quickly while losing and learn slowly 
while wining".  

Policy hill-climbing (PHC) is a straight forward extension of Q-learning to handle mixed 
strategies. The PHC algorithm is given in Algorithm 1.26. PHC learns the most recent mixed 
strategy. The updating of the mixed strategy in PHC is done by selecting the highest valued 
action as per the learning rate (0,1].   For 1   the algorithm behaves as single agent Q-

learning. Both Q-values and the strategy is convergent following single agent Q-learning.  
The main contribution of the proposed algorithm in [126] is the extension of PHC algorithm 

by employing a variable learning rate and the WoLF principle. In variable learning rate, the 
learning rate is used by the learning algorithm and is tuned in such a way so that the 
rationality is maintained. The WoLF principle motivates to learn quickly while losing and  
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Algorithm 1.26: Policy hill-climbing (PHC) 
Input: Action i ia A at state i is S  for all the agents learning rate [0,1)  and discount 

factor [0,1);   

Output: Optimal policy *( , );i S A  

Initialize: ( , ) 0iQ S A  and 
1( , ) ;

| |i
i

S A
A

   

Begin  
      Repeat  
          Choose an action ia A  with probability ( , );i S A  

          Receive immediate reward ( , );ir S A   

          Update: 
/

/ /( , ) (1 ) ( , ) [ ( , ) max  ( , ),i i i i
A

Q S A Q S A r S A Q S A       /S S  and 

       

/,                 If  arg max ( , )

( , ) ( , )
,       otherwise

| | 1

A
i i

i

A Q S A

S A S A

A



 


 
   
 

 

       *( , ) ( , );i iS A S A   

       Until *( , )i S A converges; 
   End. 

 
Algorithm 1.27: Win or Learn Fast-PHC (WoLF-PHC) 

Input: Action i ia A at state i is S  for all the agents learning rate , l w   and discount factor [0,1);   

Output: Optimal policy *( , );i S A  

Initialize: ( ) 0,  ( , ) 0iC S Q S A  and 
1( , ) ;

| |i
i

S A
A

   

Begin  
      Repeat  
          Choose an action ia A  with probability ( , );i S A  

          Receive immediate reward ( , );ir S A   

          Update: average policy ,  ( ) ( ) 1,C S C S    / ,S S  

/ / / /1( , ) ( , ) [ ( , ) ( , )]
( ) iS A S A S A S A

C S
                        

          and 

/,                 If  arg max ( , );

( , ) ( , )
,       otherwise;

| | 1

A
i i

i

A Q S A

S A S A

A



 


 
   
 

 

 

         
,      If  ( , ) ( , ) ( , ) ( , )

;
,       otherwise

w i i i
A A

l

S A Q S A S A Q S A  




  


 

       *( , ) ( , );i iS A S A   

       Until *( , )i S A converges; 
   End. 
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slowly while wining [126]. The WoLF-PHC algorithm employs two learning rate losing 
learning rate l  and wining learning rate w  where .l w   The winning/losing situation of 

the agent is determined by contrasting the current reward and the average reward taken over 
the time. If agent is losing, then larger learning rate l  is employed. The WoLF-PHC [126] 

algorithm is given in Algorithm 1.27. The convergence and rationality of the WoLF-PHC 
algorithm is tested in Matrix games, Grid world game, and Soccer game. In all frameworks, 
WoLF-PHC outperforms reference algorithms. 

1.3.5.3.2.2.1.2 Policy Dynamic based Win or Learn Fast (PD-WoLF) 

IGA [112] learner converges to NE rationally but they are not convergent to NE for all the 
general-sum games. Later IGA was extended to WoLF-IGA in [110] and its convergence 
proof is shown in [110] for a 2×2 game assuming agents know the equilibrium policies of 
other agents. In [128], Banerjee and Peng did experimental based comparisons of the WoLF 
and PD-WoLF to establish the superiority of the PD-WoLF both in the bimatrix and the 
general-sum games. 

From section 1.3.5.3.1.2.1.1 considering the sub case of purely imaginary Eigen values, U 
and the center * *( , )r c  is within the unit square. The solution ( )r t  of (1.72) for unconstraint 
dynamics [129] is given in (1.91), where the value of B and  depends on the initial values of 

, .    
*( ) cos( )r t B u uu t r                                                                                                   (1.91) 

PD-WoLF criteria for a row player (agent) are given by (1.92). 
2

min

max,  otherwise

,  if 0( ) t t
r t 




    


                                                                                                   (1.92) 

where 1t t tr r    and 2
1.t t t     It is apparent that (1.92) is independent of other agents' 

policies.  
1.3.5.3.2.2.2 Fixed learning rate 
MARL Algorithms with fixed learning rate are given below.  

1.3.5.3.2.2.2.1 Non-Stationary Converging Policies (NSCP) 

One major shortcoming of MAQL is the assumption that the environment is stationary. In 
[130], Michael and Jeffrey proposed the Non-Stationary Converging Policies (NSCP), where 
agents are not interested in converging to an equilibrium rather they search for the best 
response policy for the non-stationary opponents. NSCP predicts the opponents’ non- 
stationary strategy with precision and act by its best-response strategy with respect to the 
opponents in the well-known test bench of general-sum stochastic games (game with multiple 
joint states) or matrix games (game with one joint state). The MAQL algorithms [71], [72], 
[78], [89], [99] and [123] either converge to NE or CE. By [131], the equilibrium-based 
MAQL algorithms are problematic, as the learning stops at the equilibrium point and the 
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equilibrium point is necessarily not a goal point. Also an additional problem arises in 
presence of multiple equilibria. The NSCP algorithm aims at adapting an optimal reward 
considering the presence of other agents. In [132], an agent converges to best response 
strategy subject to stationary opponents in two-player general-sum stochastic games. The 
NSCP algorithm is given in Algorithm 1.28. Simulation results validate the superior 
performance of the NSCP with respect to reference algorithms.  
  

Algorithm 1.28: Non-Stationary Converging Policies 
 

Input: Action i ia A at state , , [1, ],i is S i i m   learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *( , ), ;iQ S A i  

Initialize: ( , ) 0,iQ S A i  and 
1( , ) ;

| |
i S A

A
   

Begin  
      Repeat  
          Observe the actions taken by all the agents { };A A   

          Receive immediate reward ( , ), ;ir S A i   

          Update: other agents’ strategy
1( , ) , ;

| |i S A i
A

    

          Select best-response strategy ( , )br
i S A  

          that maximizes 
1 2

/ / / /ˆ( ) ( , ). ( , ). ( , );
m

br
i i i i i

a a a i
BR S S a S a Q S A 


      

          Update: Q-values using the following rules 

         /( , ) (1 ) ( , ) [ ( , ) ( )]i i iQ S A Q S A r S A BR S       and / ;S S  
       Until ( , ), ;iQ S A i converges; 

     Obtain *( , ) ( , ), ;i iQ S A Q S A i   
   End. 

1.3.5.3.2.2.2.2 Extended Optimal Response Learning (EXORL) 

The zero-sum stochastic game proposed by Littman in [99] was extended to general sum-
stochastic game by Hu and Wellman in [89] and agents converge to NE in stochastic games 
by these algorithms. On the contrary, in [89] and [99], agents always try to converge to NE 
ignoring strategies of other agents. Further, all the agents must agree upon to select a NE in 
presence of multiple NEs. Thus the algorithms proposed in [89] and [99] are not adaptable in 
the above sense. In [133], Nobuo and Akira extended optimal response to Extended Optimal 
Response Learning (EXORL), where agents converge to NE subject to adaptability of other 
agents. Similar to NQL [89], in EXORL, an agent maintains all agents' Q-tables assuming that 
it can observe other agents' state-action and reward. EXORL aims at realizing a policy which 
is optimal response to other agents' policies, where remaining agents are adaptable and attain 
NE. The EXORL algorithm is given in Algorithm 1.29. JAL [78] learns Q-value due to its 
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own action and estimates teammates’ strategy. Let i  be the strategy of agent i  at state S  

which maximizes (1.93). 
( , ) ( ) ( ) ( )T

i i i i iQ S Q S S                                                                                                  (1.93) 
where, ( )i S  refers to estimate of all agents' joint policy except agent i. Now, if a policy 

diverges from NE, then the policy may not be suitable to estimate the remaining agents' 
strategy. This problem is addressed in [133] and the update rule is given by (1.94) and (1.95) 
tuning the value of .  

( , ) ( ) ( ) ( ) ( , ),T
i i i i i iQ S Q S S S                                                                                   (1.94) 

where ( , ) max[( ) ( ) ] ( ) ( ) ( ),
i

T T
i i i i i i iS Q S Q S S


     


                                                    (1.95) 

here ( , )iS  refers to the possible increase in expected discounted reward of agent .i  Hence, 

to maximize left part of (1.95) agent i  has to maximize the first component of right part and 
also minimizes the second component of the right part. Also (1.95) is a piece-wise linear 
concave function and it has a sole maximal point. It is shown in [133] that by EXORL an 
agent plays well subject to that the opponent agents play fixed policy considering small value 
of .  The EXORL is verified in Matching Pennies, Presidency Game [77] and Battle of sexes 

game in [133].   
 

Algorithm 1.29: EXORL for agent i  
 

Input: Action i ia A at , ,i is S i  learning rate [0,1)  and discount factor [0,1);   

Output: Optimal Q-value *
1 1( , ), ;    / / { } , { } ;m m

i i ii iQ S A i S s A a     

Initialize: 
1,

1 1( , ) 0,  ( , ) , ( , ) ;
| | | |

i i i i i mi jj j i
Q A A S a i S A

A A
  

 

   


 

Begin  
      Repeat  
          Choose an action , ;i ia A i   

          Receive immediate reward ( , ), ;ir S A i   

          Update: /( , ) (1 ) ( , ) [ ( , )  ( , )], ,i i i iQ S A Q S A r S A Q S A i       /S S  

                and /( ) (1 ) ( ) . ( );i i iS S S           
// 1    if  / / ( )

0   otherwise
i ii

A AS  


  


                                 

       Until ( , ),iQ S A i converge; 

   Obtain *( , ) ( , ), ;i iQ S A Q S A i         
   End. 

1.3.6 Coordination and planning by MAQL 
In the present thesis, for multi-robot coordination and planning without any communication 
among the agents we focus on the equilibrium-based MAQL as explained in section 
1.3.5.3.2.1. Because of the absence of communication among the agents, each agent needs to  
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Joint state

Joint state

          

Action of R
1

 

Fig. 1.47 Multi-robot coordination for the well-known stick-carrying problem 

 

maintain all the agents’ Q-tables at joint state-action space. Fig. 1.47 explains the multi-robot 
coordination and planning mechanism for the well-known stick-carrying problem. Stick-
carrying problem refers to the transportation of a stick from current positions to the desired 
destination. Presently twin robots are at a joint state <4, 7> with a stick as shown in Fig. 
1.47(c). As each robot have both robots Q-tables at joint state-action space, a robot looks for 
the optimal joint action, i.e., pure startegy NE (PSNE) at <4, 7> by evaluating equilibrium. To 
evaluate equilibrium a robot extracts the information from the joint state <4, 7> (Fig. 1.47(a) 
and 1.47(b)) and PSNE, “FL” is evaluated following the definition of NE as shown in Fig. 
1.47. Here both the robots evaluate identical PSNE. Hence, without any communication 
between the robots coordination occurred and the stick is shifted to the next joint state <5, 4> 
because of the joint action “FL” by the robots.   

1.3.7 Performance analysis of MAQL and MAQL-based coordination 
The MAQL algorithms illustrated above have addressed several challenges of the MAQL. 
The main challenges of MAQL are suitable action selection for balancing 



82 
 

exploration/exploitation, update policy selection for adaptation of the Q-table in joint state-
action space, equilibrium selection among multiple equilibria and the exponential increase in 
the space and time complexity, with the increase in number of agents. In this regards, to 
measure the performance of a MAQL over contender MAQL algorithms following metrics 
are summaried for the above mentioned MAQL.  

In JAL [78], the Boltzmann strategy is extended to the optimistic Boltzmann (OB), Weight 
OB (WOB) and their combination. The superiority of the JAL with the combined method is 
tested considering the average accumulated reward as the performance metric. The superiority 
of the FMQ heuristic is measured considering convergence to the optimal joint action as the 
performance metric. In Team-Q learning [88], the average reward of agents is maximized 
over the learning epoch. The Distributed Q learner [92] converges to the optimal joint action 
with less storage and computational cost. Therefore, in Distributed Q-learning computational 
cost and storage requirement are the performance metrics. In OAL [95] algorithm agents 
select the optimal NE among multiple NE with probability one. Hence, in OAL, optimal 
equilibrium selection is the metric. In SCQL [96], the Q-tables are sparsely maintained and 
performance of the SCQL is measured over reference algorithms in terms of the 
computational cost and storage requirement. In SQL [97], the metric is the steps required to 
reach the goal state from the starting state, i.e., selection of the right joint action without any 
behavior conflict among the agents. In FMRQ [98], agents achieve the coordination type 
optimal NE to maximize the system performance in terms of average steps per episode for 
box-pushing problem and average rewards per episode for distributed sensor network 
problem. In Minimax-Q learning algorithm [99], both the agents learn optimal policies and 
efficiency of the algorithm is tested in the framework of a two player grid game by measuring 
the winning percentage of the game by the agent in an episode. Performance of the HAMRL 
algorithm [100] is measured in terms of the convergence speed. FP [104] addressed the 
equilibrium selection problem in coordination game. The performance of the Meta strategy 
[105] is measured in terms of the average reward achieved by the agents. AWESOME [109] 
learns the best response (NE) considering a stationary opponent and its performance is 
measured against FP in terms of the distance to equilibrium and distance to the best response. 
In Hyper-Q learning [111], online Bellman error and average reward variation wih respect to 
the learning epoch are considered as the performance metrics. In [112], IGA proposed a 
scheme by which agents conditionally converges to the NE. Performance of the GIGA [120], 
WoLF-IGA [110] and GIGA-WoLF [121] algorithms are measured in terms of the 
convergence rate. In NQL [89], percentage of NE achieved in a game is considered as the 
performance metric. In CQL [72], mean Q-value difference is the performance metric. In 
AQL [122], change in Q-values of the agents with the learning epoch is considered as the 
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performance metric. The FFQ [123] always converges to a NE and converging to a NE is a 
metric. Average reward with the episode and number of learning epoch required per episode 
are the metrics in Negotiation-based Q-learning. In the equilibrium transfer-based MAQL 
[125], three metrics are considered. First one is the learning speed, second one is the 
improved average reward, and finally the last one is the reduction in the space complexity. In 
WoLF-PHC [126] the policy either converges to NE or to a sub-optimal NE and percentage of 
winning a game by an agent is considered as the performance metric. In PD-WoLF [112], 
average reward is the performance metric during the learning phase. Average time required to 
complete a task is considered the performance metric during learning in case of NSCP [130]. 
In EXORL [99], policy and Q-value learned with the learning epoch are considered as the 
performance metric.    

In MAQL-based coordination, agents re-evaluate the NE/CE as explained in section 1.3.6. 
As the computational cost of evaluating the NE/CE is very high, run-time complexity is one 
performance metric in the MAQL-based coordination. On the other hand, space-complexity, 
successful completion of the task, system resource utilization, and the like are considered as 
the performance metric during the MAQL-based coordination [97]. 

1.4 Coordination by Optimization Algorithm 
One common bottleneck of the search-based coordination and MARL-based algorithms is the 
memory requirement and suboptimal solution. Such, bottlenecks are addressed by the Swarm 
Intelligence (SI) [60], [61] and Evolutionary algorithm (EA) [61]. The advantages of the SI 
algorithms are Scalability, Adaptability, Collective Robustness, and Individual Simplicity. 
The scalability of the SI algorithms are remarkable, as the control mechanism adopted by the 
SI algorithms does not depend upon the swarm size, until the swarm size is not too small [84]. 
The SI algorithm has very fast response to the rapidly changing environment by employing 
the auto-configuration and self-organization capabilities, which allow the swarms to adapt 
online with the dynamic environment [66]. Collective robustness indicates that the SI 
algorithms are distributed and hence, there is no possibility of single point failure [67]. In 
spite of very simple behavior of every swarm in any SI algorithm, the group of a swarm can 
achieve sophisticated group behavior [67]. Particle Swarm Optimization (PSO) algorithm and 
Firefly algorithm (FA) are two examples of SI algorithms. In PSO, the fitness function is not 
differentiable and is employed to obtain quality solution for high dimensional problems faster 
than other alternatives. However, there is a high probability to be trapped in local optima in 
high-dimensional problems. On the other hand, the FA has a very high probability of 
exploring the global optima. The advantages of EAs are that they can cope with 
discontinuities, non-linear constraints, multi-modalities and multi-objective optimization 
problems.  
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However, the EAs do not provide any guarantee to provide optimal solutions within finite 
amount of time. Differential evolution is an example of EA. Stability is a very good attribute 
of DE over the GA. Another is Imperialist Competitive Algorithm (ICA) [67], which is a 
socio-political based algorithm. ICA has neighborhood movements both in continuous and 
discrete search-space. However, the solutions provided by the ICA does not guarantee for 
optimal solution. In addition, the ICA requires tuning more number of parameters as 
compared to the PSO, FA, and DE. In the above circumstance, hybridization is a good 
approach. By hybridization the efficient attributes of two or more algorithms are fused to 
produce a powerful algorithm. One approach for multi-robot stick-carrying problem is shown 
in [92], where the hybridization of the motion dynamics of fireflies of the Firefly Algorithm 
(FA) [62] into a socio-political evolution-based meta-heuristic search algorithm is done and is 
named as Imperialist Competitive Firefly Algorithm (ICFA). The above mentioned 
algorithms are implemented for multi-robot coordination following scheme as shown in Fig. 
1.48. Brief description of the above mentioned algorithms are given below. 
 

Current states 
of robots
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determining next optimal 
states employing swarm/

evolutionary algorithm 

Next state 
transition
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Current state

Stop
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Fig. 1.48 Multi-robot local planning by swarm/evolutionary algorithm 

 

1.4.1 Particle Swarm Optimization (PSO) Algorithm 
In [60], Kennedy and Eberhart proposed a nonlinear function optimization technique 
following the behavior of flocking birds namely Particle Swarm Optimization (PSO). Let an 
n-dimensional nonlinear function given by (1.96) to be optimized. The PSO aims at finding 
such a X


 so that (1.96) is either maximized or minimized depending upon the problem 

requirement. So, one can say that the solution of (1.96) is an n-dimensional hyperspace.  

1( ) ( ,..., )nf X f x x


                                                                                                            (1.96) 

    Let us consider a two dimensional problem as given in (1.97) [62]. In (1.97), [ 10,10]x   
and [ 10,10]y   and the plot of (1.97) is given in Fig. 1.49. It is apparent from the Fig. 1.49 
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that (0,0) is the only solution in the xy plane for which the ( , )f x y  attains a minimum value 

of zero. It is quiet easy to identify the minima for the function (1.96) compared to the same 
for (1.98) [62]. The plot of (1.98) is shown in Fig. 1.50. Unlike Fig. 1.49, in Fig. 1.50, there 
are multiple optimal points. It is difficult to identify the global optima among them. PSO 
employs the multi-agent parallel search technique and each agent starts from different initial 
positions and explores the landscape until a global optima is reached. It is assumed that in 
PSO, agents can communicate among themselves and share the values of fitness function 
explored by them.  

2 2( , )f x y x y                                                                                                                  (1.97) 
( , ) sin(4 ) sin(4 ) 1f x y x y y x                                                                                  (1.98) 

In PSO, each agent flies through the multi-dimensional landscape with a unique position and 
velocity at each landscape. The population is initialized with random positions denoted 
by 1{ }S

i iX x 


each having a random velocity 1{ } .S
i iV v 


 The position and velocity of the d-

th dimension's i-th particle is given by (1.99) and (1.100) respectively.  
( 1) ( ) ( 1)id id idx t x t v t                                                                                                  (1.99) 

1 1 2 2( 1) . ( ) . .( ( ) ( )) . .( ( ) ( ))id id id id id idv t v t C P t x t C g t x t                                    (1.100) 

In (1.100), the first component is the initial velocity of the i-th particle.   refers to the 
inertial weight factor. 1C  and 2C  are the constant multiplier termed as self-confidence and 
swarm confidence respectively. Two random numbers 1 [0,1]   and 2 [0,1]   introduced in 
(1.100), which determine the influence of ( )p t  and ( )g t on (1.100). ( ),p t ( )g t  and ( )x t  are 
initialized to zero at 0,t   i.e., and (0) (0) (0).p g x 

    After that the velocity and position of 

each particle updates following (1.99) and (1.100). The algorithm for PSO is given in 
Algorithm 1.30 [62].  

 
Algorithm 1.30: Particle Swarm Optimization (PSO) 

Input: Enter the Swarm size (S), values of 1,C 2 ,C 1 [0,1],  2 [0,1],  and max;V  

Output: Approximate global optimal position *;X


 
Initialize: Initialized the position and velocity vectors: (0)iX


 and (0);iV


 

Begin       
 While termination condition is not reached do 
     For 1i  to S  

       Evaluate the fitness ( );if X


 

       Update ip  and ;ig  

       Adapt position and velocity of the partial by (1.99) and (1.100) respectively.  
    End For; 
   End While. 
End.  
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Fig. 1.49 Surface plot of (1.97) 

 

In [69], Pugh et al. proposed the noise-resistance PSO for obstacle avoidance in multi-robot 
systems. In [70], Pugh modified the noise-resistance PSO [69] by setting  

*' *'' ,i ix x if *'' *'( ) ( ),i ifitness x fitness x                                       (1.101) 

where *'
ix  refers to the neighborhood best for particle (here robot) i  and *''

ix  denotes the new 

neighborhood best particle.           
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Fig. 1.50 Surface plot of (1.98) 
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1.4.2 Firefly Algorithm (FA) 
In Firefly Algorithm (FA) [90], a potential solution to an optimization problem is encoded by 
the position of a firefly in the search space and the light intensity at the position of the firefly 
corresponds to the fitness of the associated solution. Each firefly changes its position 
iteratively by flying towards brighter fireflies at more attractive location in the fitness 
landscape to obtain optimal solutions. 

1.4.2.1 Initialization 

FA commences with a population Pt of NP, D-dimensional firefly positions,
 

)}(),...,(),(),({)( ,3,2,1, txtxtxtxtX Diiiii 


 for i = [1, NP] by randomly initializing in the search 

range min max[ , ]X X
 

 where min min min min
1 2= { , ,..., }DX x x x


 and max max max max

1 2= { , ,..., }DX x x x


 at 

the current generation  t = 0. Thus the d-th component of the i-th firefly at t=0 is given by 
(1.102). 

min max min
, (0) (0,1) ( )i d d d dx x rand x x                                                                                (1.102) 

where (0,1)rand  is a uniformly distributed random number lying between 0 and 1 and d= [1, 
D]. The objective function value ))0(( iXf


 (which is inversely proportional to the light 

intensity for minimization problem) of the i-th firefly is evaluated for i = [1, NP]. 

1.4.2.2 Attraction to Brighter Fireflies 
Now the firefly )(tX i


is attracted towards the positions of the brighter fireflies )(tX j


 for i, j= 

[1, NP] but i≠j such that ))(())(( tXftXf ij


  for minimization problem. Now the attractiveness 

βi,j of )(tX i


 towards )(tX j


is proportional to the light intensity seen by adjacent fireflies. 

However attractiveness βi,j decreases exponentially with the distance between the firflies, 
denoted by ri,j as given in (1.103).    

, ,exp( ), 1m
i j o i jr       m                                                                                                     (1.103) 

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its own position 
(i.e. at ri,j = ri,i= 0) and γ is the light absorption coefficient, which controls the variation of βi,j 
with ri,j. This parameter is responsible for the convergence speed of FA. A setting of γ=0 leads 
to constant attractiveness while γ approaching infinity is equivalent to the complete random 
search [62]. In (1.103) m is a positive constant representing a non-linear modulation index. The 
distance between )(tX i


 and )(tX j


is computed using the Euclidean norm as follows. 

, || ( ) ( ) ||i j i jr X t X t 
 

                                                                                                            (1.104) 

This step is repeated for i, j = [1, N]. 



88 
 

1.4.2.3 Movement of Fireflies 
The firefly at position )(tX i


 moves towards a more attractive position )(tX j


occupied by a 

brighter firefly (i.e., ))(())(( tXftXf ij


 ) for j= [1, N] but i≠j following the dynamic given in 

(1.105). 

     ,( 1) ( ) ( ( ) ( )) ( (0,1) 0.5)i i i j j iX t X t X t X t rand        
   

                                       (1.105)                                  

The first term in the position updating formula (1.105) represents the i-th firefly’s current 
position. The second term in (1.105) denotes the change in the position of the firefly at )(tX i


 

due to the attraction towards the brighter firefly at )(tX j


. Hence it is apparent that the 

brightest firefly with no more attractive firefly in the current sorted population Pt will have no 
motion due to the second term and may get stuck at the local optima. To circumvent the 
problem, the last term is introduced in (1.105) for the random movement of the fireflies with a 
step-size of α (0, 1). Here rand(0,1) is a random number generator uniformly distributed in 
the range (0, 1). This step is repeated for i = [1, NP]. After completion of its journey mediated 
by the brighter ones, the updated position of the i-th firefly is represented by )1( tX i


 for i= 

[1, NP].   

 
Algorithm 1.31: Traditional Firefly Algorithm (FA) 

Input: 1 2( , ,..., ),DX x x x


fitness function ( );f X  // D dimension of the firefly 
Output: ,  [1, ];iX i n


 

Initialize: Generate population ,  [1, ],iX i n


 (0,1),  0 1  and [0.1,10];    
While (t <MaxGeneration)  
      For k=1 to D  
            For i=1 to n  
                  For j=1 to n  

                      If ( ( )) ( ( ))i jf X t f X t
 

 
                           then Move ( )iX t


towards ( )jX t


in all D dimensions; 

                      End If; 
                      Update ( 1) ( ) [ ( ) ( )] ( 0.5);ik ik ij jk ikx t x t r x t x t rand         

                  End For; 
            End For; 
      End For;  
      Rank the fireflies based on current fitness and find the current best one; 
End While. 

 
After each evolution, the steps 1.4.2.2 and 1.4.2.3 are repeated until one of the following 

conditions for convergence is satisfied. These conditions include restraining the number of 
iterations, maintaining error limits, or the both, whichever occurs earlier. In Algorithm 1.31, 
the number of iterations is considered as the condition of convergence.  
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1.4.3 Imperialist Competitive Algorithm (ICA) 
Imperialist Competitive Algorithm (ICA) is a population-based stochastic algorithm, which is 
inspired by the socio-political evolution and the imperialistic competitive policy of a 
government to extend its power beyond its boundaries. It has earned wide popularity because 
of its noticeable performance in computational optimization with respect to the quality of 
solutions [134]. Like any other evolutionary algorithms, ICA starts with an initial population 
of solutions, called countries. The countries are classified into two groups—imperialists and 
colonies, based on their ruling power (which is inversely proportional to their objective 
function values). The colonies (weaker countries) with their relevant imperialist (stronger 
country) form some empires. In each empire, the imperialist pursues an assimilation policy to 
improve the economy, culture, and political situation of its colonies, thus winning their 
loyalty. Moreover, the empires take part in the imperialistic competition in an attempt to gain 
more colonies. In ICA, the assimilation of colonies towards their respective imperialists along 
with the competition among empires eventually results in just one empire in the world with all 
the other countries as colonies of that unique empire. An overview of the main steps of the 
ICA is presented next. 

1.4.3.1 Initialization 

ICA starts with a population Pt of NP, D-dimensional countries,
 

)}(),...,(),(),({)( ,3,2,1, txtxtxtxtX Diiiii 


 for i= [1, NP] representing the candidate solutions, at 

the current generation 0t 
 

by randomly initializing in the range min max[ , ]X X
 

 where 
min min min min

1 2= { , ,..., }DX x x x


 and max max max max
1 2= { , ,..., }DX x x x


. Thus the d-th component 

(socio-political feature) of the i-th country at t=0 is given by 

)()1,0()0( minmaxmin
, ddddi xxrandxx                                                                              (1.106) 

where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1, 
D]. The objective function value ))0(( iXf


of the country )0(iX


 is evaluated for i= [1, NP]. 

1.4.3.2 Selection of Imperialists and Colonies 
The population P0 is sorted in ascending order of ))0(( iXf


 for minimization problem with i= 

[1, NP]. The first N countries with less cost function values are selected as imperialists while 
the remaining M = NP–N countries are declared as colonies. Hence the population individuals 
are categorized into two groups of countries — imperialists and colonies. 

1.4.3.3 Formation of Empires 

The empire under the j-th imperialist is constructed based on its ruling power. To accomplish 
this, first the normalized power of the j-th imperialist country, pj, is evaluated by (1.107) with 
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))0(( NPXf


 representing the objective function value of the weakest country in the current 

sorted population P0. 

1

( (0)) ( (0))

( (0)) ( (0))

NP j
j N

NP l
l

f X f X
p

f X f X







 

                                                                                           (1.107) 

It is evident from (1.107) that better the j-th imperialist (i.e., less objective function 
value ))0(( jXf


 for minimization problem), higher is the difference ))0(())0(( jNP XfXf


  

leading to the enhancement of its corresponding ruling power, pj. Now the initial number of 
colonies under in the j-th empire, denoted by nj is computed by (1.108). 

j jn M p                                                                                                                        (1.108) 

such that 
1

N
j

j
n M


                                                                                                       (1.109) 

Here    represents the floor function. According to (1.108) the stronger imperialists with 

higher ruling power now possess larger empires. Hence pj symbolizes the fraction of the 
colonies occupied by the j-th imperialist. Subsequently the j-th empire is formed by randomly 
selecting nj countries from M colonies provided that there will be no common colony between 
two different empires. Hence the number of countries within the j-th empire including its 
imperialist is nj+1. Let the k-th country belonging to the j-th empire be denoted by )(tX j

k


(at 

generation t=0) for k= [1, nj+1]. The countries within the j-th empire are now sorted in 
ascending order of their objective function values such that the imperialist )(1 tX j  in the j-th 

empire attains the first rank. This step is repeated for j= [1, N]. 

1.4.3.4 Assimilation of Colonies 

Each imperialist country now attempts to improve its empire by enhancing the socio-political 
influences of its colonies. To accomplish this, each country )(tX j

k


in the j-th empire now 

moves towards its corresponding imperialist )(1 tX j by changing its characteristic features 

following (1.110) for k= [2, nj+1]. 

1( 1) ( ) (0,1) ( ( ) ( ))j j j j
k k kX t X t rand X t X t     
   

                                                                (1.110) 

Here (0,1)rand  is a uniformly distributed random number lying between 0 and 1 and β is 

the assimilation coefficient. The objective function value of the modified colony 
))1(( tXf j

k


is evaluated for k= [2, nj+1]. After assimilation, all the countries in the j-th 

empire are sorted in ascending order of the objective function values and the first ranked 
country is declared as the imperialist )1(1 tX j of the same empire for the next generation (i.e., 

t = t+1). The step is repeated for  j = [1, N]. 
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1.4.3.5 Revolution 

Revolution creates sudden fluctuation in the economic, cultural, and political aspects of 
countries in an empire. The colonies in an empire are now equipped with the power of 
randomly changing their socio-political attributes instead of being assimilated by their 
corresponding imperialist. It resembles the mutation of trial solutions in the traditional EA. 
The revolution rate η in the algorithm indicates the percentage of colonies in each empire 
which will undergo the revolution process. A high value of revolution rate therefore fortifies 
the explorative power at a cost of poor exploitation capability. Hence a moderate value of 
revolution rate is favored. Revolution is implemented by randomly selecting η×nj countries 
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are replaced by 
randomly initialized countries characterized by new socio-political nature. After revolution, 
as in case of assimilation, all the countries in each empire are sorted in ascending order of the 
objective function values so that its imperialist is at the first position. The step is repeated for 
all empires. 

1.4.3.6 Imperialistic Competition 

All the N empires now participate in an imperialistic competition to take possession of 
colonies of other weaker empires based on their ruling power. The colonies of the weaker 
empires will be gradually eluded from the ruling power of their corresponding imperialists 
and will be thereafter controlled by some other stronger empires. Consequently, the weaker 
empires will be losing their power and ultimately may be eradicated from the competition. 
The imperialistic competition along with the collapse mechanism will progressively result in 
an increment in the power of more dominant empires and diminish the power of weaker ones. 
The imperialistic competition encompasses the following steps. 

1.4.3.6.1 Total Empire Power Evaluation 

Once an empire is constructed under the dominance of the j-th imperialist )1(1 tX j , the power 

of the respective empire is compositely influenced by the objective function value of 
)1(1 tX j as well as the constituent colonies )1( tX j

k


(after assimilation) under the respective 

j-th empire for k= [2, nj+1]. The total objective function value of the j-th empire is evaluated 
as follows. 

1

1
2

1( ( 1)) . ( 1)
jn

j j
j k

j k
tc f X t X t

n





   

 
                                                                                  (1.111) 

Here ξ<1 is a positive number which regulates the influence of the constituent colonies to 
control the ruling power of the empire. A tiny value of ξ causes the total power of the j-th 
empire to be determined by its imperialist )1(1 tX j only, while increasing the value of ξ 

accentuates the importance of the colonies in deciding the total power of the respective 
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empire. The N empires now are sorted in ascending order of tcj for j = [1, N]. Then the 
normalized possession power of the j-th empire, ppj, is evaluated by (1.112) with tcN 
representing the total objective function value of the weakest empire in the current population 
Pt. 

1

N j
j N

N l
l

tc tc
pp

tc tc







                                                                                                        (1.112) 

It is evident from (1.112) that stronger the j-th empire (i.e., less the total objective function 
value tcj for minimization problem), higher is the possession power, ppj, which consecutively 
increases its probability of seizing colonies from weaker empires. This step is repeated for j = 
[1, N]. 

1.4.3.6.2 Reassignment of Colonies and Removal of Empire 

The empire with least possession power is interpreted as being defeated in the competition. 
Let the weakest colony of this weakest empire be denoted as worstX


, which is now removed 

from the dominance of its currently ruling imperialist and reassigned as a new colony to one 
of the stronger empires based on their possession probabilities. It is noteworthy that 

worstX


will not be possessed by the most powerful empires, but stronger the empire, more 
likely to possess worstX


. To accomplish this, the possession probability of the j-th empire is 

computed as follows for  j= [1, N]. 

(0,1)j jprob pp rand                                                                                                         (1.113) 

Now worstX


is assigned as a new colony to the j-th empire for which the possession 

probability probj is maximum. However, if the worst colony consists of only its imperial 
before exclusion operation, (i.e., worstX


is the imperialist of the weakest empire), the removal 

of worstX


will result in the collapse of the weakest empire.  

1.4.3.6.3 Union of Empires 

The disagreement between two empires may be assessed by the difference in their respective 
socio-political features. This dissimilarity between any two empires, j and l is evaluated by 
taking the Euclidean distance between the respective imperialists )1(1 tX j  and )1(1 tX l  as 

in (1.114) for j, l= [1, N]. 

, 1 1( 1) ( 1)j l
j lDist X t X t   

 
                                                                                          (1.114) 

If  Distj, l is less than a predefined threshold, Th, the two empires are merged into one empire. 
The stronger country among )1(1 tX j  and )1(1 tX l is declared as the imperialist of the newly 

formed empire. 
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After each evolution, we repeat from step 1.4.3.4 until one of the following conditions for 
convergence is satisfied. Stop criteria include a bound by the number of iterations, achieving 
a sufficiently low error or aggregations thereof. 

1.4.4 Differential evolutionary (DE) algorithm 
Differential evolutionary (DE) algorithm is a stochastic, population-based global optimization 
algorithm, introduced by Storn and Price in 1996, to optimize real parameter, real valued 
functions [62].  

Initialization Mutation Recombination Selection

 
Fig. 1.51 Steps of Differential evolutionary (DE) algorithm 

1.4.4.1 Initialization 

Range of each parameter i.e., the upper and lower boundaries for each parameter are defined, 
and then randomly these parameters are initialized.  

1.4.4.2 Mutation 
The step mutation expands the search-space. Mutation is done by (1.115), where [0,2]F   is 
the mutation factor. 1, 2, 3,,  and G G Gr r rx x x are the randomly selected variables with 

1 2 3, , ,  and i r r r G are index. , 1i Gv   refers to the donor vector.  

1, 2, 3,, 1 ( ).G G Gi G r r rv x F x x                                                                                           (1.115) 

1.4.4.3 Recombination 
Employing the target vector ,i Gx  and the elements of the donor vector , 1i Gv  the trial 

solution vector , 1i Gu


is evaluated by following (1.116). 
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                                                                      (1.116) 

where [1, ],i N [1, ]j D  and , 1 ,i G i Gv x   is checked by .randI  

1.4.4.4 Selection 
The target solution ,i Gx  is compared with the trial solution vector , 1i Gu   and the next 

generation is selected by (1.117).  
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where [1, ].i N  

Step 1.4.4.2. to 1.4.4.4 continue until the termination criterion as explained earlier is reached.  

1.4.5 Offline optimization 
By SI and EO algorithms only the offline optimization is possible due to their huge run-time 
complexity. In case of multi-robot coordination, robots evaluate the optimal trajectory 
(collection of coordinates) offline in the sense of system recourse (time and/or energy) 
utilization. After offline optimization of the trajectory it is executed in the real-robot.  

1.4.6 Performance analysis of optimization algorithms 
The performance of SI, EA and their hybridization can be analyzed by the following 
performance metrics. Quality of solution within a fixed epoch and the convergence time are 
two performances matrices of the SI and EA. In addition, mean best objective function versus 
function evaluation, accuracy versus function evaluation, and function evaluation versus 
search space dimensionality can be considered as the performance metrics. In spite of the 
above mentioned performance metrics, statistical test is conducted over the algorithms for 
performance measurement.  

1.4.6.1 Friedman test 

Friedman test [64], which is a non parametrical statistical test, may be carried out on the 
average objective function values of each of the algorithms for a fixed independent runs, 
assuming a fixed dimension. To carry out the Friedman test firstly the average ranking (Ri) for 
each of the considered algorithms is calculated as the mean of the individual ranks obtained 
by them over all the considered N number of benchmark functions, as shown in (1.118), 

1

1 N
j

i i
j

R r
N 

                                                                                                                         (1.118) 

Here, j
ir  refers to the individual rank attained by the i-th algorithm for the j-th benchmark 

function and the results have been computed considering N benchmark functions. In the next 
step, a term formally defining the Friedman statistic, that follows a 2

F  distribution with (k-1) 

degrees of freedom, has been evaluated using (1.119), 
2

2 2
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1.4.6.2 Iman–Davenport test 

Moreover, Iman–Davenport test [65] can also been conducted in order to substantiate the 
findings of the former statistical analysis.  It is basically a deviation from the Friedman test 
producing more precise results and the Iman-Davenport statistics is calculated as follows, 

2

2

( 1)
.

( 1)
F

F
F

N
F

N k



 


  
                                                                                                          (1.120) 

Tabular analysis can be shown in case of Friedman test, which demonstrates that the null 
hypothesis has been rejected if the computed value of 2

F is greater than the critical value of 
the 2

F  distribution with degrees of freedom (k-1) at probability of α ( 2
3, ). For, Iman-

Davenport test the statistic is distributed with (k-1) and (k-1)×(N-1) degrees of freedom. 
Likewise, the null hypothesis has been rejected as the calculated value of FF is greater than 
the critical value of the FF distribution with degrees of freedom (k-1) and (k-1)×(N-1) at 
probability of α ( ( 1),( 1),k NF   ). It is obvious, that the proposed algorithm is the most efficient 

one, hence, in the post-hoc analysis, proposed algorithm is assumed to be the control method.   
For multi-robot trajectory (path) planning Average total path deviation, Average Uncovered 

Target Distance, Average total path traversed, and numbers of steps required are considered 
as the performance metrics. 

1.5 Scope of the Thesis 
A plan refers to the sequence of actions to achieve a predefined goal. On the other hand, 
coordination indicates the skilful interaction among the agents to generate a feasible planning 
step. Therefore, coordination is an important issue in modern mobile robotics to address 
complex real-world problems. The thesis offers novel multi-robot coordination techniques 
(algorithms) with or without communication among the robots. Here, coordination among 
multiple robots is achived by means of two distinct approaches.The first approach attempts to 
optimize individual robot’s parameters with respect to coordination of the entire team of 
robots. Any traditional meta-heuristic optimization algorithm would serve the purpose. We, 
however, employ a hybridization of two algorithms to develope a potential algorithm to 
overcome the individual limitations. Since parameter sharing of two robots is needed for 
fruitful coordination, the optimization algorithm used requires communication among agents 
for such parameter sharing. However, communication among robots has several negative 
consequences. The most important among these is possibility of network failure, which might 
affect the robustness of the system.  
    The second alternative approach for multi-robot coordination is learning-induced planning 
and coordination.  Here, each agent learns the group performance and the knowledge formed 
thereby is used subsequently for planning and coordination. The learning-induced 
coordination is free from communication. Although there exists a vast literature on learning 
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based planning and coordination, there is a dearth of literature on reinforcement learning 
induced planning.  We here propose a game theoretic learning algorithm, which has an 
excellent team-performance in comparison to the existing works. The said algorithm utilizes 
an “equilibrium strategy” to optimize the performance of the all the agents. The “equilibrium 
strategy” is so named as a deviation in action by any one agent from the equilibrium may 
incur degradation in the performance of the agents. The contibutations claimed in the present 
thesis are framed into seven chapters and are briefly outlined below.  

Chapter 1 provides an introduction to the multi-robot coordination algorithms for complex 
real-world problems, including transportation of a box/stick, formation control for defense 
applications and soccer playing by multiple robots utilizing the principles of reinforcement 
learning, theory of games, dynamic programming, and/or evolutionary algorithm. Naturally, 
this chapter provides a thorough survey of the exiting literature of reinforcement learning with 
a brief overview of the evolutionary optimization to examine the role of the algorithms in the 
context of multi-agent coordination. Chapter 1 includes multi-robot coordination employing 
evolutionary optimization, and specially reinforcement learning for cooperative, competitive, 
and their composition for application to static and dynamic games. The later part of the 
chapter deals with an overview of the metrics used to compare the performance of the 
algorithms while coordinating. Fundamental metrics for performance analysis are defined to 
study the learning and planning algorithms. 

Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-
agent Q-learning algorithms (Nash Q-Learning and Corelated Q-Learning) for multi-robot 
coordination and planning. This extension is achived by employing two interesting properties. 
The first property deals with the exploration of the team-goal (simultaneous success of all the 
robots) and the other property is related to the selection of joint action at a given joint state. 
The exploration of team-goal is realized by allowing the agents, capable of reaching their 
goals, to wait at their individual goal states, until remaining agents explore their individual 
goals synchronously or asynchronously. Selection of joint action, which is a crucial problem 
in traditional multi-agent Q-learning, is performed here by taking the intersection of 
individual preferred joint actions of all the agents. In case the resulting intersection is a null 
set, the individual actions are selected randomly or otherwise following classical techniques. 
The superiority of the proposed learning and learning-based planning algrorithms are 
validated over contestant algorithms in terms of the speed of convergence and run-time 
complexity respectively.  

In chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of 
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above 
perspective, robots need to adapt with such a strategy, which can select the optimal 
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equilibrium in each step of the learning and the planning. To address the bottleneck of the 
optimal equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-
learning for multi-robot cordination, by extending the equilibrium-based multi-agent Q-
learning algorithms. It is also shown that a consensus (joint action) jointly satisfies the 
conditions of the coordination type pure strategy Nash equilibrium and the pure strategy 
correlated equilibrium. The superiority of the proposed consensus Q-learning algorithm over 
traditional reference algorithms in terms of the average reward collection are shown in the 
experimental section. In addition, the proposed consensus-based planning algorithm is also 
verified considering multi-robot stick-carrying problem as the test bed. 

Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite 
rewards of all the agents in one Q-table in joint state-action space during learning, and 
subsequently these rewards are employed to compute correlated  equilibrium in the planning 
phase. Two seperate models of multi-agent Q-learning have been proposed. If success of only 
one agent is enough to make the team successful, then model-I is employed. However, if an 
agent’s success is contingent upon other agents and simultaneous success of the agents is 
required then model-II is employed. It is also shown that the correlated equilibrium obtained 
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order 
to restrict the exploration within the feasible joint states, constraint versions of the said 
algorithms are also proposed. Complexity analysis and experiments have been undertaken to 
validate the performance of the proposed algorithms in multi-robot planning on both 
simulated and real platforms. 

Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The 
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which 
is employed to determine the time-optimal trajectory of a stick, being carried by two robots, 
from a given starting position to a predefined goal position amidst static obstacles in a robot 
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the 
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also the 
trade-off between the exploration and exploitation is balanced by modifying the random walk 
strategy based on the position of the candidate solutions in the search space. The superiority 
of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and 
accureacy as the performance metrics. Finally, the proposed algorithm has been verified in 
real-time multi-robot stick-carrying problem.  

Chapter 6 concludes the thesis based on the analysis made, experimental and simulation 
results obtained from chapter 1-6. The chapter also examines the prospects of the present 
thesis in view of the future research trends.  



98 
 

1.6 Summary 
Chapter 1 introduces multi-robot coordination algorithms for complex real-world problems 
employing the principles of reinforcement learning, theory of games, dynamic programming, 
and/or evolutionary algorithm. As expected, chapter 1 includes a thorough survey of the 
exiting literature of reinforcement learning with a brief overview of the evolutionary 
optimization to examine the role of the algorithms in view of the multi-agent coordination. 
Here multi-robot coordination is achived by employing the evolutionary optimization, and 
specially reinforcement learning for cooperative, competitive, and their composition for 
application to static and dynamic games. The remainder of the chapter provides an overview 
of the metrics used to compare the performance of the algorithms while coordinating. 
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Chapter 2                                                    
Improving Speed of Convergence of Multi-
Agent Q-learning for Cooperative Task-
Planning by a Robot-Team 
 
 
 

Learning-based planning algorithms are currently gaining popularity for their increasing 
applications in real-time planning and cooperation of robots. The chapter aims at extending 
traditional multi-agent Q-learning algorithms to improve their speed of convergence by 
incorporating two interesting properties, concerning i) exploration of the team-goal and ii) 
selection of joint action at a given joint state. The exploration of team-goal is realized by 
allowing the agents, capable of reaching their goals, to wait at their individual goal states, 
until remaining agents explore their individual goals synchronously or asynchronously. To 
avoid unwanted never-ending wait-loops, an upper bound to wait-interval, obtained 
empirically for the waiting team members, is introduced. Selection of joint action, which is a 
crucial problem in traditional multi-agent Q-learning, is performed here by taking the 
intersection of individual preferred joint actions of all the agents. In case the resulting 
intersection is a null set, the individual actions are selected randomly or otherwise following 
classical multi-agent Q-learning. It is shown both theoretically and experimentally that the 
extended algorithms outperform its traditional counterpart with respect to speed of 
convergence. To ensure selection of right joint action at each step of planning, we offer high 
rewards to exploration of the team-goal and zero rewards to exploration of individual goals 
during the learning phase. The introduction of the above strategy results in an enriched joint 
Q-table, the consultation of which during the multi-agent planning yields significant 
improvement in the performance of cooperative planning of robots. Hardwired realization of 
the proposed learning based planning algorithm, designed for object-transportation 
application, confirms the relative merits of the proposed technique over contestant algorithms. 
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Table 2.1 List of acronyms 

 
Full form Acronyms  
Multi-agent Q-learning : MAQL 
Traditional MAQL : TMAQL 
Nash equilibrium : NE 
Nash Q-Learning :  NQL 
NQL with equilibrium transfer :  NQLET 
NQL with Property 1: NQLP1 
NQL with Property 2 : NQLP2 
NQL with Property 1 and 2 : NQLP12 
Correlated equilibrium :  CE 
Correlated Q-learning :  CQL 
Utilitarian Q-Learning :  UQL 
UQL with equilibrium transfer :  UQLET 
UQL with Property 1 : UQLP1 
UQL with Property 2 : UQLP2 
UQL with Property 1 and 2 : UQLP12 
Egalitarian Q-Learning :  EQL 
EQL with equilibrium transfer :  EQLET 
EQL with Property 1 : EQLP1 
EQL with Property 2 : EQLP2 
EQL with Property 1 and 2 : EQLP12 
Republican Q-Learning :  RQL 
RQL with equilibrium transfer :  RQLET 
RQL with Property 1 : RQLP1 
RQL with Property 2 : RQLP2 
RQL with Property 1 and 2 : RQLP12 
Libertarian Q-Learning :  LQL 
LQL with equilibrium transfer : LQLET 
LQL with Property 1 : LQL1 
LQL with Property 2 : LQL2 
LQL with Property 1 and 2 : LQLP12 
Frequency of the maximum reward Q-learning :  FMRQ 
FMRQ with Property 1 : FMRQP1 
FMRQ with Property 2 : FMRQP2 
FMRQ with Property 1 and 2 : FMRQP12 
Fast cooperative multi-agent Q-learning :  FCMQL 
Nash Q Induced multi-agent planning :  NQIMP 
Correlated Q induced multi-agent planning :  CQIMP 
Contributed reward by agent i  for the team : iCR  
Imperialist Competitive Firefly Algorithm :  ICFA 
modified noise-resistant Particle Swarm Optimization : MNPSO 
Differential Evolutionary : DE 
multi-robot joint action learning by demonstration : MLbD 

2.1 Introduction  
Reinforcement learning (RL) [1-10] refers to a real-time learning paradigm, where an agent 
learns its environment with respect to a fixed goal by receiving reward/penalty [6] for its 
actions on the environment. The reward/penalty obtained by the agent for its sequence of 
actions is used to adapt its effective reward in a given state-action space [11-14], [15]. The 
motivation of RL is to derive the optimal action at a given environmental state for which the 
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agent would be able to derive the maximum reward. Such formulation of deriving optimal 
action at a given state based on the learned experience of interaction with the environment has 
plenty of interesting applications, including generating moves in a game [16-17], complex 
task-planning and motion-planning of a mobile robot in a constrained environment [18]. In 
RL, the environment is typically represented by a Markov Decision Process (MDP) with 
unknown state-transition probabilities and an unknown reward model [6]. MDP provides the 
basic mathematical model of a discrete-event system [19].  

Among the RL algorithms, Q-learning is most popular. Q-learning does not require any 
background knowledge of the agents’ environment and thus is called model-free. This 
characteristic of Q-learning is advantageous [20] as learning can be performed without the 
knowledge of the environment. In Q-learning, optimal policy for each state-action pair is 
estimated through an iterative process using Dynamic Programming (DP) [21], realized with 
the well-known Bellman Equation (BE) [21]. In single agent Q-learning, the state-transitions 
are controlled by the agent itself. However, in a multi-agent environment, all the agents 
participate to select their individual actions and form a joint action in a joint state-space. 
Because of joint actions by the agents on the environment, the environment in multi-agent Q-
learning (MAQL) [2], [12], [18], [22-40], [42-52], [59] appears as dynamic to an individual 
agent. Like single agent Q-learning, a MAQL too is described by a MDP, called Multi-agent 
MDP (MMDP) [23]. [33].  

Several extensions of the single agent Q-learning for multi-agent applications is available. 
The fundamental problems in MAQL, by which it significantly differs from its single-agent 
counterpart, include [2], [18], [22-40], [42-52], [59] i) joint action selection, ii) update policy 
selection for adaptation of the Q-table in joint state-action space and iii) exploration of the 
team-goal. Although the first two problems have been addressed in the literature, the last one 
remains unattended. In this paper, we provide a solution to MAQL with a motivation to deal 
with exploration of the team-goal and demonstrate its scope of applications in tight 
cooperative multi-agent planning. 

Several approaches to action selection in a single agent are available. A few of these that 
deserve special mention includes   greedy exploration [6], Boltzmann strategy [15], [53] 
the extended Boltzmann strategy for Frequency Maximum Q-value (FMQ) heuristic [45] and 
also random selection. Selection of a joint action traditionally is done in two phases. First, 
individual actions are selected by any one of the above techniques. Next, the individual 
actions are combined to form a joint action. However, there are situations when the joint 
actions thus obtained are infeasible for a given environment. In Traditional MAQL 
(TMAQL), the researchers do not check the possibility of infeasible actions, as infeasible 
actions are penalized and thus automatically get forbidden in subsequent learning epochs. 
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Wang et al. introduced a novel technique for joint action selection in their proposed 
Sequential Q-Learning (SQL) using a two step procedure [18]. In the first step, they 
employed the Boltzmann strategy for the individual action selection, and in the second step 
they designed a specialized selection operation to avoid the same actions repeatedly. Besides 
joint action selection, there exists extensive literature on update policy in the Q-table. A few 
of these include Nash Q-learning (NQL) [27-28], correlated Q-learning (CQL) [26], SQL 
[18], sparse Q-learning [50], heuristically accelerated MAQL [51], MAQL with equilibrium 
transfer (MAQLET) [48], and Frequency of the maximum reward Q-learning (FMRQ) [52]. 
These techniques have their individual merits depending on the nature of the problem 
selected.     

Of the three problems in MAQL, we discussed above the major works on the first two. 
Unfortunately, there is hardly any work on the last problem on exploration of the team-goal. 
In many real world problems, particularly where tight cooperation of the members is required, 
such as carrying a stick [63] /pushing a box [52] by two (or more) robots in an environment 
with plenty of obstacles. Here, the moves that ensure reaching of one or more (but not all) 
agents to their individual goals are no longer useful. Such moves, if executed during planning, 
may not allow the agents, who have reached their goals, to perform any further actions. Thus 
there is an apparent deadlock as no team effort can keep the agents continue changing their 
states. 

In this paper, we overcome the above problem by realization of the following strategy in the 
learning phase. The strategy includes allowing one or more agents, who could manage to 
reach their individual goals, to wait in their individual goal states for a significantly large time 
to give the remaining agents a chance to move to their respective (individual) goals 
synchronously or asynchronously. Such multi-phase state-transition to the team-goal offers 
one way to overcome the limitation of single-phase goal transition. Here, the goal transition in 
the last phase only accumulates high (immediate) reward contributed by an agent for the 
team, thereby improving the entries in the Q-table for state-transitions for the team-goal. The 
Q-table thus obtained offers the team the additional benefit to identify the joint action leading 
to transition to the team-goal.  

One question that may be raised is how long the agents, who could manage to reach their 
goals, wait for the other agents to reach their subsequent goals. A small waiting interval may 
not be enough to allow all agents to reach their goals. On the other hand, a large interval may 
keep the entire team waiting at their team-goal. Thus selection of the right time–interval for 
the agents waiting at their individual goals is a crucial parameter, which in turn determines 
both the speed and planning performance of the agents. 
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The other important issue addressed in the chapter is the joint action selection. Here, the 
agents identify their preferred individual actions in combination with all possible actions by 
the other agents with an aim to determine the preferred joint action(s) of the team by taking 
the meet operation of such combinations. The joint action selection introduced above is useful 
for agents acting synchronously. As agents act synchronously, they do not require setting any 
priority to them like in [18]. In case no feasible joint action by the above method is available, 
the agents select individual actions randomly or by standard techniques (Boltzmann strategy 
and ε-greedy) used in traditional Q-learning [6], [15], [37], [45] to construct the joint action. 

The incorporation of the above two strategies in the MAQL enhances the planning 
performance of multi-agent systems as the Q-tables, defined in joint state-action space, is 
enriched with high reward values for state-transitions concerning exploration of the team-goal 
in the next joint state. The reward values stored in the joint Q-table are also adapted with 
greater rewards for next joint states geographically closer to the team-goal. The resulting joint 
Q-table would offer the right selection of next joint state, helping the agents reach the team-
goal by an optimal/near-optimal path for transition from the starting joint state to the goal 
state.  

A fast cooperative multi-agent Q-learning (FCMQL) and its associated multi-agent 
planning algorithm have been developed using the above two strategies in both deterministic 
and stochastic environment. Experiments undertaken confirm that the proposed algorithms 
outperform their existing competitors with respect to convergence time in learning and 
successful team-task in planning. In addition, the joint action selection employing Imperialist 
Competitive Firefly Algorithm (ICFA) [63], modified noise-resistant Particle Swarm 
Optimization (MNPSO) [54-55], Differential Evolutionary (DE) [56-57], and multi-robot 
joint action learning by demonstration (MLbD) [58] algorithms are compared separately with 
the FCMQL based multi-robot planning algorithms. The merits of the present work are now 
outlined below. 

1) Two useful properties have been developed to speed-up the convergence of MAQL 
algorithms. Property 2.1 establishes the principles used to overcome the exploration of the 
team-goal. Property 2.2 directs an alternative approach to speed-up the convergence of 
MAQL by identifying the preferred joint action for the team. 

2) Incorporation of the above two properties in TMAQL (including NQL, variants of CQL, 
MAQLET and FMRQ) results in significant improvement in speed of convergence. 

3) In addition, because of an enriched Q-table to handle transitions to goal states, the 
proposed FCMQL induced planning algorithm can successfully complete the plan to reach the 
team-goal, where TMAQL based planning stops inadvertently.  
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   4)  Experiments have been developed to validate the performance of the proposed FCMQL 
with the contender algorithms in terms of the convergence speed and the run-time complexity 
as the performance metrics.  
    The rest of the chapter is structured as follows. Preliminaries of RL are reviewed in Section 
2.3. Section 2.4 and 2.5 introduces the proposed FCMQL algorithms and Section 2.6 deals 
with multi-agent cooperative planning algorithms. Section 2.7 includes experiments and 
results. The conclusions are listed in Section 2.8. 

2.2 Literature review 
Quite a few interesting works on the MAQL have been reported in the literature [18], [22-40], 
[42-52], [59]. Among the state-of-the-art MAQL algorithms, the following need special 
mentions. In [24], Claus and Boutilier, aimed at solving the coordination problem using two 
types of reinforcement learners. The first one, called independent learner (IL) [24], takes care 
of the learning behavior of individual agents by ignoring the presence of other agents. The 
second one, called joint action learner (JAL) [24], considers all agents including the self to 
learn at joint action-space. Unlike JAL, in Team Q-learning [59] proposed by Littman, an 
agent updates its Q-value at a joint state-action pair without utilizing associated agents' 
reward; rather the value function of the agent at the next joint state is evaluated by obtaining 
the maximum Q-value among the joint actions at the next joint state. In [37], Ville proposed 
Asymmetric-Q learning (AQL) algorithm, where the leader agents are capable of maintaining 
all the agents Q-tables. However, the follower agents are not allowed to maintain all the 
agents’ Q-tables and hence, they just maximize their own rewards. In AQL, agents always 
achieve the pure strategy Nash equilibrium (NE), although there does exist mixed strategy NE 
[27-28]. In [27], Hu and Wellman extended the Littman’s Minimax Q-learning [40] to 
general-sum stochastic game (where summation of all agents’ payoff is neither zero nor 
constant) [16], [41] by taking into account of other agents’ dynamics using NE [27], [28], 
[60]. They also offered a proof of convergence of their algorithm [42]. In [43] and [44], the 
authors selected one NE optimally in case of its multiple occurrences. In [30], Littman 
proposed, Friend-or-Foe Q-learning algorithm for general-sum games. In this algorithm, the 
learner is instructed to treat each other agent either as a friend in Friend Q-learning (FQL), or 
as a foe in Foe Q-learning. Friend-or-Foe Q-learning provides a stronger convergence 
guarantee in comparison to that of the existing NE based learning rule [27-28]. In [26], 
Greenwald and Hall proposed CQL employing correlated equilibrium (CE) [26] to generalize 
both NQL [27] and Friend-or-Foe Q-learning [30]. The bottlenecks of the above MAQL 
algorithms are update policy selection for adaptation of the Q-tables in joint state-action space 
and the curse of dimensionality with the increase in number of learning agents. Several 
attempts have been made to handle the curse of dimensionality in MAQL. Jelle and Nikos 
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proposed Sparse Cooperative Q-learning in [50], where a sparse representation of the joint 
state-action space of the agents is done by identifying the need of coordination among the 
agents at a joint state. In [50], agents undertake coordination by their actions only in a few 
joint states. Hence, each agent maintains two Q-tables: one is the individual-action Q-table for 
un-coordinated joint states and other one is the joint action Q-table to represent the 
coordinated joint states. In case of uncoordinated states, a global Q-value is evaluated by 
adding the individual Q-values. In [49], authors offer a neural network based approach for 
generalized representation of the state-space for multi-agent coordination. By such 
generalization, agents (here robots) can avoid collision with an obstacle or other robots by 
collecting minimum information from the sensors. In [51], Reinaldo et al. proposed a novel 
algorithm to heuristically accelerate the TMAQL algorithms. In the literature of MAQL [18], 
[22-40], [42-52], [59] agents either converge to NE or CE. The equilibrium-based MAQL 
algorithms [26], [27] are most popular for their inherent ability to determine optimal strategy 
(equilibrium) at a given joint state. In [48], Hu et al. identified the phenomenon of similar 
equilibria in different joint states and introduced the concept of equilibrium transfer to 
accelerate the state-of-the-art equilibrium-based MAQL (NQL and CQL). In equilibrium 
transfer, agents recycle the previously computed equilibria having very small transfer-loss. 
Recently in [52], Zhang et al. attempted to reduce the dimension of the Q-tables in NQL. The 
reduction is done by allowing the agents to store the Q-values in joint state-individual action 
space, instead of joint state-action space. However, with the best of our knowledge there is no 
work in the literature, which considers simultaneous exploration of the individual goals (i.e., 
team-goal) of the agents. 

In the state-of-the-art MAQL (NQL [27], [28] and CQL [26]), balancing 
exploration/exploitation during the learning phase is an important issue. Traditional 
approaches used to balance exploration/exploitation in MAQL are summarized here. The 
  greedy exploration [6], although has wide publicity, needs to tune the value of ,  which 

is time-costly. In the Boltzmann strategy [15], the action selection probability is controlled by 
tuning a control parameter (temperature) [15] and by utilizing the Q-values due to all actions 
at a given state. Here, the setting of temperature to infinity (zero) implies pure exploration 
(exploitation). Unfortunately, the Boltzmann strategy antagonistically affects the speed of 
learning [45]. Evolution of the Boltzmann strategy towards better performance is observed in 
[38] and [45]. However, the above selection mechanisms are not suitable for selecting a joint 
action preferred for the team (all the agents) because of the dissimilar joint Q-values offered 
by the agents at a common joint state-action pair. There are traces of literature concerning 
joint action selection at a joint state during learning. In [54], Jim and Alcherio employ a 
MNPSO, where each agent is considered as a swarm and they can communicate with each 
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other. In [58], the joint action for multi-robot cooperation is selected by learning simultaneous 
demonstration [58].  

2.3 Preliminaries  
The section presents preliminaries of RL, single agent Q-learning and MAQL concisely. In 
RL [6], [8], an agent interacts with the environment, by means of a 3-tuple <state ( ),s action 
( ),a  reward ( )r >. A state refers to the current position of an agent (here robot) within an 

environment. By executing an action in the current state, the agent receives a scalar reward 
from the environment and moves to the next state. The scalar reward acts as a feedback for 
the agent on its immediate performance. Fig. 2.1  provides a schematic overview of RL. 
 

 

Fig. 2.1 Block diagram of reinforcement leaning (RL) 

 

2.3.1 Single agent Q-learning 
Single agent Q-learning, proposed by Watkins and Dayan, is one of the most widely used 
RL techniques [20]. In single agent Q-learning, the environment is divided into a finite 
number of states. At any state, an agent has a finite set of actions, from which it can choose 
one according to a given policy. The agent learns optimal state-action value (Q-value) for 
each state-action pair using the principle of DP and BE [21]. In single agent Q-learning, the 
agent attempts to determine the optimal policy in order to maximize the sum of discounted 
expected rewards [11]. The single agent Q-learning update rule is given by (2.1) [20]: 

 

//

/ / /( , ) (1 ) ( , ) [ ( , ) [ | ( , )] ( , )].
as

Q s a Q s a r s a P s s a MaxQ s a                                      (2.1) 

where, ( , )Q s a  and ( , )r s a  are the Q-value and immediate reward respectively at state s due 

to action ,a  / { }a a  is the action in the next state / { },s s / ( , )s s a  is the state-
transition function, [0,1)   denotes the discounting factor and [0,1)   refers to the 

learning rate. However, in the deterministic situation, the state-transition probability 
/[ | ( , )]P s s a  to reach the next state / { }s s  from the state s  because of action a  is unity. 

After infinite revisit of ( , ),s a  Q-value ( , )Q s a  turns to the optimal Q-value *( , ).Q s a   
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2.3.2 Multi-agent Q-learning 
Unlike single agent Q-learning presented above, in MAQL, the joint Q-value depends on the 
other agents’ actions too. In MAQL, MDP is extended to MMDP [23], [32]. The definition of 
MMDP is given below. 
Definition 2.1: A multi-agent MDP (MMDP) for m  number of agents can be defined as a 5-
tuple { }, ,{ }, , ,i iS  m  A  P R  

     where, 

         
1

{ } { }
m

i
i

S s


   is the joint state space, { }S S  and { }i is s  is the state of agent ,i     

          denotes the Cartesian product, 

         
1

{ } { }
m

i
i

A a


   is the joint action space, { }A A  and { }i ia a  is the action of agent ,i  

         :{ } { } { } [0,1]iP S A S    is the joint state-transition probability of agent ,i  
and    :{ } { } RiR S A   is the reward function at a joint state-action pair of agent ,i   

          where R is the set of real numbers. 
MAQL algorithms [18], [22-40], [42-52], [59] usually are of three types: cooperative, 
competitive and mixed [47]. In this paper, we deal with cooperative MAQL algorithms, 
where all the agents adapt Q-tables in a common environment. Because of the adaption in a 
common environment, the environment becomes dynamic, and an agreement is needed 
among the agents to attain optimal performance of the team. Such agreement is attained by 
adapting the joint Q-values in equilibrium, e.g., NE [60] and CE [26]. Both NE and CE 
employ a) pure strategy and b) mixed strategy. The definitions of NE [60] and CE [26] are 
given below.  
Definition 2.2: Nash equilibrium is a stable joint action (or strategy) at a given joint state ( )S  

of a system that involves m  interacting agents, such that no unilateral deviation (deviation of 
an agent independently) can occur as long as all the agents follow the same optimal joint 
action *

1
m

N i iA a    at a joint state { }S S  for pure strategy NE. Further, for a mixed 

strategy NE, agents perform the joint action 1
m

i iA a    with a probability 

* *
1

( ) ( ),
m

i i
i

p A p a


  where * :{ } [0,1],i ip a  * :{ } [0,1]p A  . 

Let * { }i ia a  be the optimal action of agent i  at is  and *
iA A   be the optimal joint action 

profile of all agents except agent i  at joint state 1,
m

j j j iS s     and ( , )iQ S A  be the joint 

Q-value of agent i  at S  because of joint action { }.A A Then the condition of pure strategy 

NE at S  is [60] 
    * * *( , , ) ( , , ),  i i i i i iQ S a A Q S a A i                                                     
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/( , ) ( , ),    i N iQ S A Q S A i     * * / *[where ,  and , ]N i i i iA a A A a A                      (2.2) 

and condition of mixed strategy NE at S is [60] 
* * *( , , ) ( , , ),  ,i i i i i iQ S p p Q S p p i                                                                                        (2.3) 

where, ( , ) ( ) ( , )i i
A

Q S p p A Q S A


  and * *
1,

( ) ( )
m

i i j j
j j i

p A p a 
 

  be the joint probability of 

selecting joint action profile of all agents except agent i  denoted by iA A  . 

Agents follow (2.2) to evaluate pure strategy NE * *,N i iA a A   and (2.3) for mixed 

strategy NE * *( ), ( )i i i ip a p A    respectively at joint state .S  Evaluation of NE employing 

Lemke-Howson method [65] is quiet efficient but limited to two agents problem only. In this 
chapter, to evaluate NE a simple search method following [66] has been employed.  

In NE, agents are allowed to maximize its own reward. However, in CE, the composite 
benefits of the agents are considered by selecting the individual actions jointly. In [26], 
authors outline four variants of CE: Utilitarian equilibrium (UE) (representing sum of all the 
agents’ rewards), Egalitarian equilibrium (EE) (computed by taking minimum of all the 
agents’ rewards), Republican equilibrium (RE) (obtained by taking maximum of all the 
agents’ rewards) and Libertarian equilibrium (LE) (which multiplies all the agents’ rewards) 
to evaluate a joint strategy (action). 
Definition 2.3: Correlated equilibrium (CE) at a joint state, 1

m
i iS s    with m  

interacting agents is the pure strategy CE, CA  and mixed strategy CE, *( )Cp A  if agents 

follow (2.4) and (2.5) respectively [26]. 
arg max[ ( ( , ))]C i

A
A Q S A                                                                                                    (2.4) 

*
( )

( ) arg max[ [ ( )( ( , ))]]C i
Ap A

p A p A Q S A                                                                                     (2.5)     

where, 
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

                                                (2.6) 

In [27], Hu and Wellman proposed NQL with the help of NE to update the reward of the 
agent at joint state-action space. Similarly, in [26], Greenwald and Hall proposed CQL with 
the help of CE to update the reward of the agent at joint state-action space. Later in [48], Hu 
et al. attempted to accelerate the NQL and CQL by equilibrium transfer. Recently in [52], 
Zhang et al. attempted to reduce the dimension of the Q-tables in NQL. The reduction is done 
by allowing the agents to store the Q-values in joint state-individual action space, instead of 
storing them in joint state-action space. The above mentioned NE/CE-based algorithms are 
summarized in Algorithm 2.1. In Algorithm 2.1, ( , )ir S A  refers to the immediate reward of 
agent i  given by (2.7), where maxr and minr are the maximum and minimum immediate 

rewards respectively.  
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max

min
+

( , ) ,  if agent  reaches its individual goal,
            ,   if agent  does not reach its individual goal,

            ,      if agent  violates constraint, R .

ir S A r i
r i

r i r





  

                                             (2.7) 

 
Algorithm 2.1: NE/CE-based Multi-agent-Q Learning 

Input: Current state , ,is i  action set{ },ia   is a small positive threshold to stop the algorithm, 

[0,1)   and [0,1);   

Output: Joint Q-value of agent i *( , ), , , ;iQ S A S A i     

Initialize: ( , ) 0,  , , ;iQ S A S A i      
Repeat 
  Observe the current state , ;is  i  

  Randomly select an action { }i ia a at is and execute it ;i  

  Receive ( , ),  ,ir S A i evaluate next state / ( , ),i i i is s a  i  to obtain next joint state / /
1;m

i iS s     

 / ( , ) ( , ), ;i iQ S A Q S A i     
  Update:  

/

/ /( , ) (1 ) ( , ) [ ( , ) [ | ( , )]  ( )],i i i i i
S

Q S A Q S A r S A P S S A Q S i        // for stochastic 

/( , ) (1 ) ( , ) [ ( , )  ( )],i i i iQ S A Q S A r S A Q S i            //for deterministic, { , }NE CE  

                and / ;S S      // /( )iQ S is the Q-value of agent i due to { , }NE CE  at joint state /S  

Until /| ( , ) ( , ) | , , , ;i iQ S A Q S A S A i        

Obtain  *( , ) ( , ), , , .i iQ S A Q S A S A i     

 
Complexity analysis: To analyze complexities of the Algorithm 2.1  [27], [52] let for m  
number of agents { }S  be the set of joint states and { }A  be the set of joint actions from each 
joint state { }.S S  In NQL, CQL and MAQLET, an agent maintains Q-table at joint state-

action space. In the absence of communication [27], an agent has to maintain all the agents' 
Q-tables at joint state-action space. So, the space complexity of the NQL, CQL, and 
MAQLET algorithms is |{ } ||{ } | .m S A  However, in FMRQ, an agents adapts Q-values at a 

joint state for each individual actions. Therefore, the space complexity of the FMRQ 
algorithms is |{ }||{ }|,m S a where 1 2{ } { } ... { } { }.ma a a a     Also in the TMAQL, an 

agent updates all the agents’ Q-values at the current joint state-action pair by selecting the Q-
values in the next joint state at NE/CE in each learning epoch. So, the time complexity to 
evaluate NE (considering pure strategy NE) is 

1(|{ }| 1). |{ }| (|{ }|)m mA A O A  and time complexity 
to evaluate the pure strategy CE is ( 1)(|{ }| 1) ( |{ }|).m A O m A    
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2.4 Proposed multi-agent Q-learning 
The Algorithm 2.1 presented above, suffers from two limitations: i) exploration of the team-
goal and ii) joint action selection. In addition, overcoming these limitations derive additional 
benefit in subsequent planning stage to optimally select the team-goal. We here briefly outline 
the possible ways to overcome the limitations stated above. 

In this section, we propose two important properties to overcome the above limitations and 
subsequently increase the speed of convergence of MAQL algorithms. In the first property, 
when one agent reaches its goal, it would remain idle, while its teammates continue 
exploration for their respective goals. The second property ascertains selection of a joint 
action at a joint state corresponding to the least reward of all the agents. It is shown that such 
selection accelerates the learning of the Q-table in MAQL algorithms. It is shown that the 
convergence speed of the proposed FCMQL algorithms is more than the same of the TMAQL 
(NQL, CQL, MAQLET, and FMRQ) algorithms. We now define a new term, called 
contributed reward by agent i  for the team denoted by .iCR  

Definition 2.4: The contributed reward by agent i  to achieve the team-goal is a scalar 
quantity: ( , ),iCR S A  defined at joint state S  due to joint action ,A is given by 

max

min

( , ) ,  if all agents reach their goals simultaniously,
               ,   if atleast one agent is left to reach  its goal,

               ,      if atleast one agent violates constraint, 

iCR S A r
r

r r





  +R .

                                      (2.8) 

where, maxr and minr  are the maximum and minimum immediate rewards respectively. 

Violation of constraints generally indicates collision among the team-mates. 

/

/ /( , ) (1 ) ( , ) [ ( , ) [ | ( , )]  ( )]i i i i i
S

Q S A Q S A CR S A P S S A Q S                                  (2.9) 

where, [0,1)   and [0,1)   refer to the discounting factor and learning rate respectively. 

The joint state-transition function designed following TMAQL is given below: 
    1( , ) ( , ) m

i i i iS A s a                                                                                                     (2.10) 

                 /
1

m
i is    

                 /S   
                 { }S  

and /[ | ( , )]iP S S A  denotes the joint state-transition probability of agent i  to reach the next 

joint state / { }S S  from the joint state S  because of joint action .A  / ( )iQ S  is the Q-value 

of agent i  because of { , }NE CE  at next joint state /S and is evaluated by a simple search 

method [66]. 
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2.4.1 Two useful properties 
The properties based on which the FCMQL algorithms are being developed are discussed 
below. The properties are valid both in deterministic and stochastic situations. Property 2.1 is 
derived using Statute 2.1 given below.  
Statute 2.1: Unlike the TMAQL in the proposed FCMQL, when an agent moves to its goal 
state, it will not restart the learning process by randomly selecting a state (excluding its goal 
state); rather it waits in its goal state, and will restart learning along with all other agents, 
when the last agent moves to its individual goal state.   
Property 2.1: In MAQL, if all the agents follow Statute 2.1, then the probability of exploring 
the team-goal monotonically increases with k in a learning episode, where k refers to the 

number of agents explore their individual goals. 
Proof: See Appendix 2.1 (Section 2.10). 

Besides exploration of the team-goal, to speed-up learning further, Property 2.2 is proposed. 
For the sake of convenience of the readers, the definition of preferred joint action is given 
below. 
Definition 2.5: If ( , )iQ S A  refers to the Q-value of agent i  at joint state S  because of joint 

action ,A  then the set of preferred joint actions { }p
iA  of agent ,i  is obtained by (2.11). 

{ } arg max[ ( , )].p
ii

A
A Q S A                                                                                                        (2.11) 

We also define the common preferred set of joint actions of m  agents as  

1
{ } { }.

m pp
ii

A A


                                                                           (2.12) 

In case { } ,pA   the agents would select their individual preferred actions randomly or by 

traditional selection techniques [6], [15], [53], [45]. 
In Property 2.2 introduced below, if at a joint state S  only one joint action A  remains non-

utilized, then the probability to execute A  at S  becomes one, i.e., the joint action A  is 

selected certainly for execution. This, in other words, indicates that the joint actions already 
taken in a joint state should not be repeated, until all the joint actions at that joint state have 
been explored.  
Property 2.2:  In MAQL, if  { }pA  is the set of equally preferred joint action for the team at 
the joint state S  where { } { } {arg min[ ( , )]} ,pp

iii i A
A A Q S A 

 
      then /( , ) ( , )p pP S A P S A  

where /pA refers to the preferred joint action in the next iteration 
Proof: See Appendix 2.1 (Section 2.10). 

In Property 2.2, if an agent i  receives a penalty (reward of r by (2.8)) at a joint state S  
because of a joint action A  before improving its joint Q-value ( , )iQ S A from the initialized 

value (generally zero), then the agent is trapped at the former joint state .S  To overcome such 



120 
 

problem ( , )iQ S A  is re-initialized to zero. Such re-initialization improves the speed of 

convergence of the proposed FCMQL by avoiding the trapping at local minima.  

2.5 Proposed FCMQL algorithms and their convergence 
analysis 
In this Section, we propose FCMQL algorithms with their convergence analysis, where 
FCMQL refer to a set of algorithms given by {NQLP12, EQLP12, UQLP12, RQLP12, 
LQLP12, FMRQP12}.  

2.5.1 Proposed FCMQL algorithms 
In Algorithm 2.2, the proposed FCMQL algorithms enjoy the benefits of the proposed 
Property 2.1 and Property 2.2, which are responsible for exploring the team-goal rapidly and 
speeding-up learning process respectively. In Algorithm 2.2, we compute pure strategy NE, if 
it exists; otherwise mixed strategy NE is evaluated. However, it may please be noted that in 
the proposed FMRQP12 and its associated variants, agents maintain Q-tables at joint state-
individual action space denoted by ( , ), , ,i i iQ S a S a i    [52]. 

Complexity analysis: To analyze the complexity of the proposed Algorithm 2.2, let there be 
m  number of agents. Let { }S  and { }A  be the set of joint states and joint actions respectively. 

The space complexity of the proposed FCMQL algorithms, except FMRQP12, is given by 
| { } | . | { } |,m S A where for the latter the complexity is | { } | . |{ } |,m S a  where 

1 2{ } { } .... { } { }.ma a a a     Now, referring to Property 2.1, the best- and worst- case time 

complexities in one learning epoch for an agent in the proposed FCMQL algorithms, in the 
absence of communication [28] are given by (| { } | 1) (| { } |)a O a   and 

1(| { } | 1) | { } | (|{ } | )m mA A O A   respectively. 
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Algorithm 2.2: Fast Cooperative Multi-agent Q-learning (FCMQL) 
A. Input: Current state , ,is i  joint action set { },A  is a small positive threshold to stop the 

algorithm, [0,1)   and [0,1);   

B. Output: Joint Q-value of agent i *( , ), , , ;iQ S A  S A i     

C. Initialize: ( , ) 0, , , ;iQ S A  S A i     
Repeat 
     1. Observe the current state , ;is i   
     2. If {arg min[ ( , )]}i

i A
Q S A 


   

            Then select a joint action { }A A employing Property 2.2; 

            Else Randomly select an action { }, ;i ia a i   
         End If; 
     3. Receive immediate reward ( , ),i i ir s a i  and evaluate iCR by Definition 2.4; 

     4. Evaluate next state / ( , ),i i i is s a i   and joint next state / /
1;m

i iS s    

     5. If i is g   holds for i m       // ig is the goal state of agent i   

             Then the agent i  waits at ,ig  until i iS G   //where i  indicates all except agent i  

             or up to a finite time fT obtained empirically; 

             Else select a joint action { }A A by step 2; 
      End If; 
      6. If ,i is g  i   
            Then restart learning by randomly selecting a joint state (except team-goal state); 
      End If; 

     7. / ( , ) ( , ), ;i iQ S A Q S A i   

      8. Update: /( , ) (1 ) ( , ) [ ( , )  ( )];i i i iQ S A Q S A CR S A Q S            //for deterministic                                       

          
/

/ /( , ) (1 ) ( , ) [ ( , )  [ | ( , ))] ( )];i i i i i
S

Q S A Q S A CR S A P S S A Q S         //for stochastic  

             and /S S      // / ( )iQ S  be the Q-value of agent i due to { , }NE CE  at joint state /S   

Until /| ( , ) ( , ) | , , , ;i iQ S A Q S A S A i        

Obtain *( , ) ( , ), , , .i iQ S A Q S A S A i     

 

2.5.2 Convergence analysis of the proposed FCMQL algorithms 
The convergence of the proposed FCMQL is compared with the TMAQL in Theorem 2.1 and 
is given below. 
Theorem 2.1: The expected time of convergence of the proposed FCMQL is less than the 
same of the TMAQL.  
Proof: See Appendix 2.1 (Section 2.10). 

// by Property 2.1 

// by Property 2.2 
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2.6 FCMQL-based cooperative multi-agent planning 
In this section, the proposed FCMQL based cooperative multi-agent planning algorithms are 
discussed. In the proposed FCMQL based multi-agent planning, agents move from the current 
joint state to the next joint state following the principle of pure strategy NE/CE, which is 
evaluated by utilizing the joint Q-tables adapted by the FCMQL and satisfying the task-
constraint. Here, task-constraint refers to the constraint which agents have to satisfy during 
the planning phase in the deterministic and/or the stochastic environment. Consider the 
problem of object-carrying, where an object (stick, triangle or square) needs to be transported 
to a desired location with the help of multiple robotic agents that hold the stick at its two 
extremities [63], triangle at its vertexes and rectangle at its corners. Robots maintain a fixed 
distance between them to avoid falling off of the object carried by them. Holding the object 
without a fall is considered as a task-constraint. This is a problem, where cooperation of two 
(or more) robots is needed for the required transportation problem. 

In TMAQL, the immediate reward is given in (2.7), and is designed to measure the 
individual agent’s performance. However, in the proposed FCMQL, the immediate reward is 
given by (2.8) and is designed to measure the team performance. The benefit of such 
proposed reward function during the planning phase is realized and analyzed in the proposed 
FCMQL based planning (Algorithm 2.3) and Theorem 2.2 respectively, in terms of optimal 
team performance, measured by the number of joint state-transitions required to reach the 
team-goal. The Definition of the optimal team performance is given in Definition 2.6. The 
FCMQL based cooperative multi-agent planning is given in Algorithm 2.3.  
Definition 2.6: If the planning algorithm evaluates joint state-transitions following NE/CE, 
and the terminal state-transition ends at the team-goal, then the agents are called to have the 
optimal team performance considering the number of joint state-transitions required to reach 
the terminal (team-goal) joint state as the performance metric. 

Theorem 2.2 shows that the non-team goal state transitions cannot be a NE in the proposed 
NPQLP12 based multi-agent planning. However, it does a NE in the TMAQL based multi-
agent planning.  
Theorem 2.2: If all excluding at least one agent explores its individual goal state employing 
the proposed NPQLP12 or TMAQL due to joint action NA  at joint state ,S  then in the 
NQLP12 induced planning, NA  is not a NE, but in TMAQL induced planning, NA is a NE at 

.S  

Proof: See Appendix 2.1 (Section 2.10). 
By Theorem 2.2 one can confirm that in NQLP12 based cooperative multi-agent planning 

(Algorithm 2.3), an agent never executes a joint action, which results in a goal state-transition 
of at least one agent. However, in the TMAQL induced planning, agents do prefer such joint 
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actions. The agent which reaches its individual goal in the planning phase cannot move any 
more, resulting in low probability to reach the team-goal. Trivially it can also be shown that 
in the other variants of the proposed FCMQL induced multi-agent planning, agents do not 
prefer a joint action which leads to a non team-goal state transition, except in the proposed 
RQLP12.        

        
Algorithm 2.3 FCMQL based cooperative multi-agent planning 

Input: , ,iQ i feasible joint state ;FS  

Output: NE (or CE)  (or )N CA A at ;FS         
Repeat  
      Observe current state , ;is i       

      Evaluate NE (or CE),  (or )N CA A following (2.2) (or (2.4)) and satisfying task constraint; 

      Execute  (or )N CA A  at FS  and go to next feasible joint state /
FS  and / ;F FS S    

      For multiple  (or )N CA A solutions at FS  select the first one; 
Until the task is complete. 

2.7 Experiments and results  
This section includes four experiments. The first experiment is designed to examine the 
relative performance of the proposed FCMQL algorithms over the reference algorithms in 
view of the team-goal exploration, considering convergence speed as the performance metric. 
The second experiment is designed to compare the performance of the proposed Algorithm 
2.3 over the reference algorithms. The third experiment examines the merits of the proposed  
 

 

Fig. 2.2 Experimental workspace for two agents during the learning phase 



124 
 

Algorithm 2.3 over the existing ones, including joint action selection by MLbD [58], MNPSO 
[54], [55] DE [56], [57] and ICFA [63] algorithms using run-time complexity as the metric. 
The computer simulations undertaken for the experiments are coded and tested with an 
Intel(R) Core(TM) i7-3770 CPU with a clock speed of 3.40GHz. Finally, in the last 
experiment we examine the performance of the proposed Algorithm 2.3 in real environment 
with twin Khepera-II mobile robots [64].  
 

Table 2.2 Details of 10×10 grid maps 

 

Number 

of 

agents si
tu

at
io

n 
 

map team-goal  

 

Joint starting 

state 

number of 

obstacles 

obstacle state number 

2 

D
et

er
m

in
ist

ic
 

1 81, 91 10, 20 12 9, 27, 40, 46, 52, 54, 58, 

61, 63, 67, 82, 84  

2 2 55, 65 45, 55 6 25, 48, 53, 57, 68, 75  

2 3 55, 65 45, 55 8 25, 46, 48, 53, 57, 66, 68, 

75  

3 7 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86 

4 8 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47, 64, 83  

2 

St
oc

ha
st

ic
 

4 81, 91 10, 20 12 9, 27, 40, 46, 52, 54, 58, 

61, 63, 67, 82, 84  

2 5 55, 65 45, 55 6 25, 48, 53, 57, 68, 75  

2 6 55, 65 45, 55 8 25, 46, 48, 53, 57, 66, 68, 

75  

3 9 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86 

4 10 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47, 64, 83 

 
All the experiments are studied in ten different 10×10 grid world maps given in Table 2.2. 

Fig. 2.2 indicates map 1 (for deterministic) or 4 (for stochastic) in a two agent system during 
the learning phase with twelve obstacles (marked as a black rectangle) and a team-goal < G1, 
G2 >. Each agent can perform four actions: such as moving Left (L), Forward (F), Right (R) 
and Back (B). In case of stochastic environment, the state-transition probabilities are assigned 
as randomly generated constant values, satisfying the property of a Markovian matrix, where 
the sum of state-transition probabilities at each state is unity. Like the TMAQL algorithms, 
the starting positions can be selected randomly for a fixed team-goal state, which is 
predefined during the learning. To maintain uniformity, all the algorithms are initialized with 
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identical joint starting states. Each grid in the multi-robots’ workspace is assigned a positive 
integer to indicate its identity in the workspace with the help of mapping functions defined in 
Appendix 2.2 (Section 2.11) [64].  

The discounting factor   is chosen as 0.9 and learning rate   is set to 0.1. On exploration 

of the team-goal, agents are awarded by (2.8), where maximum immediate reward 

max 100,r   minimum immediate reward min 0.r   In addition, the violation of constraint is 

penalized by a reward of  1.r     
Experiment 2.1 (Study of convergence speed): This experiment aims at examining the 
relative superiority in convergence speed of the proposed FCMQL over the existing 
algorithms. The study includes: a) convergence of state-action pairs with learning epochs, b) 
determining the number of times a given team-goal is explored within a fixed number of 
learning epochs, c) average reward of m agents, where the reward of an agent is the average 
of the entries in the Q-table, d) convergence in state-action pairs with learning epochs, where 
joint action selection is done by Property 2.2. 

The results of the first study are given in Fig. 2.3, developed for NQL and in Fig. A2. 2.1-
A2. 2.3 in Appendix 2.2 (Section 2.11) [64]. It is apparent from Fig. 2.3 and Fig. A2. 2.1-A2. 
2.3 that the FCMQL outperforms reference algorithms with respect to number of joint state-
action pairs converged ( ).cN  Here, the FMRQP12 is not compared with reference algorithms. 

As in FMRQ, an agent does not adapt its Q-value in joint state-action space; instead the Q-
values are adapted in joint state-individual action space. However, FMRQP12 is compared in 
the later part of the same experiment.  

It is interesting that in the second to seventh columns of the Table A2. 2.1 and A2. 2.2 [64], 
the proposed FCMQL algorithms designed with Property 2.1 outperform the realization of 
FCMQL with Property 2.2 in the measure of cN . But gradually at higher learning epochs 

(eighth, ninth and tenth columns of Table A2. 2.1 and A2. 2.2 [64]), the superiority of the 
proposed FCMQL algorithms realized with Property 2.2 is observed over the FCMQL 
designed with Property 2.1. 

The result of the second study emphasizes that the proposed FCMQL, when developed with 
Property 2.1, yields a high count in the team-goal exploration in comparison to its traditional 
counterpart, including those developed with Property 2.2 (see Fig. A2. 2.4, Table A2. 2.3-A2. 
2.4 [64]).  

The third study reveals that the average reward of m agents, denoted by average of average 
reward (AAR) (where  reward of an agent being measured by it average Q-table value) 
evaluated for the proposed FCMQL exceeds that of the TMAQL. The high value in AAR of 
the agents indicates that early convergence in FCMQL in comparison to TMAQL (see Fig. 
2.4  and Fig. A2. 2.5-A2. 2.7 [64]).   
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Fig. 2.3 Convergence plot of NQLP12 and reference algorithms for two agents 
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Fig. 2.4 Average of average reward (AAR) plot of NQLP12 and reference algorithms for two agents 

The last study dealing with convergence of joint state-action pairs with learning epochs, 
while embedding Property 2.2 in designing FCMQL, yields larger value in convergence of 
joint state-action pairs than same obtained by the TMAQL (see Fig. 2.5 and Fig. A2. 2.8-A2. 
2.9 [64]). 
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Fig. 2.5 Joint action selection strategy in EQLP12 and reference algorithms for two agents 

Experiment 2.2 (Planning performance): The motivation of the present study is to examine 
the completion of  a task in planning and is tested with the well-known object-carrying 
problem on a10 × 10 grid-map by 2, 3 and 4 agents. Fig. 2.6 and Fig. A2. 2.10-A2. 2.14 in 
[64] offer the planed paths for robot team toward the predefined team-goal. It is worthwhile to  
 

  
             a. by NQIMP algorithm                                   b. by NQLP12 based cooperative multi-agent planning 

Fig. 2.6 Cooperative path planning to carry a triangle by three robots in deterministic situation 

 

note that the TMAQL induced multi-agent planning fails to reach their team-goal, while the 
FCMQL included multi-agent planning is successful to complete the task. The reason behind 
the success of FCMQL lies in the enrichment of the Q-table because of incorporation of 
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Property 2.1 in the learning phase. In Fig. 2.6.b, the arrows outside the environment indicate 
rotation of the triangle by robots for successful the team-goal state-transition.  
Experiment 2.3 (Run-time complexity): This study includes run-time analysis of the 
proposed FCMQL induced multi-agent planning along with a set of well-known algorithms 
from different domains. The algorithms used for comparison include: 1) ICFA [63], 2) 
MNPSO [54], [55], 3) DE [56], [57], and 4) MLbD [58]. The run-time analysis reveals, that 
the proposed FCMQL has the least run-time complexity in comparison to its contenders (see 
Table 2.3 and 2.4).  

Table 2.3 Run-time complexity of Algorithm 2.3 over reference algorithms in deterministic situation 

 
 

Algorithms 
map 1 (stick-

carrying) 
map 7 (triangle-carrying) map 8 (square-carrying) 

Run-time (minute) 
for Agent 

Run-time (minute) for Agent Run-time (minute) for Agent 

1 2 1 2 3 1 2 3 4 
Algorithm 2.3 0.195 0.191 0.244 0.246 0.242 0.309 0.313 0.310 0.304 

MRLbD 14.24 14.54 20.57 21.05 20.56 27.56 28.06 27.39 28.10 
ICFA 51.16 51.01 60.56 61.10 60.51 64.56 64.10 64.51 64.56 

MNPSO 70.43 70.58 50.54 50.38 51.01 40.26 40.45 40.42 40.56 
DE 90.45 90.56 86.54 86.34 86.38 79.45 79.34 79.34 79.04 

Table 2.4 Run-time complexity of Algorithm 2.3 over reference algorithms in stochastic situation 

 
 

Algorithms 
map 4 (stick-

carrying) 
map 9 (triangle-carrying) map 10 (square-carrying) 

Run-time (minute) 
for Agent 

Run-time (minute) for 
Agent 

Run-time (minute) for Agent 

 1 2 1 2 3 1 2 3 4 
Algorithm 2.3 0.184 0.182 0.218 0.220 0.221 0.293 0.302 0.301 0.302 

MRLbD 18.34 18.27 25.28 24.58 25.49 33.56 33.59 33.34 33.09 
ICFA 52.27 53.10 60.76 60.25 60.17 63.59 63.55 63.45 63.57 

MNPSO 71.54 71.52 51.34 51.65 52.04 39.45 39.34 39.32 39.12 
DE 91.04 89.52 83.34 84.58 83.32 80.34 78.26 79.28 80.12 

 
For ICFA and DE the objective functions used for the object-transportation task are as 

given in [63] and [57] respectively. In MNPSO, population size is equal to the number of 
agents. Here, agents learn in a parallel and distributed fashion, so as to reduce the run-time 
requirement by the MNPSO with an increase in the number of agents. By varying the number 
of robots in MNPSO algorithm, different objects are transported. On the other hand, little 
progress is attained in the field of learning joint action by simultaneous demonstrations. 
MLbD is a novel technique to learn multi-robot joint action from simultaneous 
demonstrations as given in [58]. Here also agents learn sequence of individual actions 
obtained from demonstration with the help of HAMMER architecture [58]. The joint action 
plan is then identified by spatio-temporal clustering algorithm. Here we compare the MLbD 
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from [58] with the proposed Algorithm 2.3. In MLbD, agents need to communicate among 
themselves, which require an extra cost in terms of time and energy.  
Experiment 2.4 (Real-time planning): This experiment is concerned with examining 
planning performance of the proposed FCMQL algorithms in the stick-carrying problem 
realized with twin Khepera-II robots [64]. The stick-carrying problem refers to determining 
the pathways to transfer stick from a given starting position to a fixed destination, where the 
robots hold the stick at its two ends. We consider a grid-world map for the robots with 6 × 6 
square grids. 
 

 

Fig. 2.7 Cooperative path planning to carry a stick by two Khepera-II mobile robots using NQIMP 

algorithm (bigger dimension in Fig. A2. 2.15 [64]) 
 

 

Fig. 2.8 Cooperative path planning to carry a stick by two Khepera-II mobile robots using Algorithm 3 

(bigger dimension in A2.15 [64]) 
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Fig. 2.8 provides a snapshot of the experimental instance, when the robots reach the goal 
positions using the proposed FCMQL induced planning. The path followed by the robots 
employing the reference algorithms also is shown in Fig. 2.7. The experiments presented 
indicate that the simulated results presented earlier are realized in hardware.       

 
Table 2.5 Time taken by Khepera-II mobile robots to reach a team-goal with different speeds in 

Algorithm 2.3 

Run-time 
obtained 

Speed 
(unit) Run-time (sec) 

Agent 1 Agent 2 
 

Theoretically 
2 8.75 9.14 
3 5.83 6.09 
5 3.50 3.66 

 
Experimentally 

2 11.71 12.43 
3 9.45 10.23 
5 8.28 9.36 

 

2.8 Conclusions 
The chapter aims at extending the TMAQL with two useful characteristic properties: 
exploration of the team goal and the joint action selection. The incorporation of the first 
property ensures exploration of the team-goal by multi-phased transitions of the agents 
asynchronously or synchronously to finally reach the team-goal, and thereby offer high 
reward values to such pre-goal state to the goal state transitions. The second property helps in 
identifying common preferred joint actions for the team, thus avoiding same joint actions at 
the same joint states and thereby enhancing the learning speed of the agents. The Q-table 
obtained in joint state-action space using the proposed FCMQL algorithms have been 
employed in the multi-agent planning algorithm to autonomously select goal state-transitions 
from the pre-goal states based on their high reward values stored in the Q-table. TMAQL-
induced planners occasionally fail to reach the team-goal as such state-transitions which 
might result in due to follow-up actions of Property 2.1 in FCMQL are missing from the Q-
table obtained by TMAQL.  

The convergence of the proposed FCMQL is shown in Theorem 2.1, that the expected 
convergence time of the proposed FCMQL algorithms is less than the same of TMAQL 
algorithms. The complexity analysis reveals the superiority of the proposed FCMQL 
algorithms over the TMAQL algorithms. 

Four different experiments have been conducted to validate the performance of FCMQL 
and the FCMQL based planning algorithms over the contender algorithms. In Experiment 2.1, 
the FCMQL algorithms outperform reference algorithms in terms of convergence rate, 
exploration of the team-goal and the Average of average reward (AAR) parameter. In 
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Experiment 2.2, Algorithm 2.3 outperforms reference algorithms considering successfully 
completion of a task as the performance metric. In Experiment 2.3, the merit of the Algorithm 
2.3 is verified considering the run-time requirement as the performance metric over the 
reference algorithms: ICFA [63], MNPSO [58], [59], DE [56], [57], and MLbD [52] 
algorithms with respect to the well-known object-transportation problems. In Experiment 2.4, 
the superiority of Algorithm 2.3 is verified over contender algorithms utilizing in a real-time 
planning problem using twin Khepera-II mobile robots. 

2.9 Summary  
Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-agent 
Q-learning algorithms (Nash Q-Learning and Corelated Q-Learning) for multi-robot 
coordination and planning. This extension is achived by employing two interesting properties. 
The first property deals with the exploration of the team-goal (simultaneous success of all the 
robots) and the other property is related to the selection of joint action at a given joint state. 
The exploration of team-goal is realized by allowing the agents, capable of reaching their 
goals, to wait at their individual goal states, until remaining agents explore their individual 
goals synchronously or asynchronously. Selection of joint action, which is a crucial problem 
in traditional multi-agent Q-learning, is performed here by taking the intersection of 
individual preferred joint actions of all the agents. In case the resulting intersection is a null 
set, the individual actions are selected randomly or otherwise following classical techniques. 
The superiority of the proposed learning and learning-based planning algrorithms are 
validated over contestant algorithms in terms of the speed of convergence and run-time 
complexity respectively.  

2.10 Appendix 2.1 
Proof of Property 2.1 

Let, 
                   l  be the number of states in a given environment, 
                   m  be the number of agents learning cooperatively in a given environment, 
                   j  be the feasible actions for each agent. 

The proof is segregated into the following three components.  
1. Here, agent 1 can occupy any one of l states in the next iteration. Consequently, agent 2 
would occupy any one of ( 1)l   possible next states. In the similar manner, it can be shown 
that agent m  can occupy any one of ( )l m  possible next states. Thus there would be as many 
as ( 1)...( 1) l

ml l l m P     possible next joint states, where P  denotes the permutation 

operator.  
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2. Thus probability that the next joint state /( )S is equal to the team-goal ( )G  due to a joint 
action ( )A  at joint state ( )S  is given by (A1 2.1). 

/ 1Pr(( ) | ( , )) l
m

S G S A
P

                                                                 (A1 2.1) 

3. Now, each agent can have j  feasible actions. So, two agents would have 2j j j   joint 
actions. Proceeding similarly, m  agents would have mj  possible joint actions. Thus the 
probability of randomly selecting a joint action ( )A  at a joint state ( )S  from the joint action 
set ({ })A  is given by (A1 2.2). 

1Pr( , ) mS A
j

                                                                                                                     (A1 2.2) 

Now, probability that the next joint state /( )S  is the team-goal ( )G  after executing a joint 
action ( )A randomly from the joint action set ({ })A at a joint state ( )S given in (A1 2.3) by 

conditional probability.  
/ /

1 1 1Pr(( , ) ( ) : { }; , { }; )m m m
i i ii i iS A S G A a S S s G g          [ ig is the goal of agent ]i  

    /Pr( , ) Pr(( ) | ( , ))S A S G S A                                        [since Pr( ) Pr( ).Pr( | )C D C D C  ] 

    1 1
m l

mj P
                                                                      [by (A1 2.1) and (A1 2.2)] (A1 2.3) 

In general, suppose k agents have already reached their individual goals. Then by Statute 
2.1, the number of active learning agents become ( ).m k  So, one can rewrite (A1 2.3) as in           

(A1 2.4). In           (A1 2.4), k  in suffix indicates that all except the k  number of agents and 
{ } { } { },k m kS S S   etc., where ( )m k  in the suffix indicates the joint state for ( )m k  

agents.   
/ /

1 1 1Pr(( , ) ( ) : { }; , { }; ; [1, ])m m m
k k k k n k n k nn n nk kS A S G A a S S s G g n k              

     /Pr( , ) Pr(( ) | ( , ))k k k k kkS A S G S A                    [since Pr( ) Pr( ). ( | )C D C P D C  ] 

     1 1
m k l

m kj P


                                                            [since m m k  ]               (A1 2.4) 

Since the result obtained in           (A1 2.4) is a monotonically increasing function of ,k  
with increase in ,k the probability of exploring the team-goal monotonically increases.      

                                                                           
Proof of Property 2.2 

 
Let at each state there exist j  number of feasible actions for each of the m  agents. Therefore, 

at a joint state ( )S  there are mj  number of feasible joint actions. Let joint action set for all 

the agents at joint state S are  
       { } { },iA A i                                                                                                               (A1 2.5) 

and |{ } | , .mA j i                                                                                                                                                                           



133 
 

In MAQL, the initial joint Q-values usually are assumed to be zero, i.e., ( , ) 0, , ,iQ S A S A i     

at iteration 0.t   So, by Definition 2.5, preferred joint action set of agent [1, ]i m  at joint state 

S  is   

{ } arg min[ ( , )],
p

i i
A

A Q S A i   

           { }, .iA i   
                      [since ( , ) 0, , , ,iQ S A S A i    arg min[ ( , )]i

A
Q S A  returns all A for agent i at S ]                  

           { }, .A i          [by (A1 2.5)]                                                                                 (A1 2.6) 

Now, by the given statement of Property 2.2, preferred joint action set of the team ( m  agents) 
at joint state S  is 

  
1

{ } { }
m pp

ii
A A


   

           
1
{ }

m

i
A


        [by (A1 2.6)]                                                                                                                                          

          { }A                                                                                  (A1 2.7) 

Therefore, probability to execute joint action pA  at the joint state S  is 
  1Pr( , )

|{ } |
p

pS A
A

              

                   1 .
|{ } |A

     [by (A1 2.7)]                                                                                (A1 2.8)  

Let after first iteration the joint Q-value of agent [1, ]x m  has been improved because of 

preferred joint action { } ,p p
x x x xA A a A   at the joint state { }.S S  So, joint Q-value of 

agent x  at joint state S  is  
( ; , ) ( ; ),  ,  , ,x x x x x xQ S a A Q S A A A a A                                                                        (A1 2.9) 

where, xA  be the joint action except the action of agent ,x { }.x xa a  Therefore, updated 

preferred joint action set of agent [1, ]x m  at joint state S  by Definition 2.5 is 
  /{ } arg min[ ( , )]p

x x
A

A Q S A  

           { } { }p j
x xA A      [where, { }j

xA  be the joint action set of agent x  containing action xa ]                                                                        

           { }.p
xA                                                                                                              (A1 2.10)  

Therefore, by (A1 2.5), (A1 2.10) and the given statement of the Property 2.2, updated 
preferred joint action set /{ }pA  of the team ( m agents) at joint state S is 

  / /
1,

{ } { } { }
m p pp

xii
i x

A A A



             

            /
1,

{ } { }
m p

x
i
i x

A A



           [by (A1 2.7)]                                

           /{ } { }p
xA A                                                                                                                           
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/

{ }.
p
xA                      [since

/
{ } { }, [1, ]

p
xA A x m  ]                                            (A1 2.11)  

Therefore, probability to execute joint action 
/p

xA at joint state S  is 

  /
/

1Pr( , )
|{ }|

p
pS A

A
                      

                  
/

1

|{ }|
p
xA

              [by (A1 2.11)]                  

                  1

|{ }|
p
xA

               [since 
/

|{ } | |{ } |
p p
x xA A  by (A1 2.10)]                                                              

                 1
|{ }|A

                   [by (A1 2.5)]           

                 ( , ).pP S A                 [(by (A1 2.8)]                                                              (A1 2.12)  

Hence, the Property is proved.                                                                                                                               
 

Proof of Theorem 2.1 
 

The expected time of convergence of FCMQL, ,F
eT decreases with an increase in the 

probability of exploring the team-goal, given by /Pr( , ) Pr(( ) | ( , ))S A S G S A   and also the 
joint action selection probability Pr( , ).S A  Thus, F

eT can be modeled by an exponentially 

decreasing function of the joint probability of exploration of the team-goal and probability of 
joint action selection, i.e.,  

2 /exp{ (Pr( , )) Pr(( ) | ( , ))}.F
eT S A S G S A                                                                       (A1 2.13) 

It is important to note that the expression (A1 2.13) is equally good for TMAQL. However, in 
TMAQL, the probabilities: Pr( , )S A and /Pr(( ) | ( , ))S G S A  both remain constant over the 

learning epochs, whereas in FCMQL the above two probabilities increase with increase in 
learning epochs. Thus, (A1 2.13) transforms to (A1 2.14) and (A1 2.15) for TMAQL and 
FCMQL respectively. 

exp( )TM
eT k                                                                                                             (A1 2.14) 

for any positive real number .k            
exp( ( ))F F

e eT k k T                                                                                                 (A1 2.15) 

where ( )F
ek T is a linearly increasing function of F

eT . A little algebra, given below, returns 
F

eT as a non-linear function of k  

.exp( ( )) exp( )F F
e eT k T k    

. ( ) exp( )F F
e eT k T k                        [as ( ) 0.]F

ek T   

.{ . } exp( )F F
e eT T k                         [by linear approximation of ( )F

ek T ] 
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1 exp( )F
eT k


                                          (A1 2.16) 

It is apparent from (A1 2.14) and (A1 2.16) that .F TM
e eT T  Thus the theorem follows.         

                                      
Proof of Theorem 2.2 

 
 Let the Q-values of agent [1, ]i m  at joint state S due to all joint actions { }A A  is denoted 
by the set { ( , ) : { }}.iQ S A A A  Now, one can write, 

min max( , ) , .ir Q S A r i                                                                                              (A1 2.17) 

where, minr  and maxr are the minimum and maximum immediate rewards respectively of an 
agent. Let agent [1, ]x m  explores its individual goal due to NA  at S  and the subsequent 

joint Q-value of agent x  adapted by the proposed NQLP12 is given by 
min( , ) .x NQ S A r                                [by (2.8)]                                                         (A1 2.18) 

Again, by (A1 2.17) 
/

min ( , ).xr Q S A                                 [where [1, ]x m and / { }]A A                          (A1 2.19) 

Combining (A1 2.18) and (A1 2.19) we obtain 
/ /( , ) ( , ),  A { }.x N xQ S A Q S A A                                                                                 (A1 2.20) 

However, in the above situation joint Q-value of agent x  adapted by TMAQL is 
max( , ) .x NQ S A r                               [by (2.7)]                                                          (A1 2.21) 

Again, by (A1 2.17) 
/ /

max ( , ),  A { }.xr Q S A A                  [where [1, ]x m  and / { }A A ]                      (A1 2.22) 

Combining (A1 2.21) and (A1 2.22) we obtain 
/ /( , ) ( , ),  A { }.x N xQ S A Q S A A                                                                                 (A1 2.23) 

Now, by the principle of multi-agent planning algorithm, let maximum joint Q-value of all 
except agent x  at joint state S  because of joint action NA  is 

( , ) { ( , ) : { }},  .x N xQ S A Q S A A A x     Therefore, 
/ /( , ) ( , ),  A { }, .x N xQ S A Q S A A x                                                                     (A1 2.24) 

By (A1 2.20), (A1 2.24) we can conclude that /( , ) ( , )i N iQ S A Q S A for i x  and 
/( , ) ( , ),i N iQ S A Q S A  , .i i x   Hence, by Definition 2.2, we say that in the proposed 

NQLP12 induced planning, the joint action NA  is not a NE at .S  Again by (A1 2.23), (A1 

2.24) we conclude that /( , ) ( , ), .i N iQ S A Q S A i   So, by Definition 2.2, we say that in 
TMAQL induced planning, the joint action NA  is a NE at .S   

2.11 Appendix 2.2 
Additional details of Experiment 2.1 
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Two agents’ individual state numbers 1s  and 2s  are mapped into a single integer S  (joint 

state) by the mapping function: 

2 1( 1)S s n s                                         (A2 2.1) 

for n × n grid map. For three and four agents the mapping functions are given by (A2 2.2) and 
(A2 2.3) respectively, where 3s and 4s  are the state of third and fourth agent respectively. 

2
3 2 1( 1) ( 1)S s n s n s                                                                                           (A2 2.2) 

3 2
4 3 2 1( 1) ( 1) ( 1)S s n s n s n s                                                                        (A2 2.3) 
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(b) EQLP12 and reference algorithms for two agents 
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(c) UQLP12 and reference algorithms for two agents 
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(d) RQLP12 and reference algorithms for two agents 

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

 

 

LQL
LQLET
LQLP1
LQLP2
LQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n 
pa

ir 
co

nv
er

ge
d

Stochastic

 

 

LQL
LQLET
LQLP1
LQLP2
LQLP12

 
 (e) LQLP12 and reference algorithms for two agents 

Fig. A2. 2.1 Convergence plot of FCMQL and reference algorithms for two agents 
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Fig. A2. 2.2 Convergence plot of EQLP12 and reference algorithms for three agents 
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Fig. A2. 2.3 Convergence plot of EQLP12 and reference algorithms for four agents 
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Table A2. 2.1 Number of joint state-action pair converged in deterministic situation for two agents 

 

 

Table A2. 2.2 Number of joint state-action pair converged in stochastic situation for two agents 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Algorith
ms 

Number of joint state-action pair has been converged within 
105 epochs in 15×104 epochs in 106 epochs in 

map map map 
1 2 3 1 2 3 1 2 3 

NQL 2976 2965 2979 30060 30057 30061 318314 318312 318317 
NQLET 12365 12367 12366 74299 74302 74298 318723 318725 318724 
NQLP1 47566 47567 47568 115164 115168 115167 318878 318879 318877 
NQLP2 2600 2602 2599 31522 31524 31521 319968 319968 319968 
NQLP12 48846 48847 48844 142010 142011 142014 319968 319968 319968 
UQL 2732 2734 2733 27824 27826 27823 318296 318299 318297 
UQLET 40726 40727 40729 105388 105387 105390 318795 318798 318799 
UQLP1 45834 45833 45836 113614 113615 113618 318858 318861 318860 
UQLP2 2910 2909 2912 27140 27141 27143 319968 319968 319968 
UQLP12 50934 50932 50935 319968 319968 319968 319968 319968 319968 
EQL 2388 2390 2389 20834 20835 20834 318230 318229 318228 
EQLET 3582 3580 3581 32630 32630 32632 318342 318340 318341 
EQLP1 43518 43517 43516 111101 111102 111100 318863 318861 318862 
EQLP2 894 896 894 16092 16093 16091 319968 319968 319968 
EQLP12 48524 48526 48525 141596 141597 141599 319968 319968 319968 
RQL 2732 2732 2733 27824 27826 27824 318299 318298 318300 
RQLET 19648 19649 19648 88577 88575 88576 318667 318668 318666 
RQLP1 43256 43254 43255 110322 110321 110323 318954 318955 318953 
RQLP2 1096 1097 1098 16820 16821 16822 319968 319968 319968 
RQLP12 48748 48748 48749 142642 142641 142642 319968 319968 319968 
LQL 1377 1379 1378 14067 14067 14068 317953 317954 317955 
LQLET 10019 10020 10018 62028 62027 62029 318502 318503 318501 
LQLP1 46126 46125 46127 113724 113725 113726 318786 318786 318786 
LQLP2 2910 2911 2912 27140 27141 27143 319968 319968 319968 
LQLP12 47954 47955 47954 140408 140408 140410 319968 319968 319968 

 
 

Algorith
ms 

Number of joint state-action pair has been  converged within 
105 epochs in 15×104 epochs in 106 epochs in 

map map map 
4 5 6 4 5 6 4 5 6 

NQL 12365 12366 12363 74299 74302 74301 318723 318724 318723 
NQLET 2976 2978 2977 30060 30062 30061 318314 318313 318315 
NQLP1 42371 42372 42373 111814 111817 111816 318823 318823 318825 
NQLP2 11472 11471 11475 82937 82939 82938 319937 319938 319939 
NQLP12 54705 54708 54706 147816 147815 147818 319948 319951 319950 
UQL 40726 40727 40728 105388 105386 105389 318795 318796 318798 
UQLET 2732 2733 2735 27824 27827 27826 318296 318295 318299 
UQLP1 45768 45765 45769 113985 113986 113987 318822 318824 318821 
UQLP2 10877 10876 10879 84040 84042 84039 319896 319900 319899 
UQLP12 51191 51193 51196 146529 146531 146532 319893 319895 319896 
EQL 2388 2390 2387 20834 20833 20836 318228 318230 318231 
EQLET 3582 3581 3583 32630 3263 32634 318342 318341 318342 
EQLP1 4928 4927 4929 36492 36493 36494 318438 318440 318439 
EQLP2 1738 1740 1739 20824 20823 20825 319810 319812 319811 
EQLP12 3759 3761 3760 34658 34660 34661 319803 319806 319804 
RQL 2732 2733 2731 27824 27825 27823 318298 318302 318299 
RQLET 19648 19647 19649 88575 88577 88576 318667 318669 318668 
RQLP1 45653 45654 45655 113840 113839 113842 318820 318819 318822 
RQLP2 10751 10750 10749 83343 83341 83344 319882 319883 319881 
RQLP12 3759 3760 3761 34658 34657 34659 319803 319802 319804 
LQL 1377 1379 1378 14067 14068 14066 317953 317952 317954 
LQLET 10018 10020 10019 62028 62027 62029 318502 318501 318504 
LQLP1 6362 6364 6363 46961 46960 46963 318486 318485 318487 
LQLP2 1042 1040 1043 16178 16180 16179 319766 319765 319764 
LQLP12 5721 5720 5722 44249 44249 44250 319783 319784 319782 
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(a) NQLP12 and reference algorithms for two agents 

 

(b) EQLP12 and reference algorithms for two agents 



141 
 

 

(c) UQLP12 and reference algorithms for two agents 

 

(d) RQLP12 and reference algorithms for two agents 
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(e) LQLP12 and reference algorithms for two agents 

 

(f) FMRQP12 and reference algorithms for two agents 

Fig. A2. 2.4 CR versus learning epoch plot for FCMQL and reference algorithms for two 

agents 
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 Table A2. 2.3 Count of team-goal explored in the deterministic situation for two agents within  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2. 2.4 Count of team-goal explored in the stochastic situation for two agents within 

 

 

 

 

 

 

 

 

 

 

 
 

Algorithms 

15000 epochs 10000 epochs 5000 epochs 
map map map 

1 2 3 1 2 3 1 2 3 
NQL 0 1 0 0 0 0 0 0 0 
NQLET 1 0 0 0 0 0 0 0 0 
NQLP1 55 65 70 37 38 41 16 20 27 
NQLP2 0 1 1 0 0 0 0 0 0 
NQLP12 57 66 68 38 39 40 18 22 26 
UQL 1 1 0 0 0 0 0 0 0 
UQLET 0 1 1 0 0 0 0 0 0 
UQLP1 56 68 69 37 38 41 21 23 27 
UQLP2 1 0 1 0 0 0 0 0 0 
UQLP12 55 65 67 38 39 39 23 25 26 
EQL 0 1 0 0 0 0 0 0 0 
EQLET 1 0 2 0 0 0 0 0 0 
EQLP1 57 69 70 38 39 41 18 23 25 
EQLP2 1 2 0 0 0 0 0 0 0 
EQLP12 56 62 68 38 39 40 20 22 26 
RQL 1 0 1 0 0 0 0 0 0 
RQLET 0 1 0 0 0 0 0 0 0 
RQLP1 56 68 69 37 38 41 21 23 27 
RQLP2 0 1 1 0 0 0 0 0 0 
RQLP12 57 63 69 38 39 40 19 21 25 
LQL 0 2 1 0 0 0 0 0 0 
LQLET 1 0 1 0 0 0 0 0 0 
LQLP1 55 62 68 37 38 40 20 24 27 
LQLP2 1 0 1 0 0 0 0 0 0 
LQLP12 56 61 68 38 39 41 22 23 26 
FMRQ 0 1 0 0 0 0 0 0 0 
FMRQP1 60 65 70 37 38 41 21 26 27 
FMRQP2 2 1 0 0 0 0 0 0 0 
FMQRP12 56 61 68 38 39 41 23 24 26 

 
 

Algorithms 

15000 epochs 10000 epochs 5000 epochs 
map map map 

4 5 6 4 5 6 4 5 6 
NQL 1 0 0 0 0 0 0 0 0 
NQLET 0 2 1 0 0 0 0 0 0 
NQLP1 55 59 66 35 38 41 12 18 28 
NQLP2 0 1 0 0 0 0 0 0 0 
NQLP12 56 59 65 36 37 40 16 19 26 
UQL 0 1 1 0 0 0 0 0 0 
UQLET 1 0 0 0 0 0 0 0 0 
UQLP1 57 58 63 37 38 41 18 22 25 
UQLP2 0 1 1 0 0 0 0 0 0 
UQLP12 55 57 65 36 39 40 15 21 27 
EQL 0 2 1 0 0 0 0 0 0 
EQLET 1 0 0 0 0 0 0 0 0 
EQLP1 57 58 65 37 39 41 16 23 27 
EQLP2 0 0 1 0 0 0 0 0 0 
EQLP12 56 58 64 35 37 40 19 20 26 
RQL 0 1 0 0 0 0 0 0 0 
RQLET 1 0 2 0 0 0 0 0 0 
RQLP1 55 59 65 34 37 39 21 22 25 
RQLP2 0 2 1 0 0 0 0 0 0 
RQLP12 56 58 65 35 39 41 17 21 26 
LQL 0 2 1 0 0 0 0 0 0 
LQLET 1 1 0 0 0 0 0 0 0 
LQLP1 57 58 65 36 37 40 16 19 25 
LQLP2 0 1 0 0 0 0 0 0 0 
LQLP12 55 58 66 35 37 41 21 23 27 
FMRQ 2 0 1 0 0 0 0 0 0 
FMRQP1 56 58 64 37 38 40 18 22 26 
FMRQP2 1 0 1 0 0 0 0 0 0 
FMQRP12 56 57 65 35 38 41 21 24 26 
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(b) EQLP12 and reference algorithms for two agents 
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(c) UQLP12 and reference algorithms for two agents 
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(d) RQLP12 and reference algorithms for two agents 
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(e) LQLP12 and reference algorithms for two agents 
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(e) FMRQP12 and reference algorithms for two agents 

Fig. A2. 2.5 Average of average reward (AAR) plot of FCMQL and reference algorithms for two 

agents 
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Fig. A2. 2.6 Average of average reward (AAR) plot of EQLP12 and reference algorithms for three 

agents 
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Fig. A2. 2.7 Average of average reward (AAR) plot of EQLP12 and reference algorithms for four 

agents 
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Fig. A2. 2.8 Joint action selection strategy in EQLP12 and reference algorithms for three agents 
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Fig. A2. 2.9 Joint action selection strategy in EQLP12 and reference algorithms for four agents 

Additional details of Experiment 2.2 

 

               a. by NQIMP algorithm                        b. by NQLP12 based cooperative multi-agent Planning 

Fig. A2. 2.10 Path planning with stick in deterministic situation 
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                a. by NQIMP algorithm                       b. by NQLP12 based cooperative multi-agent Planning 

Fig. A2. 2.11 Path planning with stick in stochastic situation 

 

  

               a. by NQIMP algorithm                         b. by NQLP12 based cooperative multi-agent planning 

Fig. A2. 2.12 Path planning with triangle in stochastic situation 
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             a. by NQIMP algorithm                          b. by NQLP12 based cooperative multi-agent planning 

Fig. A2. 2.13 Path planning with square in stochastic situation 

 

  
           a. by NQIMP algorithm                            b. by NQLP12 based cooperative multi-agent planning 

Fig. A2. 2.14 Path planning with square in deterministic situation 

Additional details of Experiment 2.4 
 

Details of Khepera-II mobile robot: Khepera-II is a miniature robot [61], [62], equipped 
with an onboard Microcontroller (Motorola 68331), and includes a flash memory of 512 KB 
and clock speed of 25MHz, having 8 inbuilt infrared proximity sensors. 1 unit speed of 
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Khepera II mobile robot is 0.08mm/10ms. Selected speeds in this experiment are 2 unit (0.16 
mm/10ms), 3 unit (0.24 mm/10ms) and 5 unit (0.4 mm/10ms). Considering one grid length of 
80 mm (square grid), theoretically time taken by an agent to cover one grid length, with 2 
unit, 3 unit and 5 unit speed are 500 ms, 333.33 ms and 200 ms respectively [61], [62]. 
Assuming a circle of 40 mm radius inside each grid, Khepera-II has to cover 20π mm of the 
total circumference of the circle for 90 degree rotation. Therefore theoretically time taken by 
an agent for one 90 degree rotation with 2 unit, 3 unit and 5 unit speed are 392.7 ms, 261.8 ms 
and 157 ms respectively. 
 

 
 

Fig. A2. 2.15 Cooperative path planning to carry a stick by two Khepera-II mobile robots using 

NQIMP algorithm 

     The stick-carrying problem has been realized in Fig. 2.7 and 2.8 by controlling two 
Khepera-II mobile robots using pre-learned joint Q-tables. The stick length is one grid width 
and two robots can carry the stick if they occupy neighborhood cells. Each Khepera-II mobile 
robots (agents) are connected by wires to two different Pentium IV machines through serial 
port connections. Agents do not communicate between them while transporting the stick. The 
next joint states of the robots are determined by evaluating the NE employing the learned 
joint Q-tables, stored in the attached Pentium IV machine.  
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Fig. A2. 2.16 Cooperative path planning to carry a stick by two Khepera-II mobile robots using 

NQIMP algorithm 
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Chapter 3                                                      
Multi-robot Cooperative Planning by 
Consensus Q-learning 
 
 
 
 
Multi-robot cooperation entails planning by multiple robots for a common objective, where 
each robot/agent actuates upon the environment based on the sensory information received 
from the environment. Multi-robot cooperation employing equilibrium-based reinforcement 
learning is optimal in the sense of system resource (time and/or energy) utilization, because of 
the prior adaption of the environment by the robots. Unfortunately, robots cannot enjoy such 
benefit of reinforcement learning in presence of multiple types of equilibria (here Nash 
equilibrium or correlated equilibrium). In the above perspective, robots need to adapt with a 
strategy, so that robots can select the optimal equilibrium in each step of the learning. The 
chapter proposes consensus-based multi-agent Q-learning to address the bottleneck of the 
optimal equilibrium selection among multiple types. An analysis reveals that a consensus 
(joint action) is coordination type pure strategy Nash equilibrium as well as pure strategy 
correlated equilibrium. The superiority of the proposed consensus-based multi-agent Q-
learning algorithm over the traditional reference algorithms in terms of the average reward 
collection is shown in the experimental section. In addition, the proposed consensus-based 
planning algorithm is also verified considering multi-robot stick-carrying problem as a 
benchmark. 
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Table 3.1 List of acronyms 

 
Full form Acronyms  
Multi-agent Q-learning : MAQL 
Nash equilibrium : NE 
Nash Q-Learning :  NQL 
Correlated equilibrium :  CE 
Correlated Q-learning :  CQL 
Consensus Q-learning : CoQL 
Utilitarian Q-Learning :  UQL 
Egalitarian Q-Learning :  EQL 
Republican Q-Learning :  RQL 
Libertarian Q-Learning :  LQL 

3.1 Introduction  
Planning [1] refers to the execution of an action sequence, with an aim to achieve a 
predefined goal by optimally employing the system resource (time and/or energy). An agent 
(here robot) can plan individually or in a group. While planning in a group, the agent may be 
cooperative or competitive towards the remaining group members. In this paper, only the 
cooperative robots are considered and analyzed. 

Several techniques are available for planning in the literature, including Graphs [2], 
Voronoi diagrams [3], potential field [4], adaptive action selection [5], intention inference [6], 
cooperative conveyance [7], perceptual cues [8], and the like. All these require information 
about the environment, and thus are unable to function when the information about the 
environment is absent. Reinforcement Learning (RL) [9]-[18] fills this void. 

RL is the model-free approach and hence, it is preferred over other traditional planning 
approaches. There exist a number of RL algorithms [9]-[18]. Based on the number of agents 
involved, RL is of two types: single agent and multi-agent. Multi-Agent Reinforcement 
Learning (MARL) algorithms are of three types: cooperative, competitive and mixed [19]. In 
this paper, we focus only on cooperative MARL. Among the cooperative MARL algorithm 
equilibrium-based MARL is one type [19], where each agent updates its joint Q-value at 
equilibrium. By equilibrium, an agent attains a balance condition among the agents. In the 
literature, there are two types of equilibria: Nash equilibrium (NE) [20] and correlated 
equilibrium (CE) [21]. In Nash Q-learning (NQL) [22]-[23] and correlated Q-learning (CQL) 
[21], agents’ update Q-values at joint state-action space employing the NE and CE 
respectively. As we are dealing only with the cooperative MAQL, so here only the 
coordination type NE is considered. It is difficult to find out that which equilibrium (NE or 
CE) is optimal at a joint state. If agents are instructed to select any one type of equilibrium 
(either NE or CE) a priori, then there is a chance of missing the optimal solution. 

To address the above problem we introduce the concept of consensus [24]-[25] in the 
domain of MARL, from the field of cooperative control [26] and potential games (PGs) [26]. 
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A consensus is a coordination type pure strategy NE [26]. In this paper, agents' are instructed 
to update Q-values at consensus and proposed a novel consensus Q-learning (CoQL) 
algorithm. In addition, an analysis reveals that that a consensus jointly satisfies the criterion 
of pure strategy NE as well as pure strategy CE. Experimental result demonstrates the 
superiority of the proposed CoQL algorithms over the reference algorithms in terms of the 
average of the average rewards (AAR) earned by the agents. The consensus-based multi-robot 
cooperative planning algorithm is also proposed and its superiority is shown over the 
reference algorithms considering path length and torque requirement by the robots as the 
performance metric. The merits of the chapterare:  
1. The problem of selecting the equilibrium type in multi-agent system is addressed by 
proposing the CoQL algorithm.  
2. Agents evaluate consensus (joint action) [73-76] in each step of learning and planning 
phases.  
3. It is shown by an analysis that a consensus at a joint state is a coordination type pure 
strategy NE as well as pure strategy CE. 
    The rest of the chapter is structured as follows. Preliminaries of the Q-learning are given in 
Section 3.2. Section 3.3 introduces the concept of consensus. Section 3.4 proposes the 
consensus-based Q-learning and planning. Section 3.5 includes experiments and results. The 
conclusions are listed in Section 3.6. 

3.2 Preliminaries 
In RL, the learner works on the principle of reward/penalty received from the environment. 
Q-learning is an example of RL. This section briefly introduces the adaption mechanism of 
single agent Q-learning [27] and the state-of-the-art equilibrium-based multi-agent Q-learning 
(MAQL) algorithms. The state-of-the-art equilibrium-based MAQL includes NQL [22]–[23] 
and the four variants of CQL [21]. 

3.2.1 Single agent Q-learning 
The single agent Q-learning is proposed by Watkins and Dayna [27]. The recursive update 
rule of the single agent Q-learning for an agent, denoted by i is given by (1) [27].   
 

//

/ / /( , ) (1 ) ( , ) [ ( , ) [ | ( , )] ( , )],
ii

i i i i i i i i i i i i i i i i
as

Q s a Q s a r s a P s s a maxQ s a  


                               (3.1) 

where, (0,1] 

 

refers to the learning rate, (0,1] 

 

denotes the discounting factor, ( , )i i ir s a  is 
the immediate reward received by the agent i because of action { }i ia a  at  the current state 

{ }.i is s ( , )i i iQ s a  refers to the sum of long term discounted rewards or Q-value of agent i at 

state is  because of action .ia /[ | ( , )]i i i iP s s a  is the probability of moving to the next state 
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/ { }i is s  from current state is  because of .ia  In the literature of Q-learning, /[ | ( , )]i i i iP s s a  is 

well-known as the state transition probability. On completion of the learning an agent (here 
robot) begins to plan. During the planning phase it selects the action corresponding to the 
maximum Q-value in the current state, at each step of planning.    

3.2.2 Equilibrium-based multi-agent Q-learning  
The Q-value adaption mechanism of single agent Q-learning is not applicable for MAQL. As 
in multi-agent system, each agent learns in a common environment, which resulting in a 
dynamic environment. Several attempts have been made to address such multi-agent 
dynamics [22]-[23]. In cooperative MAQL, each agent attempts to maximize its own reward 
as well as the reward of the team. Such requirement can be attained by achieving a balanced 
condition among the agents, where no agent has any selfish intension to deviate from the 
balanced condition. In the literature of cooperative MAQL, the above mentioned balanced 
condition is achieved following equilibrium, e.g. NE or CE, where each agent updates its 
optimal expected future reward at equilibrium. Equilibrium-based cooperative MAQL is 
one of the interesting learning-based multi-robot planning algorithms, where each robot 
has inherent capabilities to adapt equilibrium at the current joint state.  

In this paper, we are interested only with the pure strategy NE/CE (or joint action). 
The definitions of pure strategy NE and pure strategy CE are respectively given in 
Definition 3.1 and 3.2.  
Definition 3.1: With m  interacting agents' pure strategy Nash equilibrium at a joint state 

{ }S S  is a joint action *
1

m
N i iA a   , such that no unilateral deviation (selfish deviation of 

an agent) can occur as long as all the agents follow the same optimal joint action 
*

1
m

N i iA a    at .S   

Assuming * { }i ia a  be the optimal action of agent i  at is  and *
iA A   be the optimal joint 

action profile of all agents except agent i  at 1
m

i iS s    and ( , )iQ S A  be the joint Q-value of 

agent i  at S  because of joint action { }.A A  Then the condition of pure strategy NE 
* *,N i iA a A   at S  is  

*( , ) ( , , ),  i N i i iQ S A Q S a A i                                                                                                   (3.2)  

Definition 3.2: With m  interacting agents pure strategy Correlated equilibrium at a joint 
state ( )S  is the optimal pure strategy profile *1 2, ,..., ,CE mA a a a   if and only if agents 

follow (3.3). 
arg max[ ( ( , ))]CE i

A
A Q S A                                                                                                     (3.3) 

where, { , , , } [21].
i ii i

Min Max
  

  
                             

(3.4) 

Here, CE has four variants: Egalitarian equilibrium (EE), Utilitarian equilibrium (UE), 
Republican equilibrium (RE) Libertarian equilibrium (LE). One problem of equilibrium-
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based MAQL is the selection of optimal equilibrium among the multiple types of equilibria. 
In addition, in the context of multi-robot cooperative planning problem, selection of optimal 
equilibrium refers to the selection of optimal joint action. In this context, the traditional 
equilibrium-based MAQL algorithm is given in Algorithm 3.1 [21]-[23].  
 

Algorithm 3.1: Equilibrium-based MAQL 
Input: Current state , ,is i action set iA at , ,is i [0,1)  and 

[0,1);   

Output: Optimal joint Q-value *( , ), , , ;iQ S A  S A i    
Begin  
   Initialize: ( , ) 0, , , ;iQ S A  S A i     
   Repeat  
         Select an action ,i ia A i  randomly and execute it;  
         Observe immediate rewards ( , ), ;ir S A i  

         Evaluate / ( , ),  i i i is s a i  to obtain / /
1;m

i iS s        

   

/( , ) (1 ) ( , ) [ ( , )  . ( )],i i i iQ S A Q S A r S A Q S i       
 

                                  
 and 

/;S S / / { , }NE CE                       
   Until ( , ), , ,iQ S A S A i   converges;  

  
*( , ) ( , ),  , ,  ;i iQ S A Q S A S A i     

End. 

3.3 Consensus 
In this section, the cooperative control problem employing potential games mainly focusing 
upon the consensus problem is briefly discussed. Here cooperative control [28]-[30] refers to 
a planning problem (e.g. object-transportation) by autonomous agents, satisfying all the 
necessary constraint. One paradigm of cooperative control problem is the consensus problem 
with plenty of literature in computer science and in the field of distributed computing [31], 
where the challenge is to design the objective functions of the autonomous agents at a given 
joint state due to a joint action to realize the team objective amidst obstacles. Alternatively, 
the cooperative control problem (consensus problem) can also be deciphered by employing 
the concept of game-theory. In the context of cooperative control, potential game has a big 
role to play [28]. In potential game, agents require the perfect alignment between the team 
objective/potential function and the individual objective of the agent. A consensus in the PG 
is guaranteed to converge to a pure strategy NE with a potential function of increasing nature 
[28] In Q-learning, individual objective is equivalent to the Q-value. The following 
definitions are required to understand the later sections of the paper. The definition of 
consensus is given by utilizing the concept that all the PGs are guaranteed to converge to a 
pure strategy NE as given in [28]. 
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Definition 3.3: In a m  player game, if 1
m

iiS S  and 1
m

iiA A  indicate the joint state and 

joint action respectively, individual objective functions are 1{ : }m
i iQ S A     and potential 

function is denoted by : S A     satisfies 
/ //

/ / /
( , , ) ( , , )

( , , ) ( , , )
i i i i i i

i i i i

Q S a A Q S a A

S a A S a A
 

 

 

 
                                                                                             (3.5) 

i. e., all players' objective functions are aligned with the potential function, then the game is 
an Exact Potential game (EPG), where 1, ,

m
i jj j iA A   and / / /,i i ia a A  [28]. 

Definition 3.4: In a m  player game, if 1
m

iiS S  and 1
m

iiA A  indicate the joint state and 

joint action respectively, individual objective functions 1{ : }m
i iQ S A     and potential 

function denoted by : S A     satisfy  
/ / /

/ / /
( , , ) ( , , )

( , , ) ( , , )

i i i i i i

i i i i

Q S a A Q S a A

S a A S a A

 

 



  
                                                                                                (3.6) 

i. e., at least one player’s objective function is aligned with the potential function, then the 
game is weakly acyclic game (WAG), where 1,

m
i jj j iA A   and / / /,i i ia a A [28]. 

Definition 3.5: A consensus is a joint action * * *, { }i iA a A A   at a given joint state 
{ },S S  which jointly maximizes the individual objective function ( , , ), ,i i iQ S a A A i    or 

* *( , , ) ( , , )i i i i i iQ S a A Q S a A   , ,A i  and the potential function ( , )S A  or 
*( , ) ( , ),  S A S A A     [28]. 

3.4 Proposed Consensus Q-Learning and Planning 
In the section, we proposed a novel Consensus Q-learning (CoQL). Subsequently a 
consensus-based multi-robot cooperative planning algorithm is proposed.  

3.4.1 Consensus Q-learning 
An example is given in Fig. 3.1 to understand the importance of consensus in multi-robot 
cooperative planning. Let at a given joint state two robots 1 and 2 are synchronously 
cooperating with the action set respectively A1={a, b} and A2={x, y} having no 
communication among the robots. The reward matrixes in two different joint states are given 
in Fig. 3.1(a) and (b) In Fig. 3.1(a), suppose, robots plan following the CE (UE) and then they 
have two solutions ax and by to cooperate by (3.3). In such situation, in the absence of 
communication among the robots, they cannot select one joint action to cooperate. But if they 
evaluate coordination type NE (cooperative NE) by (3.2) and select the joint action ax, then 
the above problem can be addressed. However, in Fig. 3.1(b), contains two coordination type 
NEs (ax and by) by (3.2) and again the same problem arises. Here, robots can go for 
evaluating the CE (UE or EE) by (3.3) and selects joint action ax to cooperate.  
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It is interesting to note that both the robots’ receive maximum reward for the joint action, 
which satisfies the criterion of coordination type NE (or pure strategy NE for brevity) and 
pure strategy CE jointly. Motivated by this observation, we are interested to find such an 
equilibrium, which is a pure strategy NE as well as pure strategy CE. To achieve this we 
borrow the concept of consensus from PGs, which by definition is a pure strategy NE. In this 
paper, by a Theorem we have shown that a consensus is also a pure strategy CE.  
     

 

 

(a) Two UE (ax and by) and one NE (ax)   (b) Two NE (ax and by) and one UE or EE (ax) 

Fig. 3.1 Equilibrium selection in multi-agent system 

 

Theorem: In a potential game (PG), if * * *, { }i iA a A A   is a consensus point (joint action) 

at a given joint state { },S S  then at joint state S  a consensus *( )A  is a pure strategy Nash 
equilibrium (NE), NA  as well as a pure strategy Correlated equilibrium (CE), .CEA  

Assuming there exist at least one coordination type pure strategy NE. 

Proof:  Since *A  is a consensus point, by Definition 5, we have: 
        * *( , , ) ( , , ),  ,i i i i i iQ S a A Q S a A A i     

    * * *( , , ) ( , , ), .i i i i i iQ S a A Q S a A i                          *( , { })i ia A A   

    * *( , ) ( , , ), .i i i iQ S A Q S a A i                                 * * *( , )i ia A A                                 (3.7)   

By (3.7) and Definition 3.1 we can say that 
*

NA A                                                                                                                                 (3.8) 

at .S  Again by Definition 3.5 at consensus, the inequality (3.9) holds. 
*( , ) ( , ),  S A S A A                                                                                                              (3.9) 

Now, by Definition 3.3 all players’ objective functions are aligned with the potential function 
in an Exact Potential game (EPG) and by Definition 3.4 in WAG, at least one agent’s 
objective function is aligned with the potential function and hence ( , )S A is assumed as in 

(3.10).                    
( , ) [ ( , )]iS A Q S A                                                                                                              (3.10) 

where, { , , , }.
i ii i

Min Max
  

                                                                                                 (3.11)                                 

Now, by (3.9) 
                  *( , ) ( , ),  AS A S A      

             *[ ( , )] [ ( , )],  i iQ S A Q S A A                              [by (3.10) and { , , , }]
i ii i

Min Max
  

    

             *[ ( , )] [ [ ( , )]]i i
A

Q S A max Q S A    

←
 A

1  A2         → 
 x y 
a 90, 72.9 81, 72.9 
b 72.9, 72.9 72.9, 90 ←

  A
1 

 A2         → 
 x y 
a 99, 100 94, 96 
b 94, 95 97, 98 
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             *( , ) [ [ ( , )]]j i
A

Q S A max Q S A                           [Let * *[ ( , )] ( , ), [1, ]i jQ S A Q S A j m   ] 

             *arg[ ( , )] arg [ [ ( , )]]j i
A A

Q S A max Q S A    

             * arg [ [ ( , )]]i
A

A max Q S A    

             *
CEA A    [by Definition 3.2]                                                                           (3.12) 

So, to hold (3.9) in a PG, *A should be a .CEA  Hence, by (3.8) and (3.12) we can say that a 

consensus *A at a given joint state S  is a NA  as well as .CEA                                                  □ 

 
Algorithm 3.2: Consensus Q-learning (CoQL) 

Input: Current state , ,is i action set iA at , ,is i [0,1)  and [0,1);   

Output: Optimal joint Q-value *( , ), , , ;iQ S A  S A i    
Begin  
   Initialize: ( , ) 0, , , ;iQ S A  S A i     
   Repeat  
         Select an action ,i ia A i  randomly and execute it;  
         Observe immediate rewards ( , ), ;ir S A i  
         Evaluate / ( , ),  i i i is s a i  to obtain / /

1;m
i iS s        

 
/( , ) (1 ) ( , ) [ ( , )  .Co ( )],i i i iQ S A Q S A r S A Q S i      

 

                                  
 and 

/;S S / / Co=  and NE CE                                               
   Until ( , ), , ,iQ S A S A i   converges;  

  
*( , ) ( , ),  , ,  ;i iQ S A Q S A S A i     

End. 

 

So, in the CoQL and planning algorithms, instead of evaluating the pure strategy NE/CE at 
a joint state, a consensus is evaluated motivated by the cooperative control and PG, as a 
consensus is a pure strategy NE as well as a pure strategy CE as shown in the proposed 
Theorem. The proposed CoQL algorithm is given in Algorithm 3.2. The brace in Algorithm 
3.2 indicates the difference between Algorithm 3.1 and 3.2. 

3.4.2 Consensus-based multi-robot planning 
In multi-agent planning phase, each agent evaluates consensus by jointly satisfying (3.2) and 
(3.3) at a feasible joint state. It may be noted that for multiple consensuses at the given joint 
state, the consensus which appears first is selected. In this paper, we have considered the 
well-known stick-carrying problem, where each robot needs to reach its individual goal 
optimally without violating any constraint. Constraint violation refers to the collision with 
obstacle or the team-mates and falling of stick following Algorithm 3. The brace in Algorithm 
3 indicates the key contribution in the planning algorithm.  

 

//Proposed 
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Algorithm 3.3: Consensus-based planning 
Input: Feasible joint starting state ,FS joint goal state GS  and optimal  

joint Q-value 
*( , ), ;iQ S A i  

Output: Consensus or joint action which is a NE as well as CE *
FA at ;FS  

Begin  
  While F GS S do Begin 
     For { }A A  
         Evaluate consensus by jointly following (3.2) and (3.3); 
          If next feasible joint state /

FS  satisfies all the constraints; 

              Then *
FA A  and / ;F FS S   // / FS is the next joint state 

          End If; 
      End for; 
    End While; 
End. 

3.5 Experiments and Results 
Two experiments are presented in this section. The first experiment is designed to study the 
relative performance of the CoQL over the reference algorithms, considering average reward 
collection by the agents as a performance metric. Another experiment is framed to study the 
relative performance of the consensus-based planning algorithm over the reference 
algorithms, considering multi-robot stick carrying problem as a benchmark in terms of state-
transitions required to complete the task. 

3.5.1 Experimental setup  
All the experiments related to learning are performed in ten different 10×10 grid world maps 
for two and three agents. However, for brevity multi-robot planning is conducted for two 
agents only in 5×5 grid world maps. Each agent can execute one among the four possible 
actions (Left (L), Forward (F), Right (R), and Back (B)) at a state. As an agent reaches its 
goal state due to an action from a state, it receives maximum immediate reward of 100. 
Similarly, an agent receives zero (0) immediate reward for a non-goal state transition. The 
constraint violation is penalized by a negated immediate reward (here -1). In addition, to the 
above parameter setting the learning rate,   and discounting factor,  are set to 0.1 and 0.9 

respectively.  

3.5.2 Experiments for CoQL  
In this experiment, at each state an agent selects its action randomly from its individual action 
pool. In the next step, agent updates its own as well as the remaining agents' Q-values at joint 
state-action space following Algorithm 3.2. Average of the average rewards (AAR) as given 
in (3.13) is considered as a performance metric of the learning algorithms for m number of 
learning agents. 

//Proposed 
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 
1

1 1 1( , )
|{ } | | { } |

m

i
i S A

AAR Q S A
A S m  

   
            
                                                              (3.13)  

 

 
Fig. 3.2 AAR versus learning epoch for two agent system 

 

 

Fig. 3.3 AAR versus learning epoch for three agent system 

 

It is apparent from Fig. 3.2 that the AAR collected by a team of two agents over the learning 
epoch (iteration) in CoQL is more than the same offered by the traditional NQL and different 
variants of CQL (EQL, UQL, RQL, and LQL). Similar experiment is conducted for three 
agents as shown in Fig. 3.3. 

3.5.3 Experiments for consensus-based planning 
In this experiment, performance of the consensus-based multi-robot cooperative planning 
algorithm has been tested considering the well-known stick-carrying problem as a benchmark. 
The stick-carrying problem refers to the transportation of a stick from starting position to the 
fixed destination optimally without violating any constraint. It is apparent from Fig. 3.5 and 
3.5  
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Fig. 3.4 planning path offered by the consensus-based multi-agent planning algorithm 

Table 3.2 Planning performance 

 
Planning algorithm Number of state-transitions required Number of 90o turns required 

A1 A2 A1 A2 
Consensus-based 7 7 2 2 

NQL-based 7 7 3 3 

 

S1 S2

G1 G2

 

Fig. 3.5 planning path offered by the Nash Q- learning based planning algorithm 
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that the planning path offered by the consensus-based multi-agent cooperative planning 
algorithm is better than the same offered by the traditional learning based planning path, in 
terms of the path length and the number of 90o turns. Minimization of the 90o turns minimizes 
the torque requirement by the robots, and hence, saving in the energy consumption. Table 3.2 
illustrates the planning performance of the proposed Consensus-based planning algorithm 
over the NQL-based planning algorithm (here NQL) in terms of the above explained metrics.  

3.6 Conclusions 
The chapter proposes a novel CoQL algorithm for multi-robot cooperative planning. The 
proposed CoQL algorithm addresses the problem of equilibrium selection among different 
types of equilibria, by evaluating the consensus (joint action) at the current joint state. An 
analysis reveals that a consensus at a joint state is a pure strategy NE as well as pure strategy 
CE. The novelty of the CoQL lies in the adaption of the joint Q-values at consensus. The 
superiority of the proposed CoQL algorithm is verified over the reference algorithms in terms 
of the AAR earned by the agents against the learning epoch. In addition, consensus-based 
multi-robot cooperative planning algorithm is proposed and its superiority is verified over 
reference algorithms considering path length and torque requirement as the performance 
metrics.    

3.7 Summary 
In Chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of 
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above 
perspective, robots need to adapt with such a strategy, which can select the optimal 
equilibrium in each step of the learning and the planning. To address the bottleneck of the 
optimal equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-
learning for multi-robot cordination, by extending the equilibrium-based multi-agent Q-
learning algorithms. It is also shown that a consensus (joint action) jointly satisfies the 
conditions of the coordination type pure strategy Nash equilibrium and the pure strategy 
correlated equilibrium. The superiority of the proposed consensus Q-learning algorithm over 
traditional reference algorithms in terms of the average reward collection are shown in the 
experimental section. In addition, the proposed consensus-based planning algorithm is also 
verified considering multi-robot stick-carrying problem as the testbed. 
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Chapter 4                                                             
An Efficient Computing of Correlated 
Equilibrium for Cooperative Q-Learning Based 
Multi-Robot Planning 
 
   
 
In traditional multi-agent Q-learning induced planning, we need to evaluate Nash/correlated 
equilibrium at a given joint state during both learning and planning phases. Determination of 
such equilibrium being computationally expensive prohibits the planning in real-time. The 
chapter introduces a novel approach to adapt composite rewards of all the agents in one Q-
table in joint state-action space during learning, and uses these rewards to compute Correlated 
equilibrium in the planning phase. Two schemes of multi-agent Q-learning have been 
proposed. If success of only one agent is enough to make the team successful, then scheme-I 
is employed. However, if an agent’s success is contingent upon other agents and simultaneous 
success of the agents is mandatory then scheme-II is employed. New algorithms for multi-
agent learning/planning have been proposed, centering on the said schemes. It is shown that 
the correlated equilibrium obtained by the proposed algorithms and the traditional correlated 
Q-learning are identical. In order to restrict the exploration within the feasible joint states, 
constraint versions of the said algorithms are also proposed. An analysis is included to 
demonstrate the significant saving of computational time and space by the proposed 
algorithms. In addition, convergence analysis of the proposed algorithms is done. 
Experiments have been undertaken to validate the performance of the proposed algorithms in 
multi-robot planning on both simulated and real platforms. 
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4.1 Introduction  
Reinforcement learning (RL) works on the principle of reward and penalty earned by an agent 
(robot) [1]-[7], [15] from the environment. An agent is an autonomous body [8]-[11] capable 
of maintaining state transitions [12], [13] freely in a given environment. In RL, an agent 
learns a policy  to maximize a value function V(s) [14], at any environmental state s to 
achieve its (fixed) goal. Q-learning belongs to the family of RL algorithms. In Q-learning, the 
agent learns an optimal policy to select the best (optimal) action a  at state s to maximize the 

sum of immediate reward and the value function of the next state s/, discounted by a factor 
0≤γ<1. 

In single agent Q-learning [16], [17], the environment is stationary because the agent earns 
immediate reward due to its own action on the environment [18], [19]. However, in multi-
agent scenario, the immediate reward obtained by an agent depends also on the other agents’ 
actions on the environment, and thus the environment seems to be non-stationary [18]-[23]. 
Although the non-stationary behavior of the environment has not yet been modeled directly in 
multi-agent Q-learning (MAQL), its effect is considered by updating the joint state-action 
value function of the agents at equilibrium [24]. 

Several algorithms for MAQL have been proposed for both cooperative and competitive 
applications [18]-[34]. Among the equilibrium based cooperative MAQL algorithms, Nash-Q 
learning (NQL) [21], [28] and Friend-Q learning (FQL) [23] algorithms need special mention. 
Both these algorithms allow each agent to optimize its reward (payoff) in joint state-action 
space, considering fixed strategies (pure or mixed) of all other agents among possible 
alternatives. Meanwhile, if an agent selects only one action with unity probability, then the 
agent is said to use a pure strategy. A mixed strategy is the assignment of a probability 
distribution over the available actions, indicating a possibility of being selected by an agent 
[35]. The strategy profile corresponding to Nash-equilibrium (NE) [35], [36], [52], [53] thus 
refers to the best joint strategy of all the agents that allow each agent to maximize its payoff, 
considering fixed strategies of all other agents. Such payoff updating policy offers maximum 
freedom to an agent to give its best choice. In [22], Greenwald and Hall compared the relative 
performance of NQL and FQL algorithms with Correlated Q-learning (CQL), where the last 
one is used as the reference. Different variants of CQL exist in the literature based on the 
definition of Ω-equilibrium [22], where Ω usually takes any one of the four types: Utilitarian 
(U), Egalitarian (E), Republican (R) and Libertarian (L) by which an agent updates its 
future reward.  

Curse of dimensionality is one of the prohibiting factors of the state-of-the-art equilibrium-
based MAQL (NQL and CQL). Such bottleneck increases with the increase in number of 
learning agents while adapting Q-values in joint state-action space [43]-[45] by the state-of-
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the-art update policies. To address the curse of dimensionality in MAQL, Jelle et al. proposed 
the Sparse Cooperative Q-learning [44], where each agent maintains two Q-tables based on 
the requirement of coordination among the agents at a joint state. Zhang et al. successfully 
reduced the dimension of Q-tables in NQL, where unlike the traditional NQL; agents store Q-
values in joint state-individual action space [45]. To accelerate the convergence of the state-
of-the-art equilibrium-based MAQL (NQL and CQL), Hu et al. introduced the concept of 
equilibrium transfer [43] by exploiting the previously computed equilibria in different joint 
states with negligible transfer-loss. However, with the best of our knowledge there is no 
equilibrium-based MAQL in the literature, where agents adapt only one joint Q-table to 
accumulate the rewards of all agents.  

The applicability of RL includes finance sector [47], gaming industry [31], [36], robotics 
[5], [9], [29], [33] and many more. In this chapter, proposed algorithms are tested in the test 
bed of multi-robot object-transportation problems [38], [46]. 

The Ω Q- learning (ΩQL)
 
algorithms proposed in this chapter has two attractive features, 

which are not available in the traditional CQL. First, during the learning phase, an agent 
needs to adapt only one Q-table in joint state-action space unlike adapting m joint Q-tables for 
m agents in CQL. Second, the evaluation of the computationally expensive correlated 
equilibrium (CE) is avoided, following a tricky approach of computing it partially during the 
learning and the rest during the planning phases. This offers benefits in real-time planning as 
computation of a CE, which is time-costly, is avoided here by the proposed technique. 
Two schemes of ΩQL

 
have been proposed to serve two distinct type of MAQL based 

planning applications. Scheme-I ensures the success of the team, if only one agent is 
successful to serve its goal. This is useful for weakly coupled multi-agent systems, where 
only one agent is active at a time to serve the fixed goal. For example, in a soccer game only 
one person/agent at a time takes the ball ahead, serving its individual as well the team goal. 
Scheme-II ensures simultaneous success of all the agents in a tightly coupled multi-agent 
system, such as long stick/big object carrying by multiple robots. Both the schemes adapt Q-
tables in joint state-action space. However, there is a small difference in the adaptation 
mechanism of Q-values by the two schemes. Scheme-I is used to adapt a Q-table in joint 
state-action space based on the individual Q-values of the agents and the effect of 
coordination among the agents, received as feedback from the environment. Scheme-II adapts 
Q-table in joint state-action space by considering group (Ω) Immediate Reward (ΩIR) as a 
function of individual immediate rewards plus expected group (Ω) future reward as a function 
of individual expected future rewards discounted by a factor γ in [0, 1).  

Scheme-I and -II have four variants depending on the functional form used to compute the 
Q-value in joint state-action space. We here use a general nomenclature 
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1 11 1
{ , , , }

m m mm

i ii i
Min Max
  

    for a unified treatment of the four variants, for computing Q-values 

following U, E, R and L equilibria respectively. 
During the planning phase [37], we obtain one of the four equilibria, depending on the 

choice of Φ in the preceding learning phases. The planned task is then executed 
following the obtained equilibrium. Sometimes to execute a plan, we need to satisfy 
certain constraints that appear naturally from the problem under consideration. For 
example, in a twin robot cooperation to carry a stick held by the robots at the two end-
points of the stick [38], the stick-length is a constraint. It acts as a constraint in planning 
as for all possible next positions of the robots, the separating distance should be equal to 
the stick length. The constraint can be handled at the planning phase but at the cost of 
extra time to identify feasible next states for the robots. Alternatively, the feasible joint 
state-actions can be learned during the learning phase, so that equilibrium obtained in 
the planning phase always falls in the feasible action-space. Here, we emphasized 
learning only at the feasible joint state-action space to speed up planning. 

The main contributions of the chapter are briefly summarized below. 
1. Unlike traditional CQL, where CE is evaluated both in learning and planning phases, here 
we need to compute CE partly in the learning and the rest in the planning phases, thereby 
requiring CE computation once only when learning based planning is employed.  
2. It has been proved that the CE obtained by the proposed schemes is same as that obtained 
by the traditional CQL algorithms.   
3. The computational cost to evaluate CE here is much smaller than that obtained by 
traditional CQL algorithms for the following reasons. Computation of CE in CQL requires 
consulting m Q-tables in joint state-action space for m agents, whereas in the present context 
we use a single Q-table in the joint state-action space for evaluation of CE. 
4. Complexity analysis undertaken here confirms the last point. Both time-and space-
complexity-wise the proposed algorithms are less expensive than traditional CQL algorithms. 
5. Problem-specific constraints are taken care of in the proposed ΩQL to avoid unwanted 
exploration of the infeasible state-space during the learning phase, thereby saving additional 
run-time complexity during the planning phase.  
6. Experiments are undertaken to validate the proposed concepts in simulated and practical 
multi-agent robotic platform (here Khepera-environment). 

The rest of the chapter is organized as follows. In Section II, an overview of the single 
agent Q-learning and equilibrium based MAQL algorithms are given. Proposed cooperative 
multi-agent Q-learning and corresponding planning algorithms are given in Section III. 
Section IV offers complexity analysis. Simulation and experimental results are presented in 
Section V. Conclusions are given in Section VI. 
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4.2 Single-Agent Q-Learning and Equilibrium Based MAQL  
This section discusses the preliminary ideas concisely on single agent Q-learning and 
equilibrium-based MAQL algorithm for better understanding of the proposed methods. 

4.2.1 Single Agent Q learning 
In 1989, Watkins and Dayan [17] coined the single agent Q-learning, which is one of the most 
widely used RL techniques. It works by continuously updating an agent’s state-action value 
(Q-value) by a fixed policy and earns a reward (or penalty) from the environment in each 
step of learning. The Q-learning update rule of an agent i

 
is given in (4.1), assuming 

* /ˆ ( )i iQ s  to be the expected (indicated by  ̂ ) optimal (indicated by * ) Q-value [3], [17] of agent 

i
 
at next state /

i is S  and the expression of * /ˆ ( )i iQ s
 
is given in the Appendix [51] following 

the traditional representation [14], [21]. 
* /ˆ( , ) (1 ) ( , ) [ ( , ) . Q (s )]i i i i i i i i i i iQ s a Q s a r s a     

                                                               
(4.1) 

where, ( , )i i iQ s a  and ( , )i i ir s a  are the Q-value and immediate reward respectively at a state 

i is S  because of action i ia A  of agent ,i  [0,1)   be the learning rate, [0,1)   denotes 

the discounting factor and / ( , )i i i is s a  indicates the state-transition from state is  to next 

state /
is  because of action ia  with state-transition probability /( | ( , ))i i i ip s s a  of agent .i   

4.2.2 Equilibrium based MAQL 
Depending upon the type of tasks MAQL can be classified into three categories: cooperative, 
competitive and mixed [10]. Multi-agent cooperative scenario demands formulation of a 
joint policy, which benefits each agent individually and also the team. The analysis and 
further enhancement of the cooperative MAQL is carried out in this chapter. 

In MAQL algorithm, more specifically in equilibrium-based MAQL, each agent 
updates Q-values individually in joint state-action space employing one of the following 
equilibria: NE [28] and CE [22] to update the expected joint Q-value at equilibrium of an 
agent at the joint next state. CE includes U-equilibrium (UE), E-equilibrium (EE), R-
equilibrium (RE) and L-equilibrium (LE) [22]. 

Suppose in a m agent system, due to joint action 1 2 1{ } ... m
m iiK K A A A A        at joint 

state 1{ } m
iiG G S    the agent i  earns an immediate reward ( , )ir G K  and ( , )iQ G K  be the Q-

value of agent i  because of joint action K  at joint state ,G  where   denotes the Cartesian 

product. Now, following traditional representation [14], [21] of the expected joint Q-value at 
a given joint next state, / { }G G  because of mixed strategy   equilibrium, 

* / / * / /

1
( | ) ( | ),

m
i i i

i
p K G p a s


                                                             (4.2) 

for an agent i  is given in (4.3), 
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/ /
* / / * / / / /ˆ ( ) ( | ( , )) ( | ) ( , )i i

G K
Q G p G G K p K G Q G K

 
                     (4.3)  

where, / /

1
( | ( , )) ( | ( , ))

m
i i i i

i
p G G K p s s a


                                                     (4.4) 

be the joint state-transition probability and / { }K K  be the joint action at joint next state 
/ .G The definition of CE  is given below. 

Definition 4.1: Correlated equilibrium (CE) [22], [39] at a joint state  1
m

i iG s    with 

m  interacting agents is the pure strategy CE, *K  and mixed strategy CE, *( )p K  if 
agents follow (4.5) and (4.6) respectively for { , , , }.U E R L  

* arg max[ ( ( , ))]i
K

K Q G K                                                                 (4.5) 

*
( )

( ) arg max[ [ ( )( ( , ))]]i
Kp K

p K p K Q G K


                                            (4.6)     

where, 
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

                                         

The CQL update rule is given in (4.7) [22] following the traditional representation [14], 
[21]. 

* /ˆ( , ) (1 ) ( , ) [ ( , )  . ( )]i i i iQ G K Q G K r G K Q G      
                  

(4.7)  

CQL algorithm [22] is given in the supplemental file [51].  

4.3 Proposed Cooperative Multi-agent Q-Learning and 
Planning  
In CQL algorithm, the entries of the Q-tables of m-agents at a given joint state because of a 
joint action need not necessarily be same. However, in the present formulation, an attempt is 
made to solve the CQL algorithm by efficiently employing the { , , , }U E R L equilibrium, 

with the motivation to create single joint Q-table in joint state-action space by considering m 
Q-tables at individual state-action space and the environmental feedback about possible 
penalty due to multi-agent coordination at joint state-action space.  
After each learning epoch, the results of adaptation of each agent’s individual Q-tables are 
exploited to update the single Q-table in joint state-action space. Two techniques are 
proposed, namely scheme-I and -II, by efficiently employing the { , , , }U E R L equilibrium to 

evaluate the single joint Q-table. To distinguish the nomenclatures of scheme-I and -II 
respectively   and    is placed on the top of each symbol. The basis of proposed schemes 
with their applicability is provided below.   

4.3.1 Proposed schemes with their applicability 
The chapter proposes two distinct schemes for addressing two types of situations that may 
arise during the MAQL based multi-robot planning. In the first scheme, the success of the 
team is subject to the success of any one agent. Scheme-I is applicable for the weakly coupled 
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multi-agent systems, where only one agent is enough at a time to serve the fixed team goal. 
For example, suppose, m numbers of agents are assigned to transport a box from one location 
to another following scheme-I, and let transportation of the box requires only one agent at a 
time. Once failure of an agent is detected, its nearest agent expresses cooperation toward the 
failed agent for successful transportation of the box. Here, the success of any one agent is 
enough to make the team successful. On the other hand, in the second scheme, the success of 
a team is contingent upon the simultaneous success of all the agents and it is applicable for 
the tightly coupled multi-agent system, such as long stick/big object carrying by multiple 
robots [38], [46]. Therefore, in both schemes, agents adapt Q-tables depending upon the task 
requirement. 
In the proposed scheme-I induced Q-learning ( QL-I),  agents adapt the Q-table in joint state-

action space exploiting the individual Q-values at individual state-action space and the effect 
of coordination among the agents, received as a feedback from the environment to be 
explained in the next section. However, in the proposed scheme-II induced Q-learning 
( QL-II),  agents adapt the Q-table in joint state-action space following the traditional MAQL 

rule by evaluating the ΩIR as a function of individual immediate rewards plus expected group 
(Ω) future reward as a function of individual expected future rewards discounted by a factor 
0≤γ<1.  
It may be notated that in the proposed QL-II,  at a joint state, G  because of all the joint 
actions, { },K K  if an agent i  receives less than or equal to ( )  reward for EE  (or )LE  or 
greater than or equal to ( )  reward for UE  (or )RE  than the same by the proposed QL-I,  
then for EE  (or )LE  the joint action { }K K  corresponding to equal reward 
( ( , ) ( , ))Q G K Q G K    is preferred, as simultaneous success of all the agents is desired to 
make the team successful. On the other hand for UE  (or ),RE  also the joint action, { }K K  
corresponding to equal reward ( ( , ) ( , ))Q G K Q G K    is preferred as success of any one 

agent is enough to make the team successful. 

4.3.2 Immediate rewards in Scheme-I and -II 
In the literature of MAQL, agents receive only one type of immediate reward, i.e., immediate 
reward at joint state-action space. However, it is our observation that the immediate rewards 
at individual state-action space and immediate rewards at joint state action space are often 
diverse. Hence, in this chapter we have considered two types of immediate rewards for an 
agent .i  First one is the immediate rewards at individual state-action space, ( , )i i ir s a  and the 

second one is the immediate rewards at joint state-action space during the multi-agent 
coordination, ( , ).id G K  The physical significance of such reward categorization is that an 

agent should not receive penalty or reward because of remaining agents’ actions. For 
example, if each robot in a group individually receives immediate reward at joint state-action 



178 
 

space and subsequently employs either scheme-I or -II to obtain single Q-table at joint state-
action space, then the penalty incurred by a robot due to possible collision with an obstacle, 
might influence the identical Q-values offered by the scheme-I or -II. The above phenomenon 
is not desired and hence such immediate reward categorization is done. The definition of the 
proposed immediate reward is given in Definition 4.2. 
Definition 4.2: { , , , }U E R L  immediate reward (ΩIR), ( , )R G K  is given by (4.8), where 

1 11 1
{ , , , }.

m m mm

i ii i
Min Max
  

    

( , ) ( , ),iR G K d G K                   if agent i is penalized due to other agents  

           
[ ( , )],i i ir s a   

            
otherwise.                                            (4.8) 

Trivially from (4.8) it can be inferred that 
( , ) [ ( , )]iR G K r G K                                                                                  (4.9) 

4.3.3 Scheme-I induced MAQL 
The Q-value offered by scheme-I ( ( , ))Q G K  is evaluated by obtaining the 

1 11 1
{ , , , }

m m mm

i ii i
Min Max
  

    of the summation of individual Q-value ( , )i i iQ s a  and the immediate 

reward due to multi-agent coordination given by ( , ).id G K  For example, in multi-agent 
robotics, ( , )id G K  is the penalty because of collision among the agents. The ( , )Q G K  is 

evaluated by the learning rule,  
( , ) [ ( , ) ( , )]i i i iQ G K Q s a d G K                                                 (4.10) 

at the joint state G  because of joint action .K  Assuming * *
1 2, ,..., mK a a a   be the jointly 

optimized individual actions (joint action) at joint state ,G at the end of learning phase agents 
evaluate the optimal pure strategy *K  corresponding to the maximum of ( , ),Q G K  

{ , , , }U E R L  and is given by (4.11). 
* arg max[ ( , )]

K
K Q G K                                                                                                      (4.11) 

Note 4.1: As the CQL and the proposed scheme-I based learning algorithms share common 
environment and agents, both have same joint action set given by (4.12). 
{ } { }K K                                                                                      (4.12) 

In ΩQL-I, the optimal mixed strategy *( )p K  is obtained by evaluating the maximum of the 
expected reward ( ) ( , ),  :{ } [0,1]

K
p K Q G K p K


     and is given by (4.13). 

*

( )
( ) arg max[ ( )[ ( , )]]

Kp K
p K p K Q G K


                                          (4.13) 

On the other hand, Kok et al. observed that in most of the MAQL, agents required to 
coordinate their actions only in a few states, and in the remaining they act independently [44]. 
Motivated by their observations Note 4.2 and 4.3 are given below before proposing Theorem 
4.1 and 4.2.  
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Note 4.2: Following the principle of [44], in CQL, Q-value of agent i  at joint state G  
because of joint action K  may be expressed by (4.14). 

( , ) ( , ) ( , ),i i i i iQ G K Q s a d G K                                                (4.14) 
where ( , )id G K is explained in Section III.B, elements of G and K include is  and ia  

respectively. 
Note 4.3: Again, following the principle of [44], in CQL, the Q-value of agent i  at joint state 
G  because of joint action K setting ( , ) 0id G K  may be expressed by (4.15). 

/ ( , ) ( , ).i i i iQ G K Q s a                                                                          (4.15) 

Theorem 4.1: The optimal pure strategy, *K  induced by scheme-I is an   equilibrium, 
*K  for { , , , }U E R L  attained in CQL.  

Proof. Here, 

     
* arg max[ ( , )]

K
K Q G K                                      [by (4.11)] 

               arg max[ ( , )]
K

Q G K                                    [by (4.12)] 

               arg max[ [ ( , ) ( , )]]i i i i
K

Q s a d G K                 [by (4.10) and 
1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

    

               arg max[ [ ( , )]]i
K

Q G K                                 [by (4.14)] 

               
*K                                                          [by (4.5)]                                         (4.16) 

Hence, the Theorem is proved.         □ 
Theorem 4.2: The optimal mixed strategy, *( )p K  induced by scheme-I is an 

  equilibrium, 
* ( )p K  for { , , , }U E R L   attained in CQL.  

Proof. Here,  
 

*

( )
( ) arg max[ ( )[ ( , )]]

Kp K
p K p K Q G K


                          [by (4.13)] 

                
( )

arg max[ ( ) [ ( , ) ( , )]]i i i i
Kp K

p K Q s a d G K


      [by (4.10) and 
1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

     

                
( )

arg max[ ( ( )[ ( , ) ( , )])]i i i i
Kp K

p K Q s a d G K


         [  is independent of ]K  

                
( )

arg max[ ( ( )[ ( , )])]i
Kp K

p K Q G K


                         [by (4.14)]    

                
( )

arg max[ ( ( )[ ( , )])]i
Kp K

p K Q G K


                      [ :{ } [0,1],  :{ } [0,1]]p K p K     

                
* ( ).p K                                                           [by (4.6)]                                 (4.17) 

Hence, the Theorem is proved.                                                         □       
It may be noted that, if among m  agents at least one is required to successfully transport 

an object, (e.g., small box-carrying) to a predefined goal state cooperatively for 
succeeding the team, then scheme-I is useful. In Scheme-I, while an agent searches for 
its goal state, at the same time remaining agents keep on static (current state becomes the next 
state) by maintaining the equilibrium (cooperating) with the active one at that joint state. 
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However, if in a task (e.g. long stick-carrying), all m  agents need to reach their individual 
goal simultaneously to complete the assigned task, then scheme-II is employed instead of 
scheme-I. Details of scheme-II are given below: 

4.3.4 Scheme-II induced MAQL 
In the traditional single agent Q-learning, two types of rewards are used: immediate reward 
and optimal future reward. The principle of ΩQL-II  does not differ much from single agent 
Q-learning except the consideration of ( , )R G K at a given joint state G  because of a joint 

action K and * /ˆΩQ ( )G  at next joint state / .G  Naturally, to optimize total reward, we need to 

optimize both ( , )R G K  and * /ˆΩQ ( ).G  Definition of ( , )R G K  is given in Definition 4.2 and 
* /ˆΩQ ( )G are formally defined in Definition 4.3 for convenience of the readers.  

Definition 4.3: Expected optimal { , , , }U E R L  Q-value at next joint state / ,G * /ˆΩQ (G )  is 

obtained by evaluating the 
1 11 1

{ , , , }
m m mm

i ii i
Min Max
  

    among the summation of expected optimal 

Q-value of agent i
 
at /

is
* /ˆ Q ( )i is

 
and the expected optimal change in immediate reward due to 

multi-agent coordination at joint next state / ,G * /ˆ ( ).iQ G  * /ˆΩQ (G )  is given by (4.18),  
* / * / * /ˆ ˆ ˆ( ) [ ( ) ( )]i i iQ G Q s Q G  

                                                   
(4.18)        

where, * /ˆ ( )Q G
 
and * /ˆ ( )iQ G  are given by (4.19) and (4.20) respectively.  

/ /
* / / * / / / /ˆ ( ) ( | ( , )) ( | ) ( , )

G K
Q G p G G K p K G Q G K

 
     

                 
(4.19) 

/ /
* / / * / / / /ˆ ( ) ( | ( , )) ( | ) ( , )i i

G K
Q G p G G K p K G d G K

 
                     (4.20) 

where, * / /( | )p K G  be the probability of selecting joint action /K at joint next state /G  in 
scheme-II and the   Q-value by scheme-II ( ( , ))Q G K   following the principle of single 

agent Q-learning rule using Definition 4.2 and 4.3 is given in (4.21). 
* /ˆ( , ) (1 ) ( , ) [ ( , ) . ( )]Q G K Q G K R G K Q G         

                             
(4.21) 

At the end of learning phase agents evaluate the optimal pure strategy *K  corresponding to 
the maximum of ( , ),Q G K 

 { , , , }U E R L  and is given by (4.22). 
* arg max[ ( , )]

K
K Q G K  


 

                                                         (4.22)  

Note 4: Similar to Note 1, the relation between joint action set in scheme-II, { }K  and { }K  at 

a given joint state is given by (4.23). 
{ } { }K K                                                                                          (4.23) 

In ΩQL-II, the optimal mixed strategy *( )p K   is obtained by evaluating the maximum of the 
expected reward ( ) ( , ),  :{ } [0,1]

K
p K Q G K p K


      and is given by (4.24). 

*

( )
( ) arg max[ ( )[ ( , )]]

Kp K
p K p K Q G K


   


                                        (4.24) 

Lemma 4.1 to 4.6 are required to prove Theorem 4.3 and 4.4. 
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Lemma 4.1: The Inequality, ( )  ( ) (  ),i i i ix y x y      
 1 1

{ , }
m m

i i
Min
 

   holds for any real 

values of , , , [1, ]i ix y  i i m   and [0,1),   where 0 { }ix  and 0 { }.iy  
Proof. See Appendix [51]. 

Lemma 4.2: The inequality, ( )  ( ) (  ),i i i ix y x y      
 1 1

{ , }
m m

i i
Max
 

   holds for any real 

values of , , , [1, ]i ix y  i i m   and [0,1).    

Proof. See Appendix [51]. 

Lemma 4.3: The Inequality, 
1 1

(1 ) ( ) ( ) [(1 ) ], { , }
m m

i i i i
i i

x  y x  y Min   
 

           holds for 

any real values of , , , [1, ]i ix y  i i m   and [0,1),   where 0 { }ix  and 0 { }.iy  
Proof. See Appendix [51]. 

Lemma 4.4: The Inequality, 
1 1

(1 ) ( ) ( ) [(1 ) ], { , }
m m

i i i i
i i

x  y x y Max   
 

           holds for 

any real values of , , , [1, ]i ix y  i i m   and [0,1).   
Proof. See Appendix [51]. 
Now, if * /ˆ ( ) 0,iQ G   then let the expected Q-value at   equilibrium of agent i  at next joint 

state / ,G * /ˆ ( )i G  is given in (4.25).  

/ /
* / / * / / / / /ˆ ( ) ( | ( , )) ( | ) ( , )i i

G K
G p G G K p K G Q G K

 
   

              
(4.25)

 

Now, if * /ˆ ( ) 0,iQ G   (4.7) can be rewritten as in (4.26) 
* / * /ˆ ˆ( , ) (1 ) ( , ) [ ( , )  .[ ( ) ( )]]i i i i iQ G K Q G K r G K G Q G       

                                      
(4.26)  

Now, comparing (4.7) and (4.26) one can write, 
* / * / * /ˆ ˆ ˆ( ) ( ) ( ).i i iQ G G Q G    

                                                 
(4.27) 

Lemma 4.5: If * / * / * /ˆ ˆ ˆ( ) ( ) ( ),i i iQ G G Q G      then * / * / * /ˆ ˆ ˆ( ) ( ) ( )i i i iQ G Q s Q G   
 
at the next 

joint state / /
1 .m

i iG s    

Proof. See Appendix [51].   

Lemma 4.6: ( , ) [ ( , )]iQ G K Q G K   for 
1 11

{ , , ,
m mm

i ii
Min Max
 

   
1
},

m

i
  holds for the equality cases 

of Lemma 4.1-4.4.  
Proof. See Appendix [51]. 
Theorem 4.3: The optimal pure strategy, *K   induced by scheme-II is an   equilibrium, 

*K  for { , , , }U E R L  attained in CQL, holds for the equality cases of Lemma 4.1-4.4.  

Proof. Here,  
* arg max[ ( , )]

K
K Q G K  


 

                                         [by (4.22)] 

         arg max[ ( , )]
K

Q G K                                            [by (4.23)]  



182 
 

         
argmax[ [ ( , )]]i

K
Q G K                                 [by Lemma 4.6] 

         
*K 

                                                        
[by (4.5)]

    
(4.28)  

Hence, the Theorem is proved.                                                        □ 
Theorem 4.4: The optimal mixed strategy, *( )p K   induced by scheme-II is an 

  equilibrium, 
* ( )p K  for { , , , }U E R L  attained in CQL, holds for the equality cases of 

Lemma 4.1-4.4. 
Proof. Here,  

*

( )
( ) arg max[ ( )[ ( , )]]

Kp K
p K p K Q G K


   


                    [by (4.24)] 

              ( )
arg max[ ( )[ [ ( , )]]]i

Kp K
p K Q G K


  




              
[by Lemma 4.6]

                                                                                                                  

              ( )
argmax[ [ ( )[ ( , )]]]i

Kp K
p K Q G K


  


      

         
[  is independent of ]K  

       
       ( )

argmax[ [ ( )[ ( , )]]i
Kp K

p K Q G K


  
                     

[ :{ } [0,1],  :{ } [0,1]]p K p K   
 

              
*( )p K 

                                                    
[by (4.6)]                 (4.29)  

Hence, the Theorem is proved.                                                        □ 

4.3.5 Algorithms for scheme-I and II  
Scheme-I and -II induced ΩQL algorithms are proposed in Algorithm 4.1. Now, for further 
improvement, constraint version of QL-I/ QL-II 

 (CΩQL-I/CΩQL-II)  is given below. 
Algorithm 4.1: Scheme-I and -II induced ΩQL (ΩQL-I  and ΩQL-II)  

Input: Learning rate [0,1)  and discounting factor [0,1);   

Output: Optimal joint Q-value *( , ), , ;Q G K G K     \\ for Scheme-I 
               Optimal joint Q-value *( , ), , ;Q G K G K  

  \\ for Scheme-II 
Begin 
  Initialize: state , ,is i action set iA at , ,is i ( , ) 0, ,Q G K  G K    for Scheme-I and ( , ) 0, ,Q G K  G K     for  
  Scheme-II; 
   Repeat  
         1. Select an action ,i ia A i   by the Boltzmann strategy [48] and execute it for both the schemes;  

         2. For both the schemes observe immediate rewards ( , )i i ir s a and ( , ), ,id G K i  evaluate next state 

        / ( , ),  i i i is s a i  to obtain joint next state / /
1

m
i iG s    and individual Q-value  

       * /ˆ( , ) (1 ) ( , ) [ ( , ) . Q (s )],  ;i i i i i i i i i i iQ s a Q s a r s a i          

         3. Update: Joint Q-value ( , )Q G K by (4.10) for Scheme-I* and ( , )Q G K   by (4.21) for Scheme-II** and   

            
/;G G

1 11 1
// { , , , }, { , , , }.

m m mm

i ii i
U E R L Min Max

  
                                                                                          

   Until ( , ), ,Q G K G K   converges for Scheme-I and ( , ), ,Q G K G K   converges for Scheme-II; 

  
*( , ) ( , ), ,Q G K Q G K G K    for Scheme-I and *( , ) ( , ), ,Q G K Q G K G K     for Scheme-II; 

End. 

 
   
 

* In Scheme-I, suppose, there is a group of two robots, R1 and R2. R1 attempts to transport a box from one location to a fixed goal 
G. Once, R1 fails R2 takes in charge and continues the box transportation. If R2 reaches the goal state G, then it receives the 
maximum individual immediate reward, 100 (say). At the same time, R1 receives the minimum individual immediate reward, i.e., 0. 
In the above circumstance, we choose RE for group immediate reward evaluation, because the success of one agent is enough to 
make the successful. Group immediate reward = max(100, 0)=100. 
** In Scheme-II, for the stick-carrying problem [46] both R1 and R2 should receive 100 rewards to make the team successful. Here, 
EE is employed to evaluate the group immediate reward=min(100, 100)=100. 
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4.3.6 Constraint QL-I/ QL-II(CΩQL-I/CΩQL-II)   
In constraint ΩQL (CΩQL) algorithms, agents have to satisfy one or more task constraints to 
determine next feasible joint state from a set of next joint states. For example, in the stick-
carrying problem, two robots (agents) transport a stick from a given location to the other in 
their environment by holding it at two ends of the stick. During transportation, the stick 
should not collide with any obstacle. The transportation of a fixed-length stick without having 
encountered an obstacle by the stick acts as a task constraint that the agents have to maintain 
throughout their journey. Similarly, in triangle-carrying problem three robots carry a triangle 
satisfying the above mentioned constraint. 

If joint next state /( )G  does not satisfy task constraint(s) after selecting a joint action ( )K  
from a feasible joint state ( ),FG  then the next joint state /( )G  is removed from the feasible 
joint Q-table and also the joint action ( )K  is dropped from the feasible joint state ( ),FG  
otherwise the joint action is executed for learning. It is apparent that FG G  and ,FK K  

where G  and K  are joint state and joint action of the agents respectively. The constraint 
ΩQL-I/ΩQL-II  (CΩQL-I/CΩQL-II)  algorithm mentioning the changes as compared to ΩQL  

(Algorithm 4.1) is given in Algorithm 4.2. 
Algorithm 4.2: Constraint QL-I/ QL-II   (C QL-I/C QL-II)   

 

Input: As in Algorithm 4.1 plus task constraints; 
Output: Optimal Q-values for feasible joint state-action space; 
Begin  
 Initialize: Same as Algorithm 4.1; 
 Repeat 
     1. Select action as in Algorithm 4.1;  
     2. Receive immediate rewards ( , ),i i ir s a i  and ( , ),id G K i  as in Algorithm 4.1 and evaluate joint next  

         state / /
1

m
i iG s    and individual Q-value ( , ),i i iQ s a i  as in Algorithm 4.1; 

        3. Update: 
( , )F FQ G K

 for Scheme-I and ( , )F FQ G K  for Scheme-II;     // F in the suffix indicates the feasible 
         4. If the feasibility checking fails, then delete the FG from the joint Q-table and drop the FK taken at the current joint 

state; 

 Until ( , ), ,F F F FQ G K G K   converges for Scheme-I and ( , ), ,F F F FQ G K G K   converges for Scheme-II;                                

*( , ) ( , ),  ,F F F F F FQ G K Q G K G K     for Scheme-I and *( , ) ( , ),  ,F F F F F FQ G K Q G K G K    
       

 for Scheme-II;                                   End. 

4.3.7 Convergence 
In [44], Kok et al. mentioned that in most of the MAQL, agents require coordinating their 
actions only in a few states, while acting independently in the remaining states. Based on their 
observations, we jointly optimize a combination of i) individual Q-function and ii) the change 
in the individual Q-functions because of the multi-agent coordination. The function used to 
combine the above two, is determined based on the choice of type of equilibrium. In the 
present chapter, to consider the change in Q-values due to multi-agent coordination, we 
classify the immediate reward (Section 4.3.2) into two types, one defined in individual state-
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action space, and the other in the joint state-action space. Theorems (4.1, 4.2) and (4.3, 4.4) 
respectively leads to the optimal global policy for deterministic and stochastic cases for both 
scheme-I and -II. Convergence proofs of the proposed algorithms are offered by Theorem 4.5 
and 4.6 respectively for scheme-I and-II. To propose Theorem 4.5 and 4.6 Lemma 4.7-4.9 are 
the prerequisites.  
Lemma 4.7: *| [ ( , ) ( , )] | 0,  tR G K R G K t     hold for [0,1),   where t  is the learning epoch. 
Proof. See Appendix [51]. 
Lemma 4.8: * / * /ˆ ˆ| [ ( ) ( )] | 0,tQ G Q G     holds for [0,1)   as learning epoch .t   
Proof. See Appendix [51]. 
Lemma 4.9: If *| ( , ) ( , ) | ( , ),t k t kQ G K Q G K Q G K         then 

*
1(1 ) | [ ( , ) ( , )] | (1 ) ( , ),k

t t kQ G K Q G K Q G K         
 where, [0,1),   Rk   and t  is the 

learning epoch. 
Proof. See Appendix [51]. 
Theorem 4.5: The proposed scheme-I induced Ω  Q-learning converges 

*[ ( , ) ( , )]tQ G K Q G K   as learning epoch .t    
Proof. By (4.10)  

*

* *
 | ( , ) ( , ) |

    | [ ( , ) ( , )] [ ( , ) ( , )] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
                    (4.30) 

Now, we have two cases: 

Case I: For, 
1 1

{ , }
m m

i i
Min
 

  (4.30) becomes 

*

* *
 | ( , ) ( , ) |

    | [ ( , ) ( , ) ( , ) ( , )] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
                             [by Lemma 4.1 with 1  ] 

      
* *= | [ ( , ) ( , )] [ ( , ) ( , )] |t t

i i i i i i i iQ s a Q s a d G K d G K     

     
*= | [ ( , ) ( , )] |t

i i i i i iQ s a Q s a               [for any agent i  at a fixed ( , )G K ( , )id G K is constant] 

      = | [ ( , )] | .t
i i iQ s a                                 (4.31) 

Here, ( , )t
i i iQ s a  refers to the error in Q-value of agent i  at tht  iteration.  

Case II: For, 
1 1

{ , }
m m

i i
Max
 

   (4.30) becomes 

*

* *
 | ( , ) ( , ) |

    | [ ( , )] [ ( , )] [ ( , )] [ ( , )] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
            [by Lemma 4.2 with 1  ] 

    
* *= | [ ( , )] [ ( , )] [ ( , )] [ ( , )] |t t

i i i i i i i iQ s a Q s a d G K d G K     

    
* *| [ ( , )] [ ( , )] | | [ ( , )] [ ( , )] |t t

i i i i i i i iQ s a Q s a d G K d G K              [ | | | | | |]a b a b    

    
* *| [ ( , ) ( , )] | | [ ( , ) ( , )] |t t

i i i i i i i iQ s a Q s a d G K d G K                       [ | [ ] [ ] | | [ ] |i i i ia b a b      

    
*| [ ( , ) ( , )] |t

i i i i i iQ s a Q s a                      [for any agent i  at a fixed ( , )G K ( , )id G K is constant] 

   = | [ ( , )] | .t
i i iQ s a                                             (4.32) 
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Now, by [17] as learning epoch ,t  ( , ) 0.t
i i iQ s a   Hence, the scheme-I induced Ω  Q-

learning converges *[ ( , ) ( , )]tQ G K Q G K   as .t                                                    □ 
Theorem 4.6: The proposed scheme-II induced Ω  Q-learning converges 

*[ ( , ) ( , )]tQ G K Q G K    as learning epoch .t    
Proof.  By (4.21) 

*

* / * * * /
1

| [ ( , )] [ ( , )] |
ˆ ˆ | [(1 ) ( , ) [ ( , ) . ( )] [(1 ) ( , ) [ ( , ) . ( )] |

t

t t t

Q G K Q G K

Q G K R G K Q G Q G K R G K Q G     

  

           

 

   

  
* * * / * /

1 ˆ ˆ| (1 )[ ( , ) ( , )] [ ( , ) ( , )] [ ( ) ( )] |t t tQ G K Q G K R G K R G K Q G Q G           
         

  
* * * / * /

1 ˆ ˆ| (1 )[ ( , ) ( , )] [ ( , ) ( , )] | | [ ( ) ( )] |t t tQ G K Q G K R G K R G K Q G Q G           
 

                        [ | | | | | |]a b a b    

   
* * * / * /

1 ˆ ˆ| (1 )[ ( , ) ( , )] | | [ ( , ) ( , )] | | [ ( ) ( )] |t t tQ G K Q G K R G K R G K Q G Q G           
                                                                           

                                                                                                                      [ | | | | | |]a b a b    
* * * / * /

1 ˆ ˆ(1 ) | [ ( , ) ( , )] | | [ ( , ) ( , )] | | [ ( ) ( )] |t t tQ G K Q G K R G K R G K Q G Q G           
   

(1 ) ( , ).k
t kQ G K                                                       [by Lemma 4.7-4.9]                    (4.33) 

Now, [0,1),   with ,  (1 ) ( , ) 0,k
t kk Q G K      where k  is the dummy variable 

indicates the learning epoch. Hence, the scheme-II induced Ω  Q-learning converges 
*[ ( , ) ( , )]tQ G K Q G K    as learning epoch .t                               □ 

4.3.8 Multi-agent planning 
Multi-agent planning is followed by multi-agent learning. In Correlated-Q induced Planning 
(CQIP) algorithm [22], [39], m number of agents plan to reach a predefined joint goal state by 
determining CE using m joint Q-tables. In the proposed multi-agent planning algorithms, the 
(strategy or CE) joint action corresponding to the (maximum expected) maximum joint Q-
value offered by the proposed multi-agent planning algorithms is selected. Two alternatives of 
multi-agent planning algorithms are proposed. The first one, called   Multi-agent Planning 
( MP) does not require to satisfy task constraints as it has already been undertaken during the 
learning phase (by C QL-I  and C QL-II  algorithms). The MP  algorithm is given in 

Algorithm 4.3. However, in case the task constraint (e.g., fixed stick length or triangle 
structure) is not undertaken during the learning phase (as happens to be in QL-I  and QL-II),  
task constraint(s) are to be satisfied during the planning phase. Constraint MP (C MP)  

algorithm takes into account the task constraint during the planning phase. To handle the task 
constraint (stick-length) in C MP algorithm, the policy given in Algorithm 4.4 is adapted. 

Let the space (grids) between the agents (robots) holding a stick called intermediate state. 
Since the stick lies over the intermediate space, it is difficult to ascertain whether the region 
containing the next (front/back) intermediate state is occupied by an obstacle or not. To 
handle this problem, an agent has to check whether joint Q-value of the next intermediate 
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space is nonzero (as Q-values are initialized as zero). A nonzero Q-value indicates that the 
next joint state is free from obstacles. 

Algorithm 4.3:   Multi-agent Planning ( MP)  

Input: Feasible joint state ,FG  Goal state ,LG  *( , )F FQ G K  for scheme-I and *( , )F FQ G K   for scheme-II;  
Output: Optimal feasible joint action (or CE) 

*
FK at ;FG  

Begin  
  While F LG G do Begin 

     For { }F FK K  

       If * * *( , ) ( , )F F F FQ G K Q G K    // for scheme-I 

           
* * *( , ) ( , )F F F FQ G K Q G K     // for scheme-II 

            Then *
F FK K  and / ;F FG G // / FG is the joint next state 

       End If; 
     End for; 
  End While; 
End.  

 
Algorithm 4.4: Constraint   Multi-agent Planning (C MP)  

Input: Feasible joint state ,FG  Goal state ,LG  *( , )Q G K  for scheme-I and *( , )Q G K   for scheme-II;  
Output: Optimal feasible joint action (or CE) *

FK at ;FG  
Begin  
  While F LG G do Begin 

     For { }K K  
           If * * *( , ) ( , )F FQ G K Q G K    // for scheme-I 

               
* * *( , ) ( , )F FQ G K Q G K     // for scheme-II  

                and feasible joint next state /
FG  satisfies task constraints; 

            Then *
FK K  and / ;F FG G   // / FG is the joint next state 

       End If; 
    End for; 
  End While; 
End. 

4.4 Complexity Analysis 
In this section, evaluation of the space- and time-complexities of the proposed learning and 
planning algorithms in deterministic settings and comparing them respectively with the CQL 
and CQIP algorithms are done for { , }.E R  The time-complexity for { , }U L  are shown in 

the Appendix [51] and the space-complexity is not shown as it does not vary with the 
variation of  .  However, the run-time complexities of the proposed and existing algorithms 
for { , , , }U E R L  are given in Section 4.5. For simplicities, let us assume that 

1 2| |   | |   ....  | |   | |mS S S S                                                   (4.34) 
and 1 2| |   | |   ....  | |   | |mA A A A                                            (4.35) 

Now, the cardinality of joint state set  
1 2 |{ }|   | |  mG S S S     
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            1 2 | | . | | . . | |mS S S   

             | |mS                                                          [by (4.34)]                  

Further, the cardinality of joint action set 
1 2 |{ }|   | |  mK A A A     

            1 2 | | . | | . . | |mA A A   

             | |mA                                                          [by (4.35)]   
Let CQIPt  and C MPt  be the number of steps required to satisfy task constraint in one epoch 

during the planning phase by CQIP and C MP  algorithms respectively. In CQIP algorithm, 
task constraint is satisfied for m joint Q-tables and in C MP  algorithm, task constraint is 
satisfied for one joint Q-table, so, .CQIP C MPt t   Also let C QL It    and C QL IIt    are the number 

of steps required to satisfy task constraint in one learning epoch by CΩQL-I  and CΩQL-II  

algorithms respectively. Comparison of the CQL and CQIP algorithms with the proposed 
ΩQL,CΩQL  and Ω  induced planning algorithms ( MP  and C MP ) are given below. 

4.4.1 Complexity of Correlated Q-Learning 
Complexities of Correlated-Q induced learning and planning algorithms are given below. 

4.4.1.1 Space Complexity 

Learning: In CQL algorithm, agents maintain their own Q-tables in joint state-action space. 
Hence, the space requirement for a joint Q-table is | | . | | .m mS A  Assuming there is no 

communication among the agents, during the learning phase, each agent has to maintain all 
agent’s joint Q-tables individually by observing other agents state, action and rewards. So, in 
CQL algorithm, space complexity (SC) of one agent is 

. | | . | | ( . | | . | | )m m m m
CQLSC m S A O m S A                                      (4.36)   

Planning: In the CQIP phase, agents need the same number of joint Q-tables as required 
during the learning phase. Hence, SC of CQIP algorithm is given by, 

. | | . | | ( . | | . | | )m m m m
CQIPSC m S A O m S A                                    (4.37) 

4.4.1.2 Time Complexity 
Learning: In CQL, during the learning phase for { , }E R  an agent has to find out CE among 

all the joint actions. Therefore, in CQL algorithm, time complexity (TC) in a single learning 
epoch is 

( 1) | | (| | 1) ( | | )m m m
CQLTC m A A O m A                                           (4.38)    

Planning: For { , }E R  during the CQIP phase, except finding CE agents have to satisfy task 

constraint. Therefore, in CQIP algorithm, TC is 
( 1) | | (| | 1) ( | | )m m m

CQIP CQIPTC m A A t O m A                                (4.39) 
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4.4.2 Complexity of the proposed algorithms 
Complexities of the proposed learning and planning algorithms are given below. 

4.4.2.1 Space Complexity 
Learning: In ΩQL  algorithms, an agent maintains m agents’ Q-tables at individual state-
action space and one joint Q-table. Hence, during the learning phase SC in ΩQL  algorithms is  

(| | . | | )m m m m
QLSC m.| S | .| A| | S | .| A| O S A   

                             
(4.40) 

 Planning: During the planning phase, in CΩMP,  agents need only one joint Q-table to plan. 

Hence, SC in CΩMP algorithm is 
(| | . | | )m m m m

MPSC | S | .| A | O S A  C
                                          

(4.41) 

4.4.2.2 Time Complexity 
Learning: For { , }E R  in ΩQL algorithms, TC in a single learning epoch is the number of 
comparisons required to update joint Q-value for a joint state-action pair. In ΩQL-I  and 
CΩQL-I,  during the learning phase an agent has to evaluate m

 
individual Q-values by 

(| | 1)m A   comparisons and evaluate the 
1 1

{ , }
m m

i i
Min Max
 



 
among the summation of m

 
individual 

Q-values and ( , )id G K  by ( 1)m   comparisons. Hence, TC during the learning phase in ΩQL-I
 

and CΩQL-I  (satisfying task constraint) algorithms are respectively 
.(| | 1) ( 1) ( . | |)QL ITC m A m O m A      

                                  
(4.42)  

and
 

.(| | 1) ( 1) ( . | |)C QL I C QL ITC m A m t O m A        

                
(4.43) 

 In ΩQL-II  and CΩQL-II,  during the learning phase, each agent has to find out the IR  and 
*ˆΩQ .  For that, an agent requires 2( 1)m 

 
number of comparisons. Also agents update m

 individual Q-values by .(| | 1)m A 

 
comparisons. Hence, TC during the learning phases in 

ΩQL-II  and CΩQL-II  (satisfying task constraint) algorithms are given respectively in (44) 

and (4.45). 
 .(| | 1) 2( 1) ( . | |)QL IITC m A m O m A      

                               
(4.44)  

.(| | 1) 2( 1) ( . | |).C QL II C QL IITC m A m t O m A        

                  
(4.45) 

Planning: During the planning phase agents evaluate optimal joint action (CE) corresponding 
to the maximum joint Q-value at a given joint state. Hence, TC in ΩMP and CΩMP  

(satisfying task constraint) algorithms are 
(| | 1) (| | )m m

MPTC A O A   

                                                     
(4.46) 

and (| | 1) (| | )m m
C MP C MPTC A t O A    

                                     
(4.47) 

Space-complexity Analysis of Stick-Carrying and Triangle-Carrying Problem: SC of 
CΩQL  algorithms ( )C QLSC   and ΩMP  algorithm ( )MPSC  depend on the task to be solved. In 

the context of stick-carrying and triangle-carrying problems, a description is given below. In a 
grid map, usually there exist three types of cells, called Corner cell ( ),c Wall cell ( )w  and Other 
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Cell ( ).oc  From Fig. 4.1 it is observed, that in an n×n grid map, number of Corner cells ( ),cC  

Wall cells ( )wC  
and Other cells ( )ocC  

are 4,  4( 2)n  and 2( 2)n   respectively. An analysis of 

Fig. 4.2 indicates that in a two-agent system (m=2), from a ,c w
 
and oc  there exist 3, 5 and 8 

feasible joint states respectively for an agent. Therefore, assuming kF  be the number of 

feasible joint states from state k  
in an n×n grid map, total number of feasible joint states by 

CΩQL
 
algorithm is 

{ , , }
k k

k c w oc

m C F


 
22[4 3 4( 2) 5 ( 2) 8]n n       

                 
(4.48)

 

which on simplification returns
 

  
{ , , }

k k
k c w oc

m C F


 
216 24 8,n n   i.e., 2( ).O n                               (4.49) 

while that in ΩQL
 
algorithm, for 2m  

is  

2 4( ) ( ) ( ) ,mn n n n n     i.e., 4( ).O n                                                  (4.50) 

Similarly, for triangle-carrying problem 3m  
and total space complexity in CΩQLalgorithm 

is  

{ , , }
k k

k c w oc

m C F


 
224 48 24,n n  

   
i.e., 2( )O n

                       
(4.51)

 

and space complexity in ΩQL algorithm
 
for 3m is  

3 6( ) ( ) ( ) ,mn n n n n     i.e., 6( ).O n                                           (4.52) 

From (4.49), (4.50), (4.51) and (4.52) we conclude 

QL C QLSC SC 
                                                                     

(4.53) 

As only learned joint state-action pairs are utilized to plan 

.C MP MPSC SC  
                                                                  

(4.54) 

 

 

 

 

 

Fig. 4.1 Corner cell, boundary cell and other cell 

 

 

 

 

Fig. 4.2 Feasible joint states for two agent systems in stick-carrying problem 

4.4.3 Complexity comparison 

Comparisons of complexities between CQL and proposed algorithms are given below. 
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4.4.3.1 Space complexity 

From (4.36) and (4.40), 
. | | . | | | | . | |

. | | . | |

m mQL
m mCQL

SC m S A S A
SC m S A

 
     

                 

| | . | | 1
| | . | |m m

S A
mS A

   

                 
1 1

1
| | . | |m mS A 

                      [after approximation] 

                  1.

                                 
                                                           (4.55)     

 From (4.37) and (4.41),    

 

| | . | |
. | | . | |

m m
C MP

m mCQIP

SC S A
SC m S A

   

                
1 .
m


                                                                                             

(4.56) 

SC of CΩMP is 1
m of the SC in CQIP.   

We by (4.53) and (4.55) obtain, 
.CQL QL C QLSC SC SC                                                                   (4.57) 

We by (4.54) and (4.56) obtain, 
.CQIP C MP MPSC SC SC                                                                            (4.58) 

4.4.3.2 Time complexity 

From (4.38) and (4.43), 
.(| | 1) ( 1)

( 1) | | (| | 1)
C QL IC QL I

m mCQL

m A m tTC
TC m A A

      


  
    

                 
1

1 
| |mA 

                                    [after approximation]                 

                   1.

          
                                                                  (4.59) 

From (4.42), (4.43) and (4.59),  
.CQL C QL I QL ITC TC TC                                                         (4.60) 

From (4.38) and (4.45), 
.(| | 1) 2( 1)

( 1) | | (| | 1)
C QL II C QL II

m mCQL

TC m A m t
TC m A A
      


  

    

                  
1

1 
| |mA 

                                [after approximation]         

                     1.                                                                           (4.61) 

From (4.44), (4.45) and (4.61), 
.CQL C QL II QL IITC TC TC                                                         (4.62) 

Again from (4.39) and (4.47), 

  

(| | 1)
( 1) | | (| | 1)

m
C MP C MP

m mCQIP CQIP

TC A t
TC m A A t

  


       
( )C MP CQIPt t 
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1 .
m


                      

[after approximation]        
                

(4.63)
                                                                 

From (4.46), (4.47) and (4.63) we obtain, 
.CQIP C MP MPTC TC TC                                                               (4.64) 

4.5 Simulation and experimental results 
This section provides three experiments on multi-agent cooperation: one is the Experiment 
4.1 where complexity analysis of the proposed and the existing algorithms are shown. Second 
one is Experiment 4.2 (for )R   in which success of any one agent is enough to make the 
team successful. The last one is Experiment 4.3 (for )E   where simultaneous success of all 

the agents is needed to make the team successful. Experiment 4.1 provides experiments on 
cooperation of multiple mobile robots (agents) during the learning phase in the framework of 
object-transportation (stick-carrying and triangle-carrying) problem. The stick-carrying 
(triangle-carrying) problem [38] refers to transposition of the stick (triangle) from a given 
location to a desired destination in the given workspace by two (three) robots, where the stick 
(triangle) is held at its end-points (vertices). In Experiment 4.2, two agents cooperatively 
transport an object (box) from a given location to a predefined destination. Agents cooperate 
among themselves by moving (passing) the box to another agent with an aim to achieve 
success. In Experiment 4.3, two/three agents transport a stick/triangle from a given location to 
a predefined destination. Obstacles are added to the workspace to add complexity for all the 
mentioned Experiments. These Experiments are undertaken to study the performance of the 
proposed learning and planning algorithms to compare their performance with equilibrium 
based MAQL (NQL, FQL, and CQL) algorithms. The performance metric used during 
learning phase is the number (or percentage) of converged Q-values in joint state-action pair 
required with learning epochs and run-time complexity per learning epoch, while that during 
the planning phase includes only the run-time required to completely execute the plan. 

4.5.1 Experimental platform 
Both computer simulations (for stick-carrying, triangle-carrying problem and box-carrying) 
and hardware testing (for stick-carrying and box-carrying problem) are performed to compare 
the relative performance of the proposed and existing algorithms.  

4.5.1.1 Simulation 

The simulation is done employing MATLAB GUI (graphical user interface) R2015a version 
on an i7-3370 processor desktop computer with clock speed of 3.40GHz. The individual grid 
size in computer simulation is fixed at 20 pixels × 20 pixels. The total arenas in computer 
simulation are considered as of 5 unit × 5 unit grids size and 9 unit × 9 unit grids size. 
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In the present chapter, learning is conducted only in simulation, either by mimicking a real-
world environment or by generating an arbitrary environment to avoid any damage of the 
real-robot. On the other hand, in simulation, planning is straight forward; where at the current 
joint state each agent evaluates the CE employing the identical Q-table maintained by each 
agent in joint state-action space, and moves to the next state by adding a fixed length in the 
direction of the action executed. In case of multiple equilibria, agents select the CE, which 
appears first.   

4.5.1.2 Hardware 

The hardware testing is done with two Khepera-II mobile robots [40]-[41], equipped with an 
onboard Microcontroller (Motorola 68331) having a flash memory of 512 kB and a clock 
speed of 25MHz. It has 8 inbuilt active infrared proximity sensors and they are the well-
known semiconductor (GaAs) type proximity sensors [50]. In addition, both motor axes 
consist of an incremental encoder for position and speed measurement of the robot [40], [41]. 
Considering 2 unit and 5 unit speed (1 unit = 0.08mm/10ms), the stick-carrying problem is 
realized by connecting two robots through serial ports to two different Pentium IV desktop 
computers with clock speed of 2GHz.  
As already discussed, to avoid damage of the real-robot, learning is conducted in simulation 
only and subsequently the planning is done in real-time. During the planning phase, the next 
positions of the robots are determined employing the proposed 

 
induced joint Q-table for 

C MP,  MP  algorithms and the Correlated-Q induced joint Q-tables for CQIP algorithm 

stored in both the Pentium IV machines. As the joint Q-table maintained by each Pentium IV 
machine (or robot) is identical, hence, robots do not require communicating with fellow 
robots as well as with fellow robots’ computers during coordination (i.e., evaluation of CE). 
In the perspective of implementation, robots identify the change in states (next state) by 
measuring the distance traversed, in the direction of the action executed using incremental 
encoders. The individual grid size in hardware testing is fixed at 80 mm × 80 mm. Total arena 
for hardware testing is 9 unit × 9 unit grids (720 mm × 720 mm).  
Both in computer simulation, and hardware testing, each agent cooperates by selecting one set 
of actions among two sets. The first one consists of five actions: Left (L), Forward (F), Right 
(R), Back (B) and Pause (P) from a state. The second one includes nine actions, which are 
Left (L), Left-Forward (LF), Forward (F), Forward-back (FB), Right (R), Right-Back (RB), 
Back (B) and Pause (P) from a state. 

4.5.2 Experimental approach 
Experimental approaches for both learning and planning phases are given below. 
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4.5.2.1 Learning phase  

In the present chapter, it is assumed that agents can observe other agents’ state, action and 
reward, i.e., the environment can be represented as a Multi-agent Markov Decision Process 
(MMDP) [3]. Hence, in the above perspective inter-agent communication is not required. The 
parameters required during the learning phase of the  QL-I, C QL-I, QL-II, C QL-II,     NQL, 
FQL and CQL algorithms are set as follows: discounting factor 0.90,   learning rate 0.2   

and maximum immediate reward 100.  In NQL, FQL and CQL algorithms, a reward of 1  

(penalty) is given to an agent, when it hits other agents besides when hitting an obstacle or 
boundary wall in the proposed Experiment 4.1, 4.2 and 4.3. However, in 

QL-I, C QL-I, QL-II    and C QL-II  algorithms, an agent receives the same reward ( 1)  due to 
penalty (hitting an obstacle or the boundary wall). In QL-I and QL-II,   because of the 
collision among the agents and in C QL-I and C QL-II,   because of collision among the agents 
as well as collision between the stick (or triangle) with an obstacle results in a reward of 1,  

however, individually agents are not penalized for the former cause. In simulation, the system 
joint state-transition probabilities are assigned as randomly generated constant values 
assuming the workspace to be slippery, satisfying the property of a Markovian matrix, subject 
to the sum of state-transition probabilities at each state is unity, and slippery workspace is the 
cause of uncertainty. In hardware, experiments are conducted only in the deterministic 
environment. To determine convergence performance of NQL, FQL, CQL, 

QL-I, C QL-I, QL-II    and C QL-II  algorithms, number (or percentage) of joint state-action 
pairs having converged Q-values after each learning epoch ( )algoN

 
is accumulated in an array 

to plot with respect to the learning epoch, where,
 lg {NQL, FQL, CQL, ΩQL-I, CΩQL-I,  ΩQL-II, CΩQL-II}.a o

 
The plots are shown under 

Experiment 4.1. In case of CQL, the average of algoN  among the four variants of CQL is done 

before comparison. 

4.5.2.2 Planning phase  

To study the total execution time in the planning phase (Experiment 4.2 and 4.3), the run-time 
complexity of MP, C MP and CQIP algorithms are evaluated utilizing the ‘run & time’ 

button in MATLAB GUI. To study the run-time complexity during hardware test by Khepera-
II mobile robot, a stop watch is used. Let algoT  be the run-time complexity of the 

{CQIP, CΩMP, ΩMP}.algo
 
For multiple solutions (joint action or equilibrium), the solution 

which appears first is selected by all the agents. Let Si
 
be the starting position of robot Ri

 
and 

Gi
 
is the goal position of the robot, {1,2,3}.i

 
Real-time planning with Khepera-II mobile 

robots is followed after learning by computer simulation. Results for Experiment 4.1, 4.2 and 
4.3 are given below.
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4.5.3 Experimental results 
Experiment 4.1, 4.2 and 4.3 are given below in details. 
Experiment 4.1: Performance test of the proposed learning algorithms 
The motivation of this experiment is to examine the convergence of the QL-I, C QL-I   (Fig. 
4.3.a, 4.4.a and 4.5.a) and QL-II, C QL-II   (Fig. 4.3.b, 4.4.b, and 4.5.b) algorithms with 

learning epoch for a two/three agent system. In Fig. 4.3, 4.4 and 4.5, all the algorithms are run 
for 20 times seperately in an obstacle free 5×5 grid map and the mean from the above 20 runs 
is evaluated. It is apparent from Fig. 4.3 that for both the schemes 

, { , , , }.CQL QL C QLN N N E U R L   
 
This is supported by (4.57) and (4.58). It is also observed 

from Fig. 4.3 that ,QL I QL IIN N   
 

C QL I C QL IIN N     and .NQL FQL CQLN N N 
 
Further, 

the learning epochs required for convergence of NQL exceeds the same for ΩQL  algorithms, 
which in turn exceeds the same for CΩQL

 
algorithms. This is supported by (4.62) and (4.64). 

Hence, it is apparent from Fig. 4.3 that CΩQL
 
algorithms outperform NQL, FQL, CQL and 

ΩQL
 
algorithms in terms of speed of convergence. In Fig. 4.3, a fluctuation is observed in 

the curves of CΩQL  because of task-constraint checking (here, maintaining stick length in 

stick-carrying problem). Table-4.I offers the average of the percentage of joint state-action 
pair converged. It is apparent that Table-4.I supports (4.57), (4.58), (4.62) and (4.64). Similar 
inferences can be drawn from Fig. 4.4 and 4.5. 

 

 
a. scheme-I 

 
 



195 
 

 

 
b. scheme-II 

Fig. 4.3 Convergence comparision of QL, C QL,  NQL, FQL and CQL algorithms for two agents five 

actions, where { , , , }U E R L  
 

 
a. scheme-I 
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b. scheme-II 

Fig. 4.4 Convergence comparision of QL, C QL,  NQL, FQL and CQL algorithms for three agents 

five actions, where { , , , }U E R L  
 

 
a. scheme-I 
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b. scheme-II 

Fig. 4.5 Convergence comparision of QL, C QL,  NQL, FQL and CQL algorithms for two agents nine 

actions, where { , , , }U E R L  
 
 

Table-II shows the superiority of the proposed schemes in terms of the run-time complexity 
of single learning epoch over the equilibrium based MAQL including CQL for two agents. 
 
 
 
 
 

 

Experiment 4.2: Object (box)-carrying by scheme-I based proposed planning algorithms 
The motivation of this experiment is to transport a box by two agents from a given starting 
position to the desired destination utilizing the earlier experimental platform and approach for 

.R  Corresponding simulation and experimental results for the planning paths are shown in 

Table-4.I 
Average of the percentage (%) of joint state-action pair converged within 1 X 10^5 learning 

epochs of different learning algorithms 

Algorithm unconstraint constraint Algorithm unconstraint constraint 
EQL-I 99.76 % 100 % LQL-II 99.96 % 100 % 
UQL-I 99.57 % 100 % EQL 89.76 % X 
RQL-I 99.46 % 100 % UQL 90.75 % X 
LQL-I 99.78 % 100 % RQL 90.17 % X 
EQL-II 99.96 % 100 % LQL 89.98 % X 
UQL-II 99.84 % 100 % NQL 89.67 % X 
RQL-II 99.84 % 100 % FQL 90.61 % X 

Table-4.II 
 Average run-time complexity of different learning algorithms (second) 

Algorithm unconstraint constraint Algorithm unconstraint constraint 
EQL-I 0.008 0.014 LQL-II 1.011 1.017 
UQL-I 0.019 0.023 EQL 12.019 X 
RQL-I 0.008 0.015 UQL 22.018 X 
LQL-I 1.008 1.015 RQL 12.020 X 
EQL-II 0.010 0.016 LQL 32.801 X 
UQL-II 0.021 0.025 NQL 14.201 X 
RQL-II 0.012 0.016 FQL 16.206 X 
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Fig. 4.6 and 4.7. In Map 4.1 (Fig. 4.6 and 4.7), there are seven obstacles and two agents 
(robots). Each agent has a gripper to grip the box with an aim to transport it from one position 
to another. If two or more than two robots gather, then they exchange the box (indicated by 
thick arrow in Fig. 4.6 and by a circle in Fig. 4.7), motivated by the principle of market-based 
multi-robot coordination [42]. In Fig. 4.7, two Khepera-II mobile robots are employed in real-
time, for box transportation task. In real-time, only robot 2 (R2) has a gripper to grip the box 
(Fig. 4.7) and robot 1 (R1) transports the same by carrying it on its top. 
 

 
 

Fig. 6 (Map 1) Planning with box by CQIP, CΩMP  and ΩMP algorithms 

 

Table-III provides the mean of the run-time complexity of the 20 runs of the CQIP,
 

CΩMP
 and ΩMP

 
algorithms. It is apparent from Table-III that ,CQIP C MP MPT T T    which is 

supported by (4.64). Hence, it is apparent from Table-III that ΩMP algorithm outperforms the 
existing algorithms in terms of run-time complexity. 

 

 

 

 

 

 

 

 

Table-4.III 
Average run-time complexity of different planning algorithms (second) 

      
Map 

CQIP 
algorithm 

Proposed planning 
algorithms 

CΩMP  ΩMP  
4.1 (Fig. 4.4) 15.93 10.92 8.90 

4.1 (Fig. 4.5) with 2 unit speed 28.84 23.75 21.92 
4.1 (Fig. 4.5) with 5 unit speed 18.65 13.65 11.97 
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Fig. 4.7 (Map 4.1) Planning using Khepera-II mobile robot by CQIP, CΩMP and ΩMP algorithms, the 

planned path of which is given in Fig. 4.6 also 

Experiment 4.3: Stick- or triangle- carrying by model-II based proposed planning 
algorithms 
The motivation of this experiment is to transport a stick (by twin agents) or a triangle (by 
three agents) from a given starting position to the desired destination utilizing the above 
explained experimental platform and approach for .E  To transport a stick, an agent is 

contingent upon other agents, where all the agents have to reach their individual goal 
simultaneously to successfully complete the task. In Map 4.2 (Fig. 4.8 and 4.9) two robots 
transport a fixed length stick from a given joint state to the joint next state, indicated by 
arrows avoiding eight obstacles. In Fig. 4.8-4.9, robots follow optimal strategy (CE) using 
ΩMP

 
or CΩMP

 
algorithm. On the other hand, in CQIP, robots evaluate the same CE using m 

joint Q-tables obtained after CQL. Similarly, in Map 4.3 (Fig. 4.10), three robots transport a 
triangle from a given joint state to the joint next state, indicated by arrows avoiding seven 
obstacles.  

Table-4.IV provides the mean of the run-time complexity of the 20 runs of the CQIP,
 CΩMP

 
and ΩMP

 
algorithms. By Table-4.IV, one can conclude that ,CQIP C MP MPT T T    

which supports (4.64). Hence, it is apparent from Table-4.IV that ΩMP algorithm outperforms 
the existing algorithms in terms of run-time complexity. 
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Fig. 4.8 (Map 4.2) Planning with stick by CQIP, CΩMP  and ΩMP algorithms 

 

 

 

Fig. 4.9 (Map 4.2) Path planning using Khepera-II mobile robot by CQIP, CΩMP  and ΩMP algorithms, 

the planned path of which is given in Fig. 4.6 also 



201 
 

 

Fig. 4.10 (Map 4.3) Path planning with triangle employing CQIP, CΩMP and ΩMP
 
algorithms 

 
 
 

  
 
 
 

4.6 Conclusion 
The chapter introduces a new approach to MAQL and learning based multi-agent planning by 
efficiently fusing the CE and the proposed principles of scheme-I and -II. The principles 
adapted in the proposed schemes yield a single Q-table in joint state-action space, which 
contains sufficient information to plan by employing the proposed multi-agent planning 
algorithms. Also the task-constraint is considered during the learning phase to further reduce 
the space-, time- and run-time complexities. 
CE is efficiently employed in the proposed scheme-I and -II to obtain single Q-table in joint 
state-action space. The Q-table obtained from scheme-I and -II, with less computational cost 
than the CQL, contains sufficient information to plan by employing the proposed MP

 
and 

C MP. This is also proved by Theorems 4.1, 4.2, 4.3 and 4.4. Convergence analyses of both 
the schemes are provided in Theorem 4.5 and 4.6 respectively. Although C MP  plans well 
but it needs to satisfy the task-constraint (e.g., stick length in stick-carrying problem) during 
the planning phase. To save the run-time for task-constraint satisfaction, CΩQL is proposed, 

where only feasible joint state-action pairs that satisfy the task-constraint are learned and the 

Table 4.1 Average run-time complexity of different planning algorithms 
(second) 

  
Map 

CQIP 
algorithm 

Proposed planning 
algorithms 

CΩMP  ΩMP  
4.2 (Fig. 5.6) 29.31 15.91 10.31 
4.3 (Fig. 10) 37.92 20.13 16.11 

4.2 (Fig. 5.7) with 2 unit speed 39.72 20.31 15.31 
4.2 (Fig. 4.9) with 5 unit speed 34.55 17.63 13.46 
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proposed MP  follows the CΩQL.
 
An analysis reveals that both time- and space- complexities 

of proposed learning and planning algorithms are significantly less to those of the CQL. A 
further reduction in complexity is obtained by dropping the infeasible joint state-action pairs 
from the joint Q-table. 
Simulation and practical experimental results are given to validate the superiority of the 
proposed algorithms over the reference algorithms considering space-, time- and run-time 
complexities as the performance metrics. 

4.7 Summary 
Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite 
rewards of all the agents in one Q-table in joint state-action space during learning, and 
subsequently these rewards are employed to compute correlated  equilibrium in the planning 
phase. Two seperate schemes of multi-agent Q-learning have been proposed. If success of 
only one agent is enough to make the team successful, then scheme-I is employed. However, 
if an agent’s success is contingent upon other agents and simultaneous success of the agents is 
required then scheme-II is employed. It is also shown that the correlated equilibrium obtained 
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order 
to restrict the exploration within the feasible joint states, constraint versions of the said 
algorithms are also proposed. Complexity analysis and experiments have been undertaken to 
validate the performance of the proposed algorithms in multi-robot planning on both 
simulated and real platforms. 
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4.8 Appendix 
The expected optimal Q-value of an agent i

 
at next state /

i is S  is denoted by * /ˆ ( )i iQ s  and is 

expressed in (4A.1). 

/ /
* / / * / / / /ˆ ( ) ( | ( , )) ( | ) ( , )

i i
i i i i i i i i i i i i

s a
Q s p s s a p a s Q s a

 
                       (4A.1) 

Here, /
i ia A  is the action at / .is / /( , )i i iQ s a  be the Q-value of agent i

 at next state /
i is S  

because of action / .i ia A  * : [0,1]i ip A   is the optimal probability distribution over .iA
 

 
Algorithm 4A.1 Correlated Q-Learning (CQL) 

Input: Learning rate [0,1)   and discounting factor [0,1);   

Output: Optimal joint Q-value *( , ), , , ;iQ G K  G K i    
Begin  
  Initialize: Current state ,is action set iA at ,is  joint Q-value ( , ) 0, , , ;iQ G K  G K i      
   Repeat  
         Randomly select an action ,i ia A i  and execute it;  
         Observe joint immediate reward ( , ), ;ir G K i  

         Evaluate next state / ( , ),  i i i is s a i  to obtain joint next state 
/ /

1
m

i iG s   for m agents; 

   

* /ˆ( , ) (1 ) ( , ) [ ( , )  . ( )],i i i iQ G K Q G K r G K Q G i        and /;G G      / / { , , , }U E R L                       
   Until ( , ), , ,iQ G K G K i   converges;  

  
*( , ) ( , ),  , ,  ;i iQ G K Q G K G K i     

End. 

Lemma 4.1: The Inequality, ( )  ( ) (  ),i i i ix y x y      
 1 1

{ , }
m m

i i
Min
 

   holds for any real 

values of , , , [1, ]i ix y  i i m   and [0,1),   where 0 { }ix  and 0 { }.iy  
Proof. Given , , , [1, ]i ix y i i m  as real values and [0,1),    

For any [1, ]j m  and 
1

,
m

i
Min


   

      1
( )

m
j i

i
x Min x


 and

1
( )

m
j i

i
y Min y




 
always hold 

      1 1
 ( ) ( ),  , [1, ]

m m
j j i i

i i
x y Min x Min y j j m 

 
     

 

      1 1 1
(  ) ( ) ( )

m m m
j j i i

j i i
Min x y Min x Min y 
  

     

     1 1 1
(  ) ( ) ( )

m m m
i i i i

i i i
Min x y Min x Min y 
  

   
                          

[ , [1,  ]]i j m
 

     1 1 1
( ) ( ) (  )

m m m
i i i i

i i i
Min x Min y Min x y 
  

   
                                                                          

(4A.1) 

Similarly, if 
1
,

m

i
   0 { }ix and 0 { },iy  then   
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1 1 1
( )  ( ) ( ),

m m m
i i i i

i i i
x y x y

  
    

                                                                                           
(4A.2) 

Thus, the desired inequality holds.                                                                                             □ 

Lemma 4.2: The inequality,
 

( )  ( ) (  ),i i i ix y x y      
 1 1

{ , }
m m

i i
Max
 

   holds for any real 

values of , , , [1, ]i ix y  i i m   and [0,1).    
Proof. Given , , , [1, ]i ix y i i m  as real values and [0,1),    

For any [1, ]j m  and 
1

,
m

i
Max


   

      1
( )

m
j i

i
x Max x


 and

1
( )

m
j i

i
y Max y




   
always hold 

      1 1
 ( ) ( ),  , [1, ]

m m
j j i i

i i
x y Max x Max y j j m 

 
       

       1 1 1
(  ) ( ) ( )

m m m
j j i i

j i i
Max x y Max x Max y 
  

   
         

       1 1 1
(  ) ( ) ( )

m m m
i i i i

i i i
Max x y Max x Max y 
  

   
                       

[ , [1,  ]]i j m
 

    1 1 1
( ) ( ) (  )

m m m
i i i i

i i i
Max x Max y Max x y 
  

   
                                                                         

(4A.3) 

Similarly, if 
1
,

m

i
    then   

1 1 1
( ) ( ) (  )

m m m
i i i i

i i i
x y x y 

  
     

                                                                                    
(4A.4) 

Thus, the desired inequality holds.                                                                                      □ 

Lemma 4.3: The Inequality, 
1 1

(1 ) ( ) ( ) [(1 ) ], { , }
m m

i i i i
i i

x  y x  y Min   
 

          holds for 

any real values of , , , [1, ]i ix y  i i m    and [0,1),   where 0 { }ix  and 0 { }.iy  
Proof. Proof of Lemma 4.3 is similar to the proof of Lemma 4.1.                                         □ 

Lemma 4.4: The Inequality, 
1 1

(1 ) ( ) ( ) [(1 ) ], { , }
m m

i i i i
i i

x  y x y Max   
 

           holds for 

any real values of , , , [1, ]i ix y  i i m   and [0,1).   
Proof. Proof of Lemma 4.4 is similar to the proof of Lemma 4.2.         □ 
Lemma 4.5: If * / * / * /ˆ ˆ ˆ( ) ( ) ( ),i i iQ G G Q G      then * / * / * /ˆ ˆ ˆ( ) ( ) ( )i i i iQ G Q s Q G   

 
at the next 

joint state / /
1 .m

i iG s    
Proof. By (4.26), 

 / /
* / / * / / / / /ˆ ( ) ( | ( , )) ( | ) ( , )i i

G K
G p G G K p K G Q G K

 
                                                                                                       

           / /
/ * / / / / /

1 1
( | ( , )) ( | ) ( , )

m m
j j j j j j j i

j jG K
p s s a p a s Q G K

  
   

                
[by (4.3) and (4.5)] 

           / /
/ * / / / /

1 1
( | ( , )) ( | ) ( , )

j j

m m
j j j j j j j i i i

j js a
p s s a p a s Q s a

  
   

 
[by (4.14), / / / / /( , ) ( , )]i i i iQ G K Q s a
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          / /
/ * / / / /( | ( , )) ( | ) ( , )

i i
i i i i i i i i i i

s a
p s s a p a s Q s a

 
  

/ /
/ * / /

1, 1,
( | ( , )) ( | ),

j j

m m
j j j j j j j

j js a
j i j i

p s s a p a s
  
 

  
                         

         
[ , [1, ]]i j m

  

          / /
/ * / / / /( | ( , )) ( | ) ( , )

i i
i i i i i i i i i i

s a
p s s a p a s Q s a

 
  

 

     / /
/ * / /[ ( | ( , )) 1 and ( | ) 1, ]

j j
j j j j j j j

s a
p s s a p a s j

 
   

 

         
* /ˆ ( )i iQ s

            
                                                           [by (4.1)]                           (4A.5)

                                                         
Given, * / * / * /ˆ ˆ ˆ( ) ( ) ( )i i iQ G G Q G       

 
* / * / * /ˆ ˆ ˆ( ) ( ) ( )i i i iQ G Q s Q G   

                                              
[by (4A.5)]                                                   

                                                                                                               Hence, the Lemma is proved.                                                        □ 

Lemma 4.6: ( , ) [ ( , )]iQ G K Q G K   for 
1 11 1

{ , , , },
m m mm

i ii i
Min Max
  

   holds for the equality cases 

of Lemma 4.1-4.4.  
Proof.  Here, 
  * /ˆ( , ) (1 ) ( , ) [ ( , ) . ( )]Q G K Q G K R G K Q G         

                  
[by (4.21)]

 1 * / 2 * /

* / * /

ˆ ˆ(1 ) ( , ) (1 ) [ ( , )  ( )] (1 ) [ ( , )  ( )] ...
ˆ ˆ  (1 ) [ ( , )  ( )] [ ( , )  ( )]

t t tQ G K R G K Q G R G K Q G

R G K Q G R G K Q G

      

    

             

     



          
  [by recursively substituting  (4.21), where, learning epoch ]t   

1 * / 2 * /

* / * /

ˆ ˆ[(1 ) ( , )] (1 ) [ ( , )  ( )] (1 ) [ ( , )  ( )] ...
ˆ ˆ   (1 ) [ ( , )  ( )] [ ( , )  ( )]

t t t
iQ G K R G K Q G R G K Q G

R G K Q G R G K Q G

      

    

             

     

   
[  and [0,1) (1 ) 0,tt        where 1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

  
   

1 * / * / 2

* / * / * / * /

* / * /

ˆ ˆ[(1 ) ( , )] (1 ) [ [ ( , )] . [ ( ) ( )]] (1 ) [ [ ( , )]
ˆ ˆ ˆ ˆ. [ ( ) ( )]] ... (1 ) [ [ ( , )] . [ ( ) ( )]] [ [ ( , )]
ˆ ˆ. [ ( ) ( )]]

t t t
i i i i i i

i i i i i i i i

i i i

Q G K r G K Q s Q G r G K

Q s Q G r G K Q s Q G r G K

Q s Q G

     

    



             

           

 

         
[by (4.9) and (4.18)]  

1 * / 2

* / * / * /

ˆ[(1 ) ( , )] (1 ) [ [ ( , )] . [ ( )]] (1 ) [ [ ( , )]
ˆ ˆ ˆ. [ ( )]] ... (1 ) [ [ ( , )] . [ ( )]] [ [ ( , )] . [ ( )]]

t t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

     

     

             

                 

                
[by Lemma 4.5]  

1 * / 2 * /

* / * /

ˆ ˆ[(1 ) ( , )] (1 ) [ [ ( , ) . ( )]] (1 ) [ [ ( , ) . ( )]] ...
ˆ ˆ(1 ) [ [ ( , ) . ( )]] [ [ ( , ) . ( )]]

t t t
i i i i i

i i i i

Q G K r G K Q G r G K Q G

r G K Q G r G K Q G

      

    

              

        

                                         [by statement considering only the equalities in Lemma 4.1 and 4.2]                                                          
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1 1 * / 2

* / * / * /

ˆ(1 ) [(1 ) ( , )] (1 ) [ [ ( , ) . ( )]] (1 ) [ [ ( , )
ˆ ˆ ˆ. ( )]] ... (1 ) [ [ ( , ) . ( )]] [ [ ( , ) . ( )]]

t t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

      

     

              

           

       
[ 

 
is independent of t and ]  

1 * / 2

* / * / * /

ˆ(1 ) [(1 ) ( , ) [ ( , ) . ( )]] (1 ) [ [ ( , )
ˆ ˆ ˆ. ( )]] ... (1 ) [ [ ( , ) . ( )]] [ [ ( , ) . ( )]]

t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

     

     

           

                                                 

   [by statement considering only the equalities in Lemma 4.3 and 4.4]    
1 2 * /

* / * /

ˆ(1 ) [ ( , )] (1 ) [ [ ( , ) . ( )]] ... (1 ) [ [ ( , )
ˆ ˆ. ( )]] [ [ ( , ) . ( )]]

t t
i i i i

i i i

Q G K r G K Q G r G K

Q G r G K Q G

     

  

             

     

          
[by (4.7)]

                                                                              2 2 * /

* / * /

ˆ(1 ) [(1 ) ( , )] (1 ) [ [ ( , ) . ( )]] ...
ˆ ˆ  (1 ) [ [ ( , ) . ( )]] [ [ ( , ) . ( )]]

t t
i i i

i i i i

Q G K r G K Q G

r G K Q G r G K Q G

    

    

           

        

       
[ 

 
is independent of t and ]

 

   

2 * /

* / * /

ˆ(1 ) [(1 ) ( , ) [ ( , ) . ( )]] ...
ˆ ˆ(1 ) [ [ ( , ) . ( )]] [ [ ( , ) . ( )]]

t
i i i

i i i i

Q G K r G K Q G

r G K Q G r G K Q G

   

    

        

               

   [by statement considering only the equalities in Lemma 4.3 and 4.4]    
which on further simplification returns       

* /ˆ( , ) [(1 ) ( , ) [ ( , ) . ( )]]i i iQ G K Q G K r G K Q G       
 

                  
[ ( , )]iQ G K 

                                                                                            
[by (4.7)] 

Hence, the Lemma is proved.                                                                                                     □ 
Lemma 4.7: *| [ ( , ) ( , )] | 0,  tR G K R G K t     holds for [0,1),   where t  is the learning 

epoch. 
Proof.  By (4.9), 

* *| [ ( , ) ( , )] | | [ ( , )] [ ( , )] |t
t i iR G K R G K r G K r G K                                          (4A.6) 

For 
1 1

{ , }
m m

i i
Min
 

   (4A.6) becomes  

     
* *| [ ( , ) ( , )] | | [ ( , ) ( , )] |,t

t i iR G K R G K r G K r G K               [by Lemma 4.1 with 1]        

     
*| [ ( , ) ( , )] | 0.tR G K R G K                

*[ ( , ) ( , ), , ]t
i ir G K r G K t i                                 (4A.7) 

for 
1 1

{ , }
m m

i i
Max
 

   (4A.6) becomes  

        
* *| [ ( , ) ( , )] |  | [ ( , ) ( , )] | .t

t i iR G K R G K r G K r G K       [ | ( ) ( ) | | |]i i i ia b a b                           

        
*| [ ( , ) ( , )] | 0.tR G K R G K                

*[ ( , ) ( , ), , ]t
i ir G K r G K t i                              (4A.8) 

Hence, by (4A.7) and (4A.8) the Lemma holds.                                                                        □ 
Lemma 4.8: * / * /ˆ ˆ| [ ( ) ( )] | 0,tQ G Q G     holds for [0,1)   as learning epoch .t   

Proof.  By (4.18),  

  
* / * /ˆ ˆ| [ ( ) ( )] |tQ G Q G    
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* / * / * / * /ˆ ˆ ˆ ˆ| [ [ ( ) ( )] [ ( ) ( )]t t

i i i i i iQ s Q G Q s Q G                               (4A.9) 
Now, we have two cases: 

Case I: For, 
1 1

{ , }
m m

i i
Min
 

  (4A.9) becomes 

      * / * /ˆ ˆ| [ ( ) ( )] |tQ G Q G                         
             * / * / * / * /ˆ ˆ ˆ ˆ| [ ( ) ( ) ( ) ( )] |t t

i i i i i iQ s Q G Q s Q G                      [by Lemma 4.1 with  1]   
            * / * / * / * /ˆ ˆ ˆ ˆ| [[ ( ) ( )] [ ( ) ( )]] |t t

i i i i i iQ s Q s Q G Q G        

            
/ /

/ /

/ * / / / / * / /

/ * / / / / * / /

| [ ( | ( , )) ( | )[ ( , ) ( , )]

( | ( , )) ( | )[ ( , ) ( , )] |
i i

t
i i i i i i i i i i i i i

s a
t
i i

G K

p s s a p a s Q s a Q s a

p G G K p K G d G K d G K


 

 

    

 
  [by (4A.1) and (4.20)]  

   
* / /[ ( , )i i iQ s a  is the maximum individual Q-value of agent i  at / /( , )i is a   

   and / / * / /( , ) ( , ), , ]t
i id G K d G K t i    

            
/ /

/ * / / / / * / /| [ ( | ( , )) ( | )[ ( , ) ( , )]
i i

t
i i i i i i i i i i i i i

s a
p s s a p a s Q s a Q s a

 
             (4A.10) 

Case II: For, 
1 1

{ , }
m m

i i
Max
 

   (4A.9) becomes 

      * / * /ˆ ˆ| [ ( ) ( )] |tQ G Q G                            
             * / * / * / * /ˆ ˆ ˆ ˆ| [ ( ) ( ) ( ) ( )] |t t

i i i i i iQ s Q G Q s Q G                    [ | ( ) ( ) | | |]i i i ia b a b      
            * / * / * / * /ˆ ˆ ˆ ˆ| [ ( ) ( )] [ ( ) ( )] |t t

i i i i i iQ s Q s Q G Q G        

             
/ /

/ /

/ * / / / / * / /

/ * / / / / * / /

| ( | ( , )) ( | )[ ( , ) ( , )]

( | ( , )) ( | )[ ( , ) ( , )] |
i i

t
i i i i i i i i i i i i i

s a
t
i i

G K

p s s a p a s Q s a Q s a

p G G K p K G d G K d G K


 

 

    

 
 [by (4A.1) and (4.20)] 

                                      
* / /[ ( , )i i iQ s a  is the maximum individual Q-value of agent i  at / /( , )i is a  

   and / / * / /( , ) ( , ), , ]t
i id G K d G K t i    

               / /
/ * / / / / * / /| ( | ( , )) ( | )[ ( , ) ( , )] |

i i

t
i i i i i i i i i i i i i

s a
p s s a p a s Q s a Q s a

 
                               (4A.11) 

Now as t   by [17] / / * / /( , ) ( , ).t
i i i i i iQ s a Q s a So, from (4A.10) and (4A.11) 

* / * /ˆ ˆ| [ ( ) ( )] | 0,tQ G Q G     as .t                          
Hence, the Lemma holds.                          □ 
Lemma 4.9: If *| ( , ) ( , ) | ( , ),t k t kQ G K Q G K Q G K         then 

*
1(1 ) | [ ( , ) ( , )] | (1 ) ( , ),k

t t kQ G K Q G K Q G K         
 where, [0,1),   Rk   and t  is the 

learning epoch. 
 Proof.  By (4.21), 
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*
1(1 ) | [ ( , ) ( , )] |tQ G K Q G K    

    

 
* /

2 2 2
* * * /

ˆ(1 ) | [(1 ) ( , ) [ ( , ) . ( )]]
ˆ[(1 ) ( , ) [ ( , ) . ( )]] |

t t tQ G K R G K Q G

Q G K R G K Q G

   

  

         

    





 

* *
2 2

* / * /
2

(1 ) | (1 )[ ( , ) ( , )] [ ( , ) ( , )]
ˆ ˆ[ ( )] . ( )] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

 

 



       

  

 
 

       

* *
2 2

* / * /
2

(1 ) | (1 )[ ( , ) ( , )] [ ( , ) ( , )] |
ˆ ˆ(1 ) | [ ( )] . ( )] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

  

 



       

   

 

     

         
( | | | | | |)a b a b  

 

 

* *
2 2

* / * /
2

(1 ) | (1 )[ ( , ) ( , )] | (1 ) | [ ( , ) ( , )] |
ˆ ˆ(1 ) | [ ( ) . ( )] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

   

  

 



        

   

 

  

         
( | | | | | |)a b a b    

 

2 * *
2 2

* / * /
2

(1 ) | [ ( , ) ( , )] | (1 ) | [ ( , ) ( , )] |
ˆ ˆ(1 ) | [ ( ) . ( )] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

  

 



       

   

 

 

     
2 * * / * /

2 2ˆ ˆ(1 ) | [ ( , ) ( , )] | (1 ) | [ ( ) . ( )] |t tQ G K Q G K Q G Q G                                                                      

                       [by Lemma 4.7] 

     
2 *

2(1 ) | ( , ) ( , ) |tQ G K Q G K     
                            

[by Lemma 4.8 with .t  ]
      

     
*(1 ) | ( , ) ( , ) |k

t kQ G K Q G K     
       

       
[For Rk  and continuing recursively employing (4.21)] 
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Hence, the Lemma holds.                            □ 
The time-complexity for { , }U L  are given in Table 4A.1 for the traditional as well as for 

the proposed algorithms. Let N be the maximum number of digits required to represent one 
Q-value all agents’ Q-values. 

Table 4A.1 Time-complexity analysis 
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It is apparent from Table 4A.1 and earlier complexity analysis in Section 4.4 that the time-
complexity of the proposed planning algorithms does not vary with the variation of Ω. 
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Chapter 5                                                               
A Modified Imperialist Competitive Algorithm 
for Multi-Robot Stick-Carrying Application 
 
 
This chapter proposes a novel evolutionary optimization approach of solving a multi-robot 
stick-carrying problem. The problem refers to determine the time-optimal trajectory of a stick, 
being carried by two robots, from a given starting position to a predefined goal position 
amidst static obstacles in a robot world-map. The problem has been solved using a new 
hybrid evolutionary algorithm. Hybridization, in the context of evolutionary optimization 
framework, refers to developing new algorithms by synergistically combining the composite 
benefits of global exploration and local exploitation capabilities of different ancestor 
algorithms. The chapter proposes a novel approach to embed the motion dynamics of fireflies 
of the Firefly Algorithm (FA) into a socio-political evolution-based meta-heuristic search 
algorithm, known as the Imperialist Competitive Algorithm (ICA). The proposed algorithm 
also uses a modified random walk strategy based on the position of the candidate solutions in 
the search space to effectually balance the trade-off between exploration and exploitation. 
Thirteen other state-of-art techniques have been used here to study the relative performance of 
the proposed Imperialist Competitive Firefly Algorithm (ICFA) with respect to run-time and 
accuracy (offset in objective function from the theoretical optimum after termination of the 
algorithm). Computer simulations undertaken on a well-known set of 25 benchmark functions 
reveal that the incorporation of the proposed strategies into the traditional ICA makes it more 
efficient in both run-time and accuracy. The performance of the proposed algorithm has then 
finally been studied on the real-time multi-robot stick-carrying problem. Experimental results 
obtained for both simulation and real frameworks indicate that the proposed algorithm based 
stick-carrying scheme outperforms other state-of-art techniques with respect to two standard 
metrics defined in the literature. The application justifies the importance of the proposed 
hybridization and parameter adaptation strategies in practical systems. 
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5.1 Introduction 
Multi-robot coordination has emerged as an important part of robotics research since late 
1980s [1]. The problem of coordination of multiple robots arises in numerous applications, for 
example, in factory environment (to transfer materials and products between workstations), in 
patient-carrying systems in hospitals/airports and in defense and security systems. 
Coordination in multi-agent robotics aims at synchronizing and harmonizing the simultaneous 
actions of multiple robotic agents in pursuit of a specific goal. One of the crucial challenges 
for multi-agent coordination systems is to design appropriate coordination strategies between 
the robotic agents that enable them to perform effectively and time optimally in complex 
workspace. There exists extensive literature on multi-robot coordination employing different 
approaches including graphs [2], Voronoi diagrams [3], potential field [4], adaptive action 
selection [5], intention inference [6], cooperative conveyance [7], and perceptual cues [8]. 
The traditional mathematical model of a multi-robot coordination system can be recast in the 
settings of an optimization problem [9] with an aim to efficiently utilize the system resources. 
The objective of optimization here is to determine optimal robotic actions based on the 
sensory readings collected from the environment by the robots to meet one or more desired 
objectives of the problem. Thus optimization of the objective functions, characterizing the 
functionality of a multi-robot coordination system, provides the feasible solutions for the 
qualitative system performance. The chapter proposes a novel formulation of a multi-robot 
stick-carrying system as an optimization problem. The stick-carrying problem [10] includes 
two robots to jointly carry a stick from an assigned initial position to a specified final position 
in a given environment, without collision with the given obstacles near the robots and the 
stick, constrained by the constant distance (equal to the stick length) between the robots. The 
sensory data of the robots, offering the range measurements of the stick from the nearby 
obstacles and the workspace boundary, are the input variables of the optimization problem 
while the output variables being the necessary amount of rotation and translation of the stick 
(by the robots) to transfer it in small step towards the goal. The primary objective function of 
the stick-carrying optimization problem in this context is concerned with the minimization of 
the time consumed by the robots (i.e., the length of the path to be traversed by the robots) for 
complete traversal of the planned trajectory. In other words, we expect the robots to plan the 
local trajectory, so that the stick is shifted from a given position to the next position (sub-
goal) in a time-optimal sense avoiding collision with the obstacles or the boundary of the 
world-map in the robots’ workspace. The optimization algorithm is executed for each local 
planning step to carry the stick by a small distance. A sequence of local planning ultimately 
transports the stick to the desired goal position. 
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In the past decades, a plethora of computing algorithms has been proposed in the domain of 
numerical function optimization. Traditional derivative-based optimization techniques, such 
as Newton-Raphson method, quasi-Newton strategy, and steepest descent leaning algorithm 
and the like completely rely on the derivative information of the objective function guiding 
the direction of search in the fitness landscape. These methods perform satisfactorily when 
the objective function to be optimized is globally concave over the search space. However, in 
real world scenario, the objective functions are sometimes found to be irregular and 
multimodal comprising multiple local optima, saddle points and discontinuities. Traditional 
gradient-based optimization algorithms are, therefore, ineffective to capture the global optima 
of these non-differentiable functions. 

Since early 1990s, Evolutionary Algorithms (EAs) have emerged as a derivative-free 
stochastic global optimizer with capability of providing promising results to optimize the non-
differentiable functions of the real world problems. EAs with the real-valued vector 
representation of the potential solutions of a complex physical system have earned wide 
popularity due to its flexibility and simple search strategy in the high-dimensional hyper-
space and robust performance in the dynamic environment. They commence with a 
population of trial solutions, symbolizing the potential solutions of the problem. The relative 
integrity of a solution can be assessed by evaluating its associated objective function value 
(often called fitness). New solutions are then generated by population-based evolutionary 
procedure. Finally, a greedy selection step is employed being inspired by Darwinian principle 
of the survival of the fittest. The selection step is responsible for filtering and promoting 
better candidate solutions from the candidate pool to the next evolutionary generation. 

The radical reduction in the computational time in the recent past coupled with the 
increasing demand to solve complex real world problems has enhanced the quest for more 
proficient nature-inspired metaheuristics. It is to be noted that two fundamental processes 
drive the evolution of an EA population—the diversification process, which enables exploring 
different regions of the search space and the intensification process, which ensures the 
exploitation of previous knowledge about the fitness landscape. The effects of such 
exploration and exploitation processes need to be competently balanced by an EA for its 
qualitative performance both w.r.t computational accuracy and run-time complexity over 
different fitness landscapes.  

However, the superiority of an EA in optimizing different objective functions is subjected 
to the No Free Lunch Theorem (NFLT) [11]. According to NFLT the expected effectiveness 
of any two traditional EAs across all possible optimization problems is identical. A self-
evident implication of NFLT is that the elevated performance of one EA, say A, over other 
EA, say B, for one class of optimization problems is counterbalanced by their respective 
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performances over another class. It is therefore practically difficult to devise a universal EA 
that would solve all the problems. This apparently paves the way for hybridization of EAs 
with other optimization strategies, machine learning techniques, and heuristics. In 
evolutionary computation paradigm, hybridization [12] refers to the process of integrating the 
attractive features of two or more EAs synergistically to develop a new hybrid EA. The 
hybrid EA is expected to outperform its ancestors w.r.t both accuracy and complexity over 
application-specific or general benchmark problems. The fusion of EAs through hybridization 
hence can be regarded as the key to overcome their individual limitations.  

In this chapter, we propose a simple yet very powerful hybrid EA by collegially coalescing 
the attributes of two global optimizers— the traditional Imperialist Competitive Algorithm 
(ICA) [13], [14] and the traditional Firefly Algorithm (FA) [15]. ICA is a novel socio-
politically motivated population-based meta-heuristic which has revealed remarkable 
performance in variant fields of optimization problems. The population individuals of ICA, 
resembling the countries in the world, are categorized as imperialist (best countries) and 
colonies (rest of the population) based on their associated objective function values. The 
entire population is subsequently divided into a number of sub-populations, known as 
empires, each consisting of an imperialist and a number of colonies (randomly selected based 
on the ruling power of the respective imperialist). The foundation of ICA is rooted in three 
elementary operations— 1) assimilation, which allows the possible movement of the colonies 
to their respective imperialist (strengthening exploitation), 2) revolution, which brings out 
sudden change in the countries’ socio-political views (preventing premature convergence of 
ICA) and 3) the imperialistic competition, which reinforces the powerful empires with an 
attempt to collapse the weakest one. There exists a vast literature on the modification and 
application of ICA. Among these the following contributions need special mentioning. 

A new EA has been proposed in [16] by combining ICA, Differential Evolution (DE) [17] 
and K-means clustering algorithm. ICA is also successfully hybridized with EA [18] and 
Genetic Algorithm (GA) [19]. ICA is treated as a local search strategy to develop a new 
memetic algorithm in [20]. A new variant of ICA has been introduced in [21] by 
strengthening the interaction among the imperialists of all the empires. A modified version of 
ICA is proposed in [22] based on the attraction and repulsion profiles between countries in an 
empire and is applied to solve a brushless direct current wheel motor design problem. A 
hybrid ICA, along with an artificial neural network, is implemented in [23] for oil flow rate 
prediction combining the local search facility of back-propagation and the global search 
ability of ICA. Seven different chaotic maps are utilized in [24] to improve the convergence 
characteristics of traditional ICA. Chaos has also been employed in [25] to adapt the angle of 
movement of colonies in ICA. In [26], an adaptive colony-radius selection strategy is 
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proposed for improvement in the assimilation policy of ICA. ICA has also been extended to 
solve constrained optimization policy in [27] equipped with a classical penalty technique.  

In [28], ICA is used to solve the dynamic economic dispatch problem while ICA is utilized 
for parameter identification of a reduced detailed R-C-L-M model of transformer in [29]. The 
capability of ICA to efficiently control the traffic of a metropolis is studied in [30]. ICA has 
also shown its potential to design a novel rotor configuration [31]. In [32], promising results 
are obtained for optimal design of a brushless doubly fed induction generator using ICA. ICA 
has also been successfully applied for clustering [33] and optimizing epoxy adhesive layer in 
fiberglass [34]. ICA has also been utilized to optimize the skeletal structures [35] and for 
solving the integrated product mix-outsourcing optimization problem [36]. The efficiency of 
ICA has also been validated in the field of template matching [37], IIR filter design [38], non-
linear multiple response [39], graph coloring problem [40], PID controller tuning [41] and 
scheduling in a hybrid flexible flow-shop [42]. A comparative study carried out in [43] 
exposes superiority of ICA over Particle Swarm Optimization (PSO) in solving the inverse 
problem in eddy current non-destructive evaluation.  

On the other hand, FA is a population based metaheuristic search algorithm for numerical 
function optimization that draws inspiration from the collective behavior and biochemical 
properties of fireflies. The motion dynamic of fireflies is derived from four properties of the 
social interaction between a group of mobile agents—following, dispersion, aggregation and 
homing. In [44], a fuzzy controller is employed to adaptively tune FA parameters for its better 
performance. In contrast, a novel strategy employing optimal deviation based FA tuned fuzzy 
membership function is introduced in [45] for multi-objective unit commitment problem. 
Another multi-objective variant of FA, adaptively tuning its control parameters using beta 
distribution, is proposed in [46]. A high convergence speed is obtained in [47] by using a 
Gaussian probability distribution based position renewal of fireflies. FA has been extensively 
applied to many optimization fields, including annual crop planning problem [48], complex 
and nonlinear problem [49], data mining [50], digital image processing [51], structural size 
and shape optimization [52], hybrid flow shop scheduling problems [53], QAP problem [54], 
queuing system optimization [55], economic emissions load dispatch problem [56], object 
tracking [57], traveling salesman problem [58], and so on. According to [59] FA outperforms 
PSO in finding optimal solutions of noisy non-linear continuous mathematical models in 
presence of higher level of noise. A hybridized version of FA is found in [60] for forecasting 
day-ahead electricity price. FA has also been successfully hybridized with cellular learning 
automata in [61]. A speciation-based FA has been implemented in [62] to solve dynamic 
optimization problem. A detailed description of hybridization aspects of FA with learning 
automata, GA and directed direction based search is provided in [63]. 
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In our proposed hybrid stratagem, the foraging behavioral dynamic of fireflies in FA is used 
to assimilate the colonies of ICA. The proposed assimilation dynamic enforces the colonies 
within an empire to follow the socio-political aspects of all relatively better countries, even 
including the imperialist, of the same dominion empire. It in turn increases the explorative 
revelation of the colonies in the empire. For improving the performance of the hybrid 
algorithm further, we modulate the step-size for random movement of each firefly according 
to its relative position in the search space, such that an inferior solution is driven by the 
explorative force while a qualitative solution should be confined in its local neighborhood in 
the search space. The chapter also recommends a novel approach of evaluating the threshold 
value for uniting empires, accelerating the convergence speed. Combinations of the FA-type 
motion dynamic along with the adaptive step-size and search range based threshold 
computation do not impose any serious computational overhead on the traditional ICA as 
evident from the simulation results. 

The complicated real world fitness landscape, induced by uncertain and imprecise 
environment, encompasses multimodality, deception and isolation. Explorative and 
exploitative capabilities are two cornerstones of EA that determines its efficacy in tracking 
the global optimum in such ill-conditioned/diverse fitness landscape. Hence the performance 
of EA is constrained by a trade-off between two antagonist processes: exploration and 
exploitation. Exploitation favors good convergence speed by orienting the search towards the 
desired global optimum through local refinement, whereas exploration aids in searching new 
promising regions in a large search space without getting stuck at the local basins of 
attraction. In population-based EAs the explorative power is manipulated by the population 
diversity. A population consisting of almost identical candidates has a low exploration power. 
Generally the search space is vigorously explored by the trial solutions (using the search 
operators) in the earlier generations of EAs with a high population variance. The population 
gradually loses its diversity during the convergence towards the global optimum (via greedy 
selection) through evolutionary generations. In the earlier explorative phases of optimization 
problems, low population diversity could induce premature convergence towards a sub-
optimal solution. In this article we analyze the evolution of the population variance of ICFA 
and its two parent algorithms including the traditional ICA and FA over generations 
delineating its impact on their explorative power. The simulation results reveal that the 
proposed hybrid algorithm realized with the traditional ICA and the traditional FA (hereafter 
referred to as Imperialist Competitive Firefly Algorithm –ICFA) enjoys a greater potential of 
balancing the explorative and exploitative powers as compared to individual balancing 
propensity of the original ICA and FA. 
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Experiments have been undertaken to test the expertise of the proposed hybrid algorithm on 
a test-suite of 25 benchmark functions [64]. The performance of the proposed ICFA is 
compared with ICA with DE (ICA-DE) [16], Interaction Enhanced ICA using Artificial 
Imperialists (ICAAI) [21], Memetic ICA (Memetic-ICA) [20], ICA with Adaptive Radius of 
Colonies Movement (ICAR) [26], Social-Based Algorithm (SBA) [65], Hybrid Evolutionary 
ICA (HEICA) [18], Chaotic ICA (CICA) [24], Modify ICA with K-means (K-MICA) [33], 
Recursive ICA with GA (R-ICA-GA) [19], the traditional Artificial Bee Colony (ABC) [66], 
traditional FA [15], the traditional ICA [13] and the traditional global best PSO [67]. 
Experiments reveal that the proposed realization outperforms other competitor algorithms 
both by computational accuracy and run-time complexity. 

Lastly, the efficacy of the proposed hybrid evolutionary algorithm is validated in the present 
context of the proposed multi-robot stick-carrying problem. Here too, the performance of the 
proposed algorithm is compared with the state-of-art techniques for the same application and 
the results are in favor of the proposed algorithm. Experiments undertaken further to compare 
the relative performance of the ICFA based path-planner with other swarm/evolutionary 
algorithm based design reveal that the proposed ICFA based planner outperforms other 
realizations. We have arrived at this conclusion by performing comparative analysis of the 
contender algorithms, used to plan the time-optimal trajectory of the stick, by using two 
performance metrics which have been previously used in the existing literature [37]. 

The chapter is divided into five sections. Section 2.2 provides the formulation of the multi-
robot stick-carrying problem. Section 2.3 overviews the traditional ICA and FA. The section 
then explores the proposed hybridization mechanism along with the experimental settings for 
the benchmarks and simulation strategies. Computer simulation of multi-robot stick-carrying 
problem in conjunction with the experiments with Khepera-II mobile robots is given in 
section 2.4. Section 2.5 concludes the chapter with future research direction. 

5.2 Problem Formulation for Multi-Robot Stick-Carrying 
The problem is demonstrated by considering two homogeneous robots, capable of jointly 
carrying a stick (by transporting it through a desired angle and distance) from a given starting 
position to a given goal position avoiding collision with static obstacles in the workspace. 
There exist two different planning approaches to address the stick-carrying problem: i) local 
planning and ii) global planning. The global planning is concerned with the planning of the 
entire trajectory of the robots with the stick from the given initial position to the final position. 
Contrarily in the local planning, the local movement of the system (the robots with the stick) is 
executed optimally in small steps towards the goal. The local planning has more flexibility 
than the global counterpart for the following reasons. First, it can take care of dynamic 
obstacles. Second, local planning requires small time to determine the next position of the stick 
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only, rather than deriving the entire trajectory of motion for the robots carrying the stick. Here, 
the local planning is used for its time-efficiency. 

The stick-carrying problem undertaken here is aimed at minimizing the time required by the 
robots for the execution of each local plan of transportation of the stick. In the present context, 
this is realized by minimizing the distance between the next positions of the robots with respect 
to their goal position. It ensures that the robots will follow the shortest path, in turn reducing 
time required to execute the plan. In order to take care that the next position of the stick is not 
in the close vicinity of obstacles, a penalty is introduced. It offers a large (or a small) penalty 
when the next position is close enough to (or far away from) any obstacle. 

The mathematical model of the stick-carrying problem is configured with the distances of the 
stick as well as the robots, R1 and R2, from the sidewall of the workspace as input variables 
(Fig. 4.1) and the next position of the robots (carrying the stick) as output (estimator) variables. 
The mathematical model is recast as minimizing an objective function, concerned with the 
optimal selection of the next position of the system (i.e., the robots with the stick) avoiding 
collision with obstacles for execution of each local plan. The hybrid evolutionary/swarm 
algorithm to be proposed is used to determine the next local position of the stick to satisfy the 
objective. Fig. 4.1 provides the distance measures and ((4.1)) combines these distances into a 
single entity [69]. Here 

     1 2 1 2 3 4  min ,   min ,    min ,   w w l l w wd d d d d d d                                             (5.1) 

where the parameters used on the right side of ((4.1)) represent range-measures (indicated in 
Fig. 4.1) and R1 and R2

 represent the centers of gravity of two robots carrying the stick. 
The following principles are used for formulating the problem. 
1) The robots first determine their next positions in order to align themselves with the goal 

and thus plan for a local motion at that current position. 
2) This alignment may result in a possible collision with static obstacles, if the determined 

next position of either of the robots or the stick has already been occupied by a static 
obstacle. Under this circumstance, the robots should turn left or right by certain angle and 
hence new next positions are to be determined. 

3) While planning locally, the most important issue to be taken care of is the distance 
between two robots. If the distance becomes greater than the stick length, the stick will 
fall. 
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4) If the robots can align themselves towards the goal position of the stick without any 

collision satisfying the distance constraint between them, the local motion will be 
executed. 

Let, (xi, yi) and (xi
/, yi

/) be the current and the next positions of the robot Ri with θi 
representing its angle of rotation for i= [1, 2]. Furthermore, (xi-goal, y i-goal) is regarded as the 
goal position of Ri for i= [1, 2]. So, for unit time interval, we have 

cos
sin

i i i i

i i i i

x x v
y y v




   
   

                    (5.2) 

To ensure that the robots should follow the shortest path we need to minimize i) the total 
Euclidean distance traversed by robots from current position (xi, yi)  to next position (xi

/, yi
/)  

and ii) the expected Euclidian distance to be covered from the next position (xi
/, yi

/) to the goal 
position (xi-goal, y i-goal), which is given by (5.3). 

2 2 2 2 2

1
( ) ( ) ( ) ( )i i i i i i goal i i goal

i
f x x y y x x y y 


                                                                            (5.3) 

Combining (5.2) and (5.3), we have the primary objective function to be minimized as given 
in (5.4).

 2 2 2

1
( cos ) ( sin )i i i i i goal i i i i goal

i
f v x v x y v y  


                                                             (5.4) 

Simultaneously, the robots need to satisfy the equality constraint of (5.5) for successfully 
carrying the stick to execute each local step of the entire task. 

1,2d l                                                                                                                                       (5.5) 

Here, d1,2 is the distance between the robots and l represents the length of the stick. 
In a nutshell, the optimization problem here includes an objective function f, concerning 

minimization of the Euclidean distance between the current positions of the robots with their 
respective goal positions, avoiding collision with obstacles and subjected to the equality 
constraint as in (5.5). Hence, the objective function for the proposed optimization problem is 
given by 
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dl2 
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  Fig. 5.1 Diagram illustrating the calculation of d 
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i i i i i goal i i i i goal
i

f v x v x y v y d l K   
 


                         (5.6) 

Here  λ is the Lagrangian multiplier, which needs to be evaluated to satisfy (5.5). The last 
term in (5.6) is the penalty where K is a constant. The last term offers a large (or a small) 
value when the next position is close enough to (or far away from) any obstacle in the 
workspace. 

5.3 Proposed Hybrid Algorithm 
In this section, firstly the traditional Imperialist Competitive Algorithm (ICA) and then the 
Firefly Algorithm (FA) are overviewed. It then proposes their hybridization methodology 
following the simulation strategies to substantiate the merit of the proposed algorithm over 
their traditional counterparts. 

5.3.1 An Overview of Imperialist Competitive Algorithm (ICA) 
Imperialist Competitive Algorithm (ICA) is a population-based stochastic algorithm, which is 
inspired by the socio-political evolution and the imperialistic competitive policy of a 
government to extend its power beyond its boundaries. It has earned wide popularity because 
of its noticeable performance in computational optimization with respect to the quality of 
solutions [13]. Like any other evolutionary algorithms, ICA starts with an initial population of 
solutions, called countries. The countries are classified into two groups—imperialists and 
colonies, based on their power (which is inversely proportional to their objective function 
values). The colonies (weaker countries) with their relevant imperialist (stronger country) 
form some empires. In each empire, the imperialist pursues an assimilation policy to improve 
the economy, culture, and political situation of its colonies, thus winning their loyalty. 
Moreover, the empires take part in the imperialistic competition in an attempt to gain more 
colonies. In ICA, the assimilation of colonies towards their respective imperialists along with 
the competition among empires eventually results in just one empire in the world with all the 
other countries as colonies of that unique empire. An overview of the main steps of the ICA is 
presented next. 

5.3.1.1 Initialization 

ICA starts with a population Pt of NP, D-dimensional countries, 
)}(),...,(),(),({)( ,3,2,1, txtxtxtxtX Diiiii 


 for i= [1, NP] representing the candidate solutions, at 

the current generation 0t   by randomly initializing in the range min max[ , ]X X
 

 where 
min min min min

1 2= { , ,..., }DX x x x


 and max max max max
1 2= { , ,..., }DX x x x


. Thus the d-th component 

(socio-political feature) of the i-th country at t=0 is given by 
)()1,0()0( minmaxmin

, ddddi xxrandxx                                                                                (5.7) 
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where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1, 
D]. The objective function value ))0(( iXf


 of the country )0(iX


 is evaluated for i= [1, NP]. 

5.3.1.2 Selection of Imperialists and Colonies 
The population P0 is sorted in ascending order of ))0(( iXf


 for minimization problem with i= 

[1, NP]. The first N countries with less cost function values are selected as imperialists while 
the remaining M = NP–N countries are declared as colonies. Hence the population individuals 
are categorized into two groups of countries— imperialists and colonies. 

5.3.1.3 Formation of Empires 

The empire under the j-th imperialist is constructed based on its ruling power. To accomplish 
this, first the normalized power of the j-th imperialist country, pj, is evaluated by (5.8) with 

))0(( NPXf


 representing the objective function value of the weakest country in the current 

sorted population P0. 

1

( (0)) ( (0))

( (0)) ( (0))

NP j
j N

NP l
l

f X f X
p

f X f X







 

                                                                                               (5.8) 

It is evident from (5.8) that better the j-th imperialist (i.e., less objective function 
value ))0(( jXf


 for minimization problem), higher is the difference ))0(())0(( jNP XfXf


  

leading to the enhancement of its corresponding ruling power, pj. Now the initial number of 
colonies under in the j-th empire, denoted by nj is computed by (5.9) 

j jn M p                                                                                                                            (5.9) 

such that 
1

N
j

j
n M


                                                                                             (5.10) 

Here    represents the floor function. According to (5.9) the stronger imperialists with 

higher ruling power now possess larger empires. Hence pj symbolizes the fraction of the 
colonies occupied by the j-th imperialist. Subsequently the j-th empire is formed by randomly 
selecting nj countries from M colonies provided that there will be no common colony between 
two different empires. Hence the number of countries within the j-th empire including its 
imperialist is nj+1. Let the k-th country belonging to the j-th empire is denoted by )(tX j

k


(at 

generation t=0) for k= [1, nj+1]. The countries within the j-th empire are now sorted in 
ascending order of their objective function values such that the imperialist )(1 tX j  in the j-th 

empire attains the first rank. This step is repeated for j= [1, N]. 

5.3.1.4 Assimilation of Colonies  

Each imperialist country now attempts to improve its empire by enhancing the socio-political 
influences of its colonies. To accomplish this, each country )(tX j

k


in the j-th empire now 
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moves towards its corresponding imperialist )(1 tX j by changing its characteristic features 

following (5.11) for k= [2, nj+1]. 

1( 1) ( ) (0,1) ( ( ) ( ))j j j j
k k kX t X t rand X t X t     
   

                                                                 (5.11) 

Here (0,1)rand is a uniformly distributed random number lying between 0 and 1 and β is 

the assimilation coefficient. The objective function value of the modified colony 
))1(( tXf j

k


is evaluated for k= [2, nj+1]. After assimilation, all the countries in the j-th 

empire are sorted in ascending order of the objective function values and the first ranked 
country is declared as the imperialist )1(1 tX j of the same empire for the next generation (i.e., 

t = t+1). The step is repeated for j = [1, N]. 

5.3.1.5 Revolution 

Revolution creates sudden fluctuation in the economic, cultural and political aspects of 
countries in an empire. The colonies in an empire are now equipped with the power of 
randomly changing their socio-political attributes instead of being assimilated by their 
corresponding imperialist. It resembles the mutation of trial solutions in the traditional EA. 
The revolution rate η in the algorithm indicates the percentage of colonies in each empire 
which will undergo the revolution process. A high value of revolution rate therefore fortifies 
the explorative power at a cost of poor exploitation capability. Hence a moderate value of 
revolution rate is favored. Revolution is implemented by randomly selecting η×nj countries 
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are replaced by 
randomly initialized countries characterized by new socio-political nature. After revolution, 
as in case of assimilation, all the countries in each empire are sorted in ascending order of the 
objective function values so that its imperialist is at the first position. The step is repeated for 
all empires. 

5.3.1.6 Imperialistic Competition   

All the N empires now participate in an imperialistic competition to take possession of 
colonies of other weaker empires based on their ruling power. The colonies of the weaker 
empires will be gradually eluded from the ruling power of their corresponding imperialists 
and will be thereafter controlled by some other stronger empires. Consequently, the weaker 
empires will be losing their power and ultimately may be eradicated from the competition. 
The imperialistic competition along with the collapse mechanism will progressively result in 
an increment in the power of more dominant empires and diminish the power of weaker ones. 
The imperialistic competition encompasses the following steps. 
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5.3.1.6.1 Total Empire Power Evaluation 

Once an empire is constructed under the dominance of the j-th imperialist )1(1 tX j , the power 

of the respective empire is compositely influenced by the objective function value of 
)1(1 tX j as well as the constituent colonies )1( tX j

k


(after assimilation) under the respective 

j-th empire for k= [2, nj+1]. The total objective function value of the j-th empire is evaluated 
as follows. 

1

1
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1( ( 1)) . ( 1)
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j j
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j k
tc f X t X t

n





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 
                                                                                  (5.12) 

Here ξ<1 is a positive number which regulates the influence of the constituent colonies to 
control the ruling power of the empire. A minuscule value of ξ causes the total power of the j-
th empire to be determined by its imperialist )1(1 tX j only, while increasing the value of ξ 

accentuates the importance of the colonies in deciding the total power of the respective 
empire. The N empires now are sorted in ascending order of tcj for j = [1, N]. Then the 
normalized possession power of the j-th empire, ppj, is evaluated by (5.13) with tcN 
representing the total objective function value of the weakest empire in the current population 
Pt. 
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N l
l
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


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                                                                                                         (5.13) 

It is evident from (5.13) that stronger the j-th empire (i.e., less the total objective function 
value tcj for minimization problem), higher is the possession power, ppj, which consecutively 
increases its probability of seizing colonies from weaker empires. This step is repeated for j = 
[1, N]. 

5.3.1.6.2 Reassignment of Colonies and Removal of Empire 

The empire with least possession power is interpreted as being defeated in the competition. 
Let the weakest colony of this weakest empire be denoted as worstX


, which is now removed 

from the dominance of its currently ruling imperialist and reassigned as a new colony to one 
of the stronger empires based on their possession probabilities. It is noteworthy that 

worstX


will not be possessed by the most powerful empires, but stronger the empire, more 
likely to possess worstX


. To accomplish this, the possession probability of the j-th empire is 

computed as follows for  j= [1, N]. 

(0,1)j jprob pp rand                                                                                                          (5.14) 

Now worstX


is assigned as a new colony to the j-th empire for which the possession 

probability probj is maximum. However, if the worst colony consists of only its imperial 
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before exclusion operation, (i.e., worstX


is the imperialist of the weakest empire), the removal 
of worstX


will result in the collapse of the weakest empire.  

5.3.1.6.3 Union of Empires 

The disagreement between two empires may be assessed by the difference in their respective 
socio-political features. This dissimilarity between any two empires, j and l is evaluated by 
taking the Euclidean distance between the respective imperialists )1(1 tX j  and )1(1 tX l  as 

in (5.15) for j, l= [1, N]. 

, 1 1( 1) ( 1)j l
j lDist X t X t   

 
                                                                                          (5.15) 

If  Distj, l is less than a predefined threshold, Th, the two empires are merged into one 
empire. The stronger country among )1(1 tX j  and )1(1 tX l is declared as the imperialist of 

the newly formed empire. 
After each evolution, we repeat from step 5.3.1.4 until one of the following conditions for 

convergence is satisfied. Stop criteria include a bound by the number of iterations, achieving 
a sufficiently low error or aggregations thereof. 

5.4 An Overview of Firefly Algorithm (FA) 
In Firefly Algorithm (FA) [15], a potential solution to an optimization problem is encoded by 
the position of a firefly in the search space and the light intensity at the position of the firefly 
corresponds to the fitness of the associated solution. Each firefly changes its position 
iteratively by flying towards brighter fireflies at more attractive location in the fitness 
landscape to obtain optimal solutions. 

5.4.1 Initialization 
FA commences with a population Pt of NP, D-dimensional firefly positions, 

)}(),...,(),(),({)( ,3,2,1, txtxtxtxtX Diiiii 


 for i = [1, NP] by randomly initializing in the search 

range min max[ , ]X X
 

 where min min min min
1 2= { , ,..., }DX x x x


 and max max max max

1 2= { , ,..., }DX x x x


 at 

the current generation t = 0. Thus the d-th component (socio-political feature) of the i-th firefly 
at t=0 is given by 

min max min
, (0) (0,1) ( )i d d d dx x rand x x                                                                        (5.16) 

where (0,1)rand  is a uniformly distributed random number lying between 0 and 1 and d= [1, 
D]. The objective function value ))0(( iXf


 (which is inversely proportional to the light 

intensity for minimization problem) of the i-th firefly is evaluated for i = [1, NP]. 

5.4.2 Attraction to Brighter Fireflies 
Now the firefly )(tX i


is attracted towards the positions of the brighter fireflies )(tX j


 for i, j= 

[1, NP] but i≠j such that ))(())(( tXftXf ij


  for minimization problem. Now the attractiveness 



227 
 

βi,j of )(tX i


 towards )(tX j


is proportional to the light intensity seen by adjacent fireflies. 

However attractiveness βi,j decreases exponentially with the distance between them, denoted 
by ri,j as given in (5.17).    

, ,exp( ), 1m
i j o i jr       m                                                                                                       (5.17) 

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its own position 
(i.e., at ri,j = ri,i= 0) and γ is the light absorption coefficient, which controls the variation of βi,j 
with ri,j. This parameter is responsible for the convergence speed of FA. A setting of γ=0 leads 
to constant attractiveness while γ approaching infinity is equivalent to the complete random 
search [15]. In (5.17) m is a positive constant representing a non-linear modulation index. The 
distance between )(tX i


 and )(tX j


is computed using the Euclidean norm as follows. 

, || ( ) ( ) ||i j i jr X t X t 
 

                                                                                                          (5.18) 

This step is repeated for i, j = [1, N]. 

5.4.3 Movement of Fireflies 
The firefly at position )(tX i


 moves towards a more attractive position )(tX j


occupied by a 

brighter firefly (i.e., ))(())(( tXftXf ij


 ) for j= [1, N] but i≠j following the dynamic given in 

(5.19). 

,( ) ( ) ( ( ) ( )) ( (0,1) 0.5)i i i j j iX t X t X t X t rand       
   

                                                   (5.19) 

The first term in the position updating formula (5.19) represents the i-th firefly’s current 
position. The second term in (5.19) denotes the change in the position of the firefly at )(tX i


 

due to the attraction towards the brighter firefly at )(tX j


. Hence it is apparent that the brightest 

firefly with no more attractive firefly in the current sorted population Pt will have no motion 
due to the second term and may get stuck at the local optima. To circumvent the problem, the 
last term is introduced in (5.19) for the random movement of the fireflies with a step-size of 
α (0, 1). Here rand(0,1) is a random number generator uniformly distributed in the range (0, 
1). This step is repeated for i = [1, NP]. After completion of its journey mediated by the 
brighter ones, the updated position of the i-th firefly is represented by )1( tX i


 for i= [1, NP].   

After each evolution, the steps 5.4.2 and 5.4.3 are repeated until one of the following 
conditions for convergence is satisfied. The conditions include restraining the number of 
iterations, maintaining error limits, or the both, whichever occurs earlier. 

5.5 Proposed Imperialist Competitive Firefly Algorithm 
In our proposed hybridization stratagem, the light-intensity based attraction driven movement 
of fireflies is embedded into the modified version of ICA to utilize the composite benefits of 
the explorative and exploitative capabilities of both the ancestor algorithms. The fitness 
profile based colonizing behavior of the countries in ICA provides them the local exploitation 
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capability surrounding the local optima (as discovered by their imperialists). In addition, the 
imperialistic competition eventually helps the algorithm to converge towards the desired 
global optimum. On the other hand, FA draws inspiration from the self-organizing behavior 
of fireflies, which offers it potential for global exploration. The information of a better 
position in the search space, as acquired by a brighter firefly, is distributed among others 
through the motion dynamic as evident from (5.19). These facts have motivated us to propose 
a new hybrid algorithm, named Imperialist Competitive Firefly Algorithm (ICFA). In ICFA, 
the intensification process is controlled by the formation and revolution of empires (clusters) 
in the search space by ICA, while the diversification is influenced by the foraging behavior of 
fireflies. 

In the modified ICA, each colony tries to contribute to the improvement of its governing 
empire by improving its socio-political attributes following a new assimilation policy. This is 
different from the traditional ICA where the revolution of a colony is instigated by the 
features of its respective imperialist only. Hence the evolving colony is not guided by the 
experience of more powerful colonies within the same empire. This issue is resolved here 
being inspired by the self-organizing dynamics (5.19) of the fireflies in the traditional FA. In 
the present context, the socio-political features of the assimilating colony are stimulated by 
that of all other powerful colonies within the same empire including its imperialist. This is 
implemented here by the assimilation dynamic in (5.20) employed by the k-th colony )(tX j

k


 

within the j-th empire for k = [2, nj+1]. Here it is presumed that the countries in the j-th 
empire are sorted in ascending order of their respective objective function values such that the 
imperialist )(1 tX j  occupies the first position.  

,( ) ( ) ( ( ) ( )) ( (0,1) 0.5) ( ( )) ( ( ))j j j j j j j
k k k l l k l kX t X t X t X t rand   if  f X t f X t        
     

         (5.20) 

Expression (5.20) indicates that the colony )(tX j
k


 follows the nature of a stronger colony 

)(tX j
l


 (including the imperialist 1 ( )jX t


) with ( ( )) ( ( ))j j

l kf X t f X t
 

in the j-th empire. The k-th 

modernized country is now represented by )1( tX j
k


. 

Again, it is noteworthy that the random movement of a firefly (or a colony) with step-size α 
in (5.19) (or in (5.20)) in traditional FA helps the population individuals to avoid local optima 
by their expedition proficiency. Particularly, the convergence of fireflies towards the global 
optimum greatly relies on the step-size (α) profile. However, in the traditional FA, α is taken 
to be constant for all fireflies in the current population. It indicates that α assists in the 
exploration of the fireflies in the fitness landscape irrespective of their fitness. Consequently, 
fireflies in vicinity of the global optimum may be deviated away (with α value greater than 
the requirement) and may get trapped at local optima. Contrarily, fireflies far away from the 
global optimum in the fitness landscape (with α smaller than necessity), may not be given any 
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opportunity to be attracted towards the global optimum. To overcome this problem, α, used 
for the random movement of a firefly, needs to be modulated with its relative position with 
respect to the current best firefly position.  

It in turn ensures that the best candidate solution should search in the local neighborhood 
with a small step-size to prevent the omission of the global optimum whereas a poor 
performing member should participate in the global search to explore promising regions in the 
search space. Under this proposed scheme, the step-size value αi,d assigned to the d-th 
positional component of the i-th firefly at location )(tX i


is varied based on its spatial distance 

from the best firefly rather than being constant as outlined in (5.21) for d = [1, D]. It is 
apparent that in the sorted population )(1 tX


corresponds to the position of the brightest firefly.  

1, ,
, min min max min
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d d

X t X t
rand

X X
  


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
                                                         (5.21) 

Here |.| represents the absolute value and rand(0,1) is a uniformly distributed random 
number lying in (0, 1). It is apparent from (5.21) that if Xi,d(t) is close to X1,d(t), αi,d reduces to 
its small minimum value αmin confining Xi,d(t) in its small neighborhood. Again if the 
difference | Xi,d(t) – X1,d(t) | increases and approaches to Xd

max(t) – Xd
min(t), αi,d also approaches 

to unity offering Xi,d(t) a large magnitude of perturbation. Apparently, the step-size is now 
treated as a D-dimensional vector as symbolized by },...,,{ ,2,1, Diiii  

  with its d-th 

component αi,d(αmin, 1). 
Moreover, in the traditional ICA, the dissimilarity threshold, Th, used for uniting two 

empires is kept as a predefined constant disregarding the search space dimension. It is 
obvious that the selection of threshold, being responsible for the union of empires, determines 
the performance of ICA. In the proposed work, a new empirical formula is recommended to 
calculate the threshold as in (5.22) with the search range min max[ , ]X X

 
and D and N as the 

search space dimension and number of empires respectively. 
max min|| ||X XTh

N D





 
                                                                                                        (5.22) 

Motivated by these observations, we extend the traditional ICA with the proposed strategies 
of hybridization with α modulated FA and uniting threshold Th selection. The extended ICA, 
called Imperialist Competitive Firefly Algorithm (ICFA) is similar to the traditional ICA 
except for the assimilation of the colonies and the union of the empires which are given 
below. 

5.5.1 Assimilation of Colonies  
The assimilation of the k-th country )(tX j

k


under the sorted j-th empire (led by the 

imperialist )(1 tX j ) is performed by the following two steps for k = [1, nj+1] and j = [1, N]. 
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5.5.1.1 Attraction to Powerful Colonies 
The distance between the k-th and l-th countries, )(tX j

k


and )(tX j

l


, under the j-th empire is 

computed using the Euclidean norm as follows. 

, || ( ) ( ) ||j j j
k l k lr X t X t 

 
                                                                                                           (5.23) 

Now, as in case of FA, the country )(tX j
k


is attracted towards a more powerful one 

)(tX j
l


(including the respective imperialist) with an attractiveness βk,l 

j for k, l = [1, nj+1] but k 

≠ l such that ))(())(( tXftXf j
k

j
l


 . The associated attractiveness βk,l 

j is evaluated by (5.24).    

, ,exp( ( ) ), 1j j m
ok l k lr       m                                                                                                  (5.24) 

where β0 and γ are same as defined in (5.17). 

5.5.1.2 Modification of Empire Behavior 
The country )(tX j

k


updates its socio-political features inspired by the stronger one )(tX j

l


in the 

same empire following the dynamic given in (2.25) for k, l = [1, nj+1] but k ≠ l 
provided ))(())(( tXftXf j

k
j

l


 . 

,( 1) ( ) ( ( ) ( )) ( (0,1) 0.5)j j j j j j
k k k l l k kX t X t X t X t rand        
                                              (5.25) 

The D-dimensional step-size vector j
k
  for random movement in (5.25) is now modulated 

based on the relative socio-political aspects of the country )(tX j
k


with respect to that of its 

respective imperialist )(1 tX j  (with least objective function value in the j-th empire) as given 

in (5.26) for d= [1, D].  

1, ,
min min, max min

| ( ) ( ) |
(1 ) (0,1)

j j
d k dj

k d
d d

X t X t
rand

X X
  


    


                                                    (5.26) 

Here rand(0, 1) is a uniformly distributed random number lying in (0, 1). It is apparent 
from (5.26) that the imperialist )(1 tX j is assigned with a step size αmin for all its components. 

After each movement of a country, the j-th empire is sorted in ascending order of the 
objective function values of its constituent countries so that the first rank is always occupied 
by the imperialist 1 ( ).jX t


 The step is repeated for k = [1, nj+1]. At the end of this step the 

modified country is demoted by )1( tX j
k


for k = [1, nj+1].   

5.5.1.3 Union of Empires 

The dissimilarity Distj, l between any two empires, j and l is evaluated by taking the Euclidean 
distance between the respective imperialists )1(1 tX j  and )1(1 tX l  as in (5.15) for j, l= [1, 

N]. The two empires are merged into one empire if Distj, l is less than the threshold, Th as 
computed using (5.22). The stronger country among )1(1 tX j  and )1(1 tX l is declared as the 
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imperialist of the newly formed empire and the rest is treated as a colony under the former 
one. The algorithm for ICFA is given in next page. 

 
Algorithm 5.1 Imperialist Competitive Firefly Algorithm (ICFA) 

Begin 
1. Initialize a population of NP, D-dimensional countries )( tX i


at generation t=0 using (5.7) and evaluate 

))(( tXf i


 for i= [1, NP]; 
2. Sort Pt in ascending order of cost function values and select the top N countries as the imperialists with the 

remaining M=NP–N countries as colonies; 
3. Assign randomly selected nj colonies under the j-th imperialist, based on its power pj as computed using (5.9) 

and (5.8) respectively for j= [1, N]; 
4. While termination condition is not reached do 

Begin 
4.1. For each empire j= 1 to N do begin 

Sort the countries in the j-th empire in ascending order of their respective cost function values with the 

imperialist )(1 tX j at the first position; 
For each country under the j-th empire k= 1 to nj+1 do begin 

For each country under the j-th empire k= 1 to nj+1 do begin 

If ))(())(( tXftXf j
k

j
l


 then do 

a. Evaluate the distance j
lkr , and hence the attraction j

lk , between )(tX j
k


and )(tX j

l


using (5.23) 

and (5.24) respectively; 
b. Compute the step-size of random movement of )(tX j

k


using (5.26); 

c. Update the socio-political nature of )(tX j
k


using (5.25); 

d. Sort the countries in the j-th empire in ascending order of their respective cost function values with 

the imperialist )(1 tX j at the first position; 
End If. 

End For. 

Denote the updated country with ( 1);j
kX t 


 
End For. 

End For. 
4.2. For each empire j= 1 to N do begin 

i) Randomly select η×nj countries from the j-th empire and perform revolution by re-initialization 
ii) Sort the countries in the j-th empire in ascending order of their respective cost function values with its 

imperialist at the first position; 
End For. 

4.3. Evaluate the possession power ppj and the possession probability probj of the j-th empire using (5.13) and 
(5.14) respectively for j= [1, N]; 

4.4. Sort the empires in descending order of the possession power ppj for j= [1, N]. Identify the worst 
colony worstX


 of the weakest empire )1( tX N


and reassign worstX


as a colony of new empire, j, with 

the largest possession probability probj for j [1, N]; 
4.5. If worstX


was the only country in the N-th empire then the N-th empire collapses with N←N–1 

End If. 
4.6. Evaluate the disagreement threshold Th and the dissimilarity Distj, l between any two imperialists )1( tX j


 

and )1( tX l


 using (5.22) and (5.15) respectively. Combine the j-th and l-th empires if Dj, l<Th. The 

stronger among )1( tX j


 and )1( tX l


will be considered as the imperialist of the combined empire 

while the remaining will be treated as its colony. Decrement the number of colonies by setting N←N–1. This 
is done for j, l= [1, N]; 

4.7. Set t←t+1; 
End While. 

End. 
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5.6 Simulation Results 
The performance of the proposed ICFA algorithm is examined here with respect to the 
minimization of 25 benchmark functions recommended in [64]. 

5.6.1 Comparative Framework  
The comparative framework includes ICA with DE (ICA-DE) [16], Interaction Enhanced 
ICA using Artificial Imperialists (ICAAI) [21], Memetic ICA (Memetic-ICA) [20], ICA with 
Adaptive Radius of Colonies Movement (ICAR) [26], Social-Based Algorithm (SBA) [65], 
Hybrid Evolutionary ICA (HEICA) [18], Chaotic ICA (CICA) [24], Modify ICA with K-
means (K-MICA) [33], Recursive ICA with GA (R-ICA-GA) [19], the traditional Artificial 
Bee Colony (ABC) [66], the traditional FA [15], the traditional ICA [67] and the traditional 
PSO [54]. The above the traditional evolutionary/swarm optimization algorithms are chosen 
because of their wide popularity in solving numerical single objective optimization problems. 

5.6.2 Parameter Settings 
To make the comparison fair, the populations for all the algorithms (over all problems tested) 
are initialized using the same random seeds and the population size is kept at 50. We employ 
the best parametric set-up for all these algorithms as prescribed in their respective sources. In 
our proposed ICFA, the initial number of empires N is taken to be NP which is equals to 7 

for a population size NP of 50 and αmin is taken to be 0.3 so that maximum permissible value 
of step size is 1. The maximum attractiveness β0 and the light absorption coefficient γ both are 

taken to be 1 with the non-linear modulation index m determined by  minmax

1
max jj

D

j
XXD 


 

as described in [68].  

5.6.3 Analysis on Explorative Power of ICFA 
The explorative and exploitative capabilities of an algorithm can be assessed by the 
population variance. Let )( tX i


be the D-dimensional i-th solution of the population Pt at 

generation t. The variance of the population Pt considering all its NP solutions is given by 
(5.27). 

2
2
, ,

1 1 1

1 1 1( )
D NP NP

t i j i j
j i i

V P x x
D NP NP  

           

                                                                (5.27) 

4.2shows the evolution of the population variance over FEs for f15 in case of 50-D problem. 
The plots of other functions are omitted for the sake of space economy. The plot indicates that 
ICA offers a good level of exploitation capability from the initiation of the algorithm whereas 
FA performs better in balancing the diversification at the earlier exploration stage and 
gradually converges to the optimal point with a relatively smaller population variance. 
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However, it is evident that ICFA outperforms the rest two ancestors in providing a well trade-
off between high explorative and exploitative powers which prevail during the earlier and 
later phases of the search respectively. Hence it can be concluded that the hybridization of 
ICA and FA has empowered ICFA with better exploration and exploitation capabilities. 
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Fig. 5.2 Evolution of the expected population variance 

 

5.6.4 Comparison of Quality of the Final Solution 
Here, we test the relative performance of our algorithm with other competitor algorithms 
using 25 benchmark functions [64] of 10, 30 and 50 dimensions. The experiments are 
conducted for 50 independent runs. For lack of space, the mean and standard deviation 
(within parenthesis) of the benchmarks function values of 25 independent runs for each of the 
fourteen algorithms are presented in Table 5.1 for 30-D problems only. Please note that the 
results excluded follow a similar trend like those reported in Table 5.1. Maximum number of 
function evaluations (Max_FEs) is set at 300,000 for 30-D. 

In the last column of Table 5.1, the statistical significance level of the difference of the 
means (of the final accuracies) of the best two algorithms, obtained using t-test with 25 
samples, is reported. Here ‘+’ indicates that the t value of 49 degrees of freedom is significant 
at a 0.05 level of significance by two-tailed test, while ‘–’ means the difference of the means 
is not statistically significant and ‘NA’ stands for Not Applicable, referring to the cases for 
which two or more algorithms achieve the same best accuracy results. 

5.6.5 Performance Analysis 
A close scrutiny of Table 5.1 indicates that the performance of the proposed ICFA has 
remained effectually and consistently superior to that of the other algorithms. It is noteworthy 
that out of 25 benchmark instances, in 21 cases ICFA outperforms its nearest neighbor 
competitor in a statistically significant fashion. In three cases, (f10 and f19) ICA-DE, which 
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remains the second best algorithm, has achieved the best average accuracy surpassing ICFA. 
It is evident from Table 5.1 that ICFA performs consistently better than all algorithms over 
most of the 25 benchmark instances, and the advantage of ICFA is very prominent as well. 
 

Table 5.1 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER 

ALGORITHMS BASED ON SOLUTION QUALITY FOR f01 TO f25  

Functions ICFA ICA-DE ICAAI 
Memetic 

ICA 
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO Stat. Sig. 

f01 
0.00e+00 

(0.00e+00) 

2.88e-29 

(1.99e-27) 

1.10e-26 

(2.74e-26) 

1.94e-23 

(2.95e-25) 

3.39e-22 

(4.59e-24) 

3.82e-21 

(4.75e-23) 

4.42e-21 

(5.20e-20) 

5.70e-20 

(5.30e-18) 

6.34e-17 

(5.54e-17) 

6.39e-16 

(5.60e-17) 

6.70e-14 

(5.94e-16) 

6.70e-14 

(6.41e-15) 

7.75e-10 

(6.53e-11) 

7.79e-10 

(6.71e-10) 
+ 

f02 
1.22e-04 

(8.31e-04) 

3.24e-04 

(1.13e-03) 

2.32e-03 

(1.30e-03) 

2.67e-03 

(1.93e-02) 

1.19e-02 

(3.11e-01) 

1.93e-01 

(3.42e-01) 

2.21e-01 

(3.48e+00) 

2.67e-01 

(4.52e+02) 

3.07e-01 

(4.58e+02) 

4.58e-01 

(4.75e+02) 

4.86e-01 

(4.96e+02)

4.94e-01 

(5.28e+02)

5.76e-01 

(5.35e+03) 

7.65e-01 

(5.56e+03) 
+ 

f03 
1.97e-01 

(1.37e+00) 

1.04e+00 

(1.50e+00) 

1.56e+00 

(1.75e+00) 

1.78e+01 

(1.77e+00) 

1.80e+01 

(2.44e+01) 

2.38e+01 

(2.46e+01)

3.54e+01 

(3.31e+01) 

3.83e+02 

(3.84e+01) 

4.09e+03 

(4.09e+01) 

4.89e+03 

(4.31e+02) 

5.25e+03 

(5.69e+02)

6.23e+03 

(5.81e+02)

6.71e+04 

(5.50e+02) 

6.71e+03 

(5.88e+02) 
+ 

f04 
1.37e-05 

(0.00e+00) 

1.53e-04 

(4.58e-26) 

1.90e-04 

(1.13e-25) 

2.00e-04 

(1.15e-23) 

2.66e-04 

(1.84e-22) 

3.28e-03 

(2.17e-20) 

3.71e-03 

(2.35e-20) 

3.97e-02 

(3.15e-16) 

3.98e-02 

(3.69e-16) 

5.27e-02 

(4.21e-14) 

5.30e-02 

(4.57e-10) 

5.45e-01 

(4.82e-03) 

6.53e+01 

(5.55e-01) 

6.42e-01 

(5.23e-02) 
+ 

f05 
1.03e-11 

(4.59e-09) 

2.54e-10 

(6.95e-08) 

3.74e-10 

(1.01e-08) 

1.06e-09 

(1.01e-08) 

1.60e-09 

(1.27e-07) 

3.09e-08 

(1.81e-07) 

3.76e-08 

(1.84e-06) 

5.42e-07 

(2.79e-05) 

5.72e-07 

(3.01e-04) 

5.78e-04 

(3.84e-04) 

6.08e-03 

(4.05e-04) 

6.39e-03 

(5.60e-03) 

6.97e-03 

(7.37e-03) 

6.73e-03 

(6.08e-02) 
+ 

f06 
7.34e-01 

(3.67e-05) 

9.53e-01 

(5.77e-05) 

1.06e+00 

(1.69e-04) 

1.28e+00 

(1.92e-04) 

1.67e+00 

(2.36e-03) 

1.67e+00 

(2.58e-03) 

2.45e+00 

(2.72e-02) 

2.81e+00 

(2.82e-01) 

2.92e+00 

(3.42e-01) 

3.59e+00 

(3.43e+00) 

4.35e+00 

(5.46e+00)

5.97e+00 

(6.30e+00)

6.61e+00 

(6.69e+01) 

6.31e+00 

(6.59e+01) 
+ 

f07 
1.10e-05 

(8.56e-01) 

1.30e-05 

(1.28e+00) 

1.41e-05 

(1.32e+00) 

1.18e-05 

(2.14e+00) 

1.64e-04 

(2.57e+00) 

2.07e-04 

(3.05e+00)

2.47e-04 

(3.12e+00) 

3.15e-03 

(3.40e+00) 

3.82e-03 

(4.37e+00) 

4.02e-03 

(4.80e+00) 

4.53e-02 

(5.21e+00)

4.54e-02 

(5.42e+00)

5.74e-01 

(6.50e+00) 

5.12e-01 

(5.46e+00) 
+ 

f08 
2.45e+01 

(1.19e-02) 

2.65e+01 

(1.29e-02) 

3.55e+01 

(1.36e-02) 

3.57e+01 

(1.45e-02) 

3.72e+01 

(1.58e-01) 

3.85e+01 

(1.59e-01) 

4.10e+01 

(1.61e-01) 

4.35e+01 

(2.10e-01) 

4.51e+01 

(2.17e-01) 

5.56e+01 

(3.01e+00) 

5.68e+01 

(3.04e+00)

5.72e+01 

(3.29e+01)

7.57e+01 

(5.96e+01) 

6.13e+01 

(5.91e+01) 
+ 

f09 
0.00e+00 

(2.20e-28) 

4.82e-24 

(3.59e-26) 

1.55e-23 

(1.66e-25) 

1.80e-23 

(1.83e-22) 

1.83e-22 

(2.96e-22) 

2.07e-22 

(3.21e-18) 

2.23e-21 

(3.42e-18) 

2.86e-19 

(3.55e-17) 

3.07e-19 

(3.82e-16) 

4.16e-19 

(4.04e-13) 

4.21e-10 

(5.11e-12) 

4.97e-10 

(5.60e-10) 

8.85e-09 

(7.74e-09) 

6.33e-09 

(6.50e-09) 
+ 

f10 
1.59e+01 

(5.95e-06) 

1.26e+01 

(2.74e-06) 

1.62e+01 

(1.38e-05) 

1.83e+01 

(3.33e-04) 

2.57e+01 

(4.34e-04) 

2.76e+01 

(4.45e-03) 

3.42e+01 

(5.57e-03) 

3.64e+01 

(5.75e-02) 

4.36e+01 

(5.89e-02) 

4.75e+01 

(6.00e-01) 

5.57e+01 

(6.04e+00)

6.19e+01 

(6.45e+00)

6.39e+01 

(7.23e+00) 

7.91e+01 

(8.32e+00) 
– 

f11 
2.07e-03 

(1.29e-13) 

1.21e-02 

(3.41e-12) 

1.28e-02 

(4.50e-12) 

1.67e-02 

(2.67e-11) 

3.35e-02 

1.17e-10) 

3.50e-01 

(3.29e-10) 

4.03e-01 

(3.42e-09) 

4.26e-01 

(3.50e-09) 

4.32e+00 

(3.65e-09) 

5.20e+00 

(4.77e-09) 

5.63e+00 

(4.98e-08) 

6.01e+00 

(5.72e-08) 

6.20e+00 

(5.72e-08) 

6.33e+00 

(5.85e-08) 
+ 

f12 
2.58e-04 

(6.10e-05) 

7.93e-04 

(1.42e-04) 

1.04e-03 

(1.74e-04) 

1.21e-03 

(1.87e-04) 

2.73e-03 

(2.04e-04) 

3.02e-03 

(2.79e-04) 

3.17e-03 

(2.91e-03) 

3.63e-02 

(3.02e-03) 

4.54e-02 

(3.68e-03) 

4.61e-02 

(4.39e-02) 

5.05e-02 

(4.59e-02) 

5.60e-02 

(5.62e-02) 

5.77e-02 

(5.81e-02) 

6.81e-02 

(5.88e-02) 
+ 

f13 
1.26e-01 

(0.00e+00) 

1.58e-01 

(1.89e-19) 

1.88e-01 

(1.19e-19) 

2.37e-01 

(1.24e-18) 

2.60e-01 

(2.11e-15) 

2.92e-01 

(3.77e-14) 

2.95e-01 

(3.92e-14) 

3.42e-01 

(4.66e-13) 

3.83e-01 

(4.66e-11) 

5.16e-01 

(4.68e-10) 

6.44e-01 

(4.88e-09) 

6.51 e-01 

(4.90e-09) 

6.66e-01 

(6.17e-08) 

6.88e-01 

(7.99e-07) 
+ 

f14 
1.09e+00 

(1.76e-01) 

1.09e+00 

(1.76e-01) 

1.33e+00 

(1.85e-01) 

1.33e+00 

(2.03e-01) 

1.58e+00 

(2.40e-01) 

2.58e+00 

(2.69e-01) 

2.63e+00 

(4.08e-01) 

2.99e+00 

(4.08e-01) 

3.22e+00 

(4.31e-01) 

3.37e+00 

(5.11e-01) 

4.12e+00 

(5.77e-01) 

4.51e+00 

(6.15 e-01)

5.98e+00 

(6.34e-01) 

7.87e+00 

(8.87e-01) 
NA 

f15 
9.15e-02 

(1.23e-03) 

1.11e-01 

(3.48e-03) 

1.13e-01 

(6.73e-03) 

1.25e-01 

(2.23e-02) 

1.82e-01 

(2.27e-02) 

2.18e-01 

(2.85e-02) 

2.96e+00 

(3.71e-02) 

2.97e+00 

(3.71e-02) 

3.29e+00 

(4.27e-01) 

4.16e+00 

(4.46e-01) 

4.18e+00 

(4.58e-01) 

4.87e+00 

(5.02e-01) 

4.89e+00 

(5.73e-01) 

5.72e+00 

(5.78e-01) 
+ 

f16 
4.63e+01 

(1.04e-04) 

1.07e+02 

(1.47e-04) 

1.86e+02 

(1.56e-04) 

1.96e+02 

(1.68e-04) 

2.96e+02 

(1.78e-03) 

3.08e+02 

(2.02e-03) 

3.20e+02 

(2.41e-02) 

3.62e+02 

(4.67e-02) 

3.68e+02 

(4.70e-02) 

4.46e+02 

(4.72e-01) 

5.45e+02 

(4.73e-01) 

6.12e+02 

(4.86e-01) 

6.60e+02 

(5.46e+00) 

6.70e+02 

(5.91e+00) 
+ 

f17 
0.00e+00 

(7.63e-08) 

0.25e+02 

(1.06e-07) 

1.23e+02 

(1.32e-07) 

2.25e+02 

(1.34e-07) 

2.70e+02 

(1.69e-06) 

2.97e+02 

(1.88e-05) 

3.22e+02 

(2.01e-04) 

3.23e+02 

(2.38e-04) 

3.29e+02 

(3.31e-04) 

4.21e+02 

(4.03e-03) 

5.05e+02 

(4.25e-02) 

5.39e+02 

(5.16e-02) 

5.49e+02 

(5.35e+01) 

6.41e+02 

(6.42e+01) 
+ 

f18 
1.27e+02 

(1.79e-05) 

1.46e+02 

(1.85e-05) 

1.65e+02 

(2.45e-05) 

2.98e+02 

(2.91e-05) 

3.15e+02 

(3.21e-05) 

3.82e+02 

(3.78e-04) 

4.25e+02 

(4.07e-04) 

4.45e+02 

(4.29e-04) 

4.51e+02 

(4.63e-04) 

4.53e+02 

(4.63e-04) 

4.75e+02 

(5.39e-03) 

4.78e+02 

(5.83e-03) 

4.96e+02 

(5.89e-03) 

5.61e+02 

(6.08e-03) 
+ 

f19 
1.33e+02 

(1.08e-06) 

1.04e+02 

(4.44e-07) 

1.53e+02 

(1.15e-06) 

2.22e+02 

(1.27e-060 

3.35e+02 

(1.34e-06) 

3.65e+02 

(2.56e-05) 

3.80e+03 

(2.83e-05) 

3.81e+03 

(3.13e-05) 

4.47e+03 

(4.39e-05) 

4.51e+03 

(4.87e-04) 

4.53e+03 

(5.34e-04) 

5.04e+03 

(5.40e-04) 

6.57e+03 

(6.52e-04) 

6.95e+03 

(7.08e-04) 
– 

f20 
3.31e-03 

(1.13e-01) 

1.04e-02 

(1.37e-01) 

1.83e-02 

(1.69e-01) 

2.43e-01 

(1.89e-01) 

2.75e+00 

(2.31e-01) 

3.39e+00 

(2.51e-01) 

3.64e+00 

(2.76e-01) 

3.67e+01 

(2.97e-01) 

3.71e+01 

(3.09e+00) 

4.10e+02 

(3.09e+00) 

4.70e+03 

(4.78e+00)

5.18e+03 

(4.81e+00)

5.28e+03 

(4.92e+01) 

5.82e+03 

(5.15e+01) 
+ 

f21 
2.51e+02 

(1.08e+00) 

3.29e+02 

(1.17e+00) 

3.64e+02 

(1.39e+00) 

4.73e+02 

(2.84e+00) 

4.77e+02 

(3.07e+00) 

4.00e+02 

(3.60e+00)

5.69e+02 

(4.11e+00) 

5.28e+03 

(5.24e+00) 

6.38e+03 

(5.38e+01) 

7.53e+03 

(5.77e+01) 

7.65e+03 

(5.83e+01)

7.75e+03 

(5.97e+01)

8.21e+03 

(6.18e+01) 

8.64e+03 

(6.92e+01) 
+ 
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Functions ICFA ICA-DE ICAAI 
Memetic 

ICA 
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO Stat. Sig. 

f22 
1.08e+02 

(0.00e+00) 

1.52e+02 

(1.59e+00) 

1.78e+02 

(3.35e+00) 

1.95e+02 

(3.69e+00) 

2.03e+02 

(4.07e+00) 

2.32e+02 

(4.28e+00)

3.22e+02 

(4.87e+00) 

3.46e+02 

(5.60e+00) 

3.46e+02 

(5.70e+00) 

3.73e+02 

(6.05e+00) 

3.92e+02 

(6.15e+00)

4.75e+02 

(6.50e+00)

5.52e+02 

(6.92e+00) 

5.95e+02 

(6.92e+00) 
+ 

f23 
3.38e+02 

(0.00e+00) 

4.72e+02 

(5.22e-18) 

4.48e+02 

(1.84e-17) 

5.02e+02 

(1.46e-14) 

5.10e+02 

(3.39e-13) 

5.38e+02 

(3.86e-09) 

5.62e+03 

(4.06e-08) 

5.66e+03 

(4.07e-06) 

6.10e+03 

(4.30e-05) 

6.17e+03 

(4.40e-04) 

6.91e+03 

(5.38e-04) 

7.23 e+03 

(5.91e-03) 

7.30 e+03 

(6.03e-02) 

7.87e+03 

(6.49e-02) 
+ 

f24 
1.29e+02 

(3.57e-17) 

1.29e+02 

(3.57e-17) 

1.46e+02 

(1.44e-16) 

1.62e+02 

(1.45e-15) 

1.78e+02 

(1.89e-14) 

1.84e+03 

(2.91e-12) 

1.93e+03 

(3.11e-10) 

1.97e+03 

(3.43e-10) 

2.53e+03 

(3.75e-09) 

3.42e+03 

(3.95e-07) 

3.49e+03 

(4.48e-06) 

3.77e+03 

(5.97e-05) 

4.44e+03 

(6.11e-05) 

4.86e+03 

(6.63e+01) 
NA 

f25 
1.36e+02 

(1.17e+00) 

2.44e+02 

(1.21e+00) 

2.73e+02 

(1.93e+00) 

2.99e+02 

(1.94e+00) 

3.16e+02 

(2.06e+00) 

4.01e+02 

(2.10e+00)

4.34e+02 

(2.33e+00) 

5.10e+02 

(2.79e+00) 

5.16e+02 

(3.26e+00) 

6.01e+02 

(3.59e+01) 

6.02e+02 

(4.53e+01)

6.51e+02 

(5.49e+01)

6.54e+02 

(5.89e+01) 

6.89e+02 

(6.57e+01) 
+ 

 

Table 5.2 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER 

ALGORITHMS BASED ON CONVERGENCE TIME IN SECONDS FOR f01 TO f25 
Functions Tolerance ICFA ICA-DE ICAAI 

Memetic 

ICA 
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO 

f01 1.00e-18 24.742 27.809 108.375 137.003 213.684 278.096 412.032 468.265 524.497 565.394 566.416 577.663 627.761 645.142 

f02 2.00e-14 31.957 42.212 190.793 204.307 228.951 256.775 276.649 298.114 330.707 356.942 377.611 437.234 441.208 454.723 

f03 4.00e-02 35.716 54.877 85.719 86.560 86.560 151.270 223.543 232.788 241.192 289.094 414.312 426.918 1554.722 489.107 

f04 2.00e-04 44.991 46.230 222.895 280.683 359.109 404.514 584.069 693.453 864.752 899.838 1190.840 1197.032 1203.223 1271.330 

f05 1.00e-10 56.435 66.432 354.738 570.807 738.502 964.245 980.369 1206.112 1241.586 1354.457 1699.522 1886.566 2438.024 2028.461 

f06 4.00e-02 65.785 74.136 368.645 509.179 606.941 729.145 800.430 975.587 1120.194 1242.397 1317.756 1323.866 1751.577 1344.233 

f07 3.00e-05 71.749 72.299 224.046 259.784 384.8657 412.356 426.101 501.700 531.939 607.538 716.125 801.345 874.195 1213.701 

f08 2.00e-01 80.550 85.743 195.016 225.752 289.344 393.212 463.163 474.822 518.277 519.337 526.756 549.013 594.587 552.193 

f09 2.00e-02 82.757 108.455 452.986 879.839 1520.119 1568.031 2060.219 2068.930 2121.198 2386.892 2700.498 2748.410 2883.435 2974.904 

f10 3.00e-03 83.044 87.470 299.377 416.525 609.168 632.598 991.851 1239.163 1473.458 1496.888 3358.236 5987.554 12183.370 6430.112 

f11 1.00e-10 87.984 136.390 335.992 410.024 586.563 879.845 936.792 1059.230 1104.789 1261.396 1312.649 1383.833 1765.384 2007.413 

f12 8.00e-02 103.247 116.073 1154.319 1346.705 1513.440 2103.425 2218.857 2622.869 3078.184 3283.396 3341.112 3347.525 3629.692 3719.472 

f13 9.00e-02 103.916 104.565 184.451 223.420 326.037 357.212 462.427 467.623 474.118 494.901 567.643 618.302 758.589 775.475 

f14 7.00e-04 113.784 146.048 431.003 679.753 684.679 756.102 758.565 770.880 844.766 898.949 943.281 1098.442 1155.088 1293.009 

f15 7.00e-01 117.032 144.925 312.086 374.504 2145.597 2360.156 3881.580 6807.394 8406.839 8874.969 9577.165 11157.105 11332.653 12795.561 

f16 9.00e-03 120.138 177.510 81.890 87.284 622.757 2049.704 2093.837 2407.667 2505.739 2540.064 2785.244 2795.051 2834.280 3442.327 

f17 1.00e-01 120.310 131.810 293.698 302.544 337.929 360.930 375.084 461.778 470.624 485.663 5051.256 5316.646 6015.507 6227.819 

f18 2.00e-01 123.131 123.131 574.288 622.956 958.769 1065.840 1241.046 1620.661 1990.541 2710.835 3022.314 3178.053 3650.137 4263.361 

f19 3.00e-02 128.413 168.148 327.428 185.883 325.722 3871.156 4280.442 5184.280 5798.208 6633.832 8339.188 8782.580 9925.168 11801.059 

f20 2.00e+00 152.039 164.528 323.989 360.189 427.159 428.969 477.839 765.629 948.439 1035.319 1076.949 1136.679 1174.689 1230.799 

f21 4.00e+01 152.635 201.814 250.264 324.213 743.142 863.356 1366.070 1653.855 1690.283 1850.569 2032.712 2112.854 2549.997 3398.782 

f22 2.00e+00 156.405 184.566 1869.495 2129.448 2166.275 2751.169 4180.911 7603.627 9639.926 9661.589 10983.017 25995.306 34443.781 60439.088 

f23 7.00e+01 165.270 207.414 224.767 243.773 269.390 329.714 428.049 437.966 444.576 454.493 472.672 545.391 2247.674 4016.065 

f24 2.00e+02 180.090 266.919 543.129 571.715 618.167 1032.661 1386.410 1486.460 1650.828 1915.2471 19581.26 6860.587 7432.303 8254.144 

f25 2.00e+02 182.976 365.211 1437.141 1659.379 2266.831 2718.715 3296.535 4178.080 4259.568 11852.711 12000.870 12371.267 20445.927 28965.063 
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Fig. 5.3 Relative performance in mean best objective function versus function evaluation for f05 with 

Max_FEs=500000 
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Fig. 5.4 Relative performance in mean best objective function versus function evaluation for f17 with 

Max_FEs=300000 
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Fig. 5.5 Relative performance in mean best objective function versus function evaluation for f07 with 

Max_FEs=100000 
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Fig. 5.6 Relative performance in mean best objective function versus function evaluation for f20 with 

Max_FEs=500000 

In order to compare the speeds of different algorithms, we present the time taken by each 
algorithm to converge to the prescribed threshold value of the objective function for the 
minimization problem of 100-D search space in Table 5.2. The simulation results in Table 5.2 
apparently substantiate the highest convergence speed of the proposed ICFA as compared to its 
other thirteen contestants. 

To compare the relative speed of convergence and quality of solution (accuracy) of ICFA 
with its thirteen competitors, we plot the mean objective function values taken over 25 runs 
versus FEs over four representative benchmark instances (f05, f07, f17 and f20) for different 
settings of problem dimensions in Fig. 5.3 -5.6. The plots for all the functions are omitted for 
space economy. In Fig. 5.3 -5.6, the maximum number of function evaluations Max_FEs is set 
to be 100000, 300000 and 500000 for 10-D, 30-D and 50-D problems respectively. It is 
observed from Fig. 5.3 -5.6 that ICFA outperforms all other algorithms in terms of 
convergence speed and solution quality.   

In Fig. 5.4 plot of accuracy versus run-time complexity for all fourteen algorithms over the 
benchmark function f25 is presented with Max_FEs of 500000 for 50-D problem. It is to be 
noted that the accuracy corresponds to absolute difference between the best-of-the-run value 

)( bestXf


 (obtained after the termination of the algorithm) and the theoretical optimum *f of a 
particular objective function, i.e., *)( fXf best 


. This provides a visual means of illustrating 

the performance of the algorithms with respect to both accuracy and FEs/run-time. In order to 
have uniformity in order of magnitude, the x- and the y-coordinates are scaled appropriately 
and then we refer to the distance of a point from the origin as a measure of its performance. 
The smaller the measure, the better is the performance of the algorithm. The relative 
performance of two algorithms is symbolized by ‘≥”. Using this convention, Fig. 4.4 reveals 
that the performance of the fourteen algorithms respectively is ICFA ≥ ICA-DE ≥ ICAAI 
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≥Memetic ICA≥ ICAR ≥ SBA ≥ HEICA ≥ CICA ≥ K-MICA ≥ R-ICA-GA ≥ ABC ≥ FA ≥ 
ICA ≥ PSO. 
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Fig. 5.7 Relative performance in accuracy versus function evaluation for ICFA over other competitive 

algorithms for f25 with Max_FEs=5×106 

The scalability of an algorithm signifies the consistency in its qualitative performance with 
the growth of dimensionality of the search space. Increase of dimensions indicates a rapid 
growth of the hyper-volume of the search space and this in turn decelerates the convergence 
speed of most of the global optimizers. Fig. 5.7 illustrates the scalability of the fourteen 
algorithms over two benchmark functions delineating the variation of the average 
computational cost (measured in number of FEs required to yield a predefined accuracy 
threshold) to capture the global optimum with the enhancement in the dimensionality of the 
search space. It can be observed that ICFA requires smaller number of FEs to achieve the 
threshold value irrespective of the problem dimensions. Hence the superiority of the proposed 
ICFA over other algorithms is prominent as well. 
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Fig. 5.8 Variation of FEs required for convergence to predefined threshold accuracy (1.00e–08) with 

increase in search space dimensionality for f04 and f11 

A non-parametrical statistical test, known as Friedman two-way analysis of variances by 
ranks [51], is also performed on the mean of the objective function values for 50 independent 
runs of each of the fourteen algorithms, for 50-D problems. Additionally, we use Iman-
Davenport test as a variant of Friedman test that provides better statistics [52]. Table 5.3 
summarizes the rankings obtained by Friedman procedure. The results emphasize ICFA as the 
best algorithm, so the post-hoc analysis [40] is applied with ICFA as the control method. With 
the level of significance α=0.05, both the Friedman and the Iman-Davenport statistics explain 
significant differences in operators with test values of 275.7054 and 20591.88, respectively, 
and p<0.001 (the estimated probability of rejecting the null hypothesis (H0) of a study question 
when that hypothesis is true). 

In the post-hoc analysis the Bonferroni-Dunn test [53] is employed over the results of 
Friedman procedure. The outcome of the analysis provides a measure of the level of 
significance of the superiority of the control algorithm over each of the remaining algorithms 
(i.e., when the null hypothesis is rejected). For the Bonferroni-Dunn test, a critical difference 
(CD) [53] is calculated which for these data appears as 2.639. It elucidates that the 
performance of two algorithms is significantly different, only if their corresponding average 
Friedman ranks differ by at least a critical difference. It is pictorially depicted in Fig. 5.9 . It 
can be perceived that only ICA-DE and ICAAI, the null hypothesis cannot be rejected with any 
of the tests for α=0.05. The performance of other eleven algorithms, however, may be regarded 
as significantly poor than the ICFA in the present context. 
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Table 5.3 AVERAGE RANKINGS OBTAINED THROUGH FRIEDMAN’S TEST 

 
Algorithm Ranking 

ICFA 1.117 

ICA-DE 1.883 

ICAAI 3.000 

Memetic ICA 4.000 

ICAR 5.000 

SBA 6.000 

HEICA 7.000 

CICA 8.000 

K-MICA 9.000 

R-ICA-GA 10.00 

ABC 11.00 

FA 12.00 

ICA 13.00 

PSO 14.00 

Critical Difference α=0.05 2.639 

 

 

Fig. 5.9 Graphical representation of Bonferroni-Dunn’s procedure considering ICFA as control 

method 

5.7 Computer Simulation and Experiment 
Here the proposed algorithm is employed to carry a fixed length stick from a starting position 
to a fixed destination by twin robots (multi-robot stick-carrying problem) both in computer 
simulation and real-time environment. To analyze the performance of the proposed multi-
robot stick-carrying problem, the following performance metrics [69] are used. 
5.7.1 Average total path deviation (ATPD) 
Let Pik  be a path from the starting point Si  to the goal point Gi generated by the i-th robot 
in the k-th run of the algorithm. If Pi,1, Pi,2,…, Pik are the paths generated over k runs then the 
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average total path traversed (ATPT) by the i-th robot is given by kP
k

j
ji

1
, and the 

average path deviation (APD) is evaluated by measuring the difference between ATPT and the 
ideal shortest path between Si to Gi. If the geometrically ideal path in a particular workspace is 

Pi-ideal, then the average path deviation is given by Pi-ideal – kP
k

j
ji

1
, . Therefore for two robots 

in the workspace the average total path deviation (ATPD) is  
2

,
1 1
( ).

k
i ideal i j

i j
P P k

 
   

5.7.2 Average Uncovered Target Distance (AUTD) 
Given a goal position Gi and the current position Ci of a robot on a 2-dimensional workspace, 
where Gi and Ci are 2-dimensional vectors, the uncovered distance of robot i is ||Gi– Ci||, 
where ||.|| denotes the Euclidean norm. For two robots, uncovered target distance 

2

1
|| ||.i i

i
UTD G C


   Now, for k runs of the program, we evaluate the average of UTDs and 

call it the average uncovered target distance (AUTD). For all experiments conducted in this 
study, we have considered k=10. 

5.7.3 Experimental Setup in Simulation Environment 
The multi-robot stick-carrying problem is implemented in C on a Pentium processor. The 
experiment is performed with two similar soft-bots of circular cross-sections of radius 6 
pixels and 10 differently shaped obstacles. While performing the experiments, old obstacles 
are retained and new obstacles are added in the workspace. The experiments are 
accomplished with equal velocities for two robots in a given run of the program; however, the 
velocities are regulated over different runs of the same program. Some instances of the 
workspace of the robots, employing different evolutionary optimization algorithms, are given 
in Fig. 5.10. It reveals that the robots successfully follow the shortest path with minimum path 
deviation in case of ICFA-based realization of the multi-robot stick carrying problem.  

 

  

                                                  (a)                                                                                                               (b) 
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                                                                 (c)                                                                                                                          (d) 

  

                                                               (e)                                                                                                                              (f) 

Fig. 5.10 Initial (a) and final configuration of the world-map after execution of the (b) ICFA- (c) ICA-

DE- (d) ICAAI- (e) FA- and (f) ICA-based simulations with 5 obstacles requiring 23, 29, 32 and 34 

steps respectively 

5.7.4 Experimental Results in Simulation Environment 
First, we plot ATPT by varying number of obstacles from 2 to 10 by generating paths using 
five different algorithms, including ICFA, ICA-DE, ICAAI, FA and ICA. It is worth 
mentioning from Fig. 5.11, that ICFA has the least ATPT in comparison to other algorithms 
irrespective to the number of obstacles. 

The second study on performance analysis is undertaken by plotting ATPD by generating 
paths by five different evolutionary/swarm algorithms (as used in ATPT). Fig. 5.11 provides 
the results of ATPD computation when the number of obstacles varies from 2 to 10. Here too, 
we observe that ICFA outperforms the remaining four algorithms as ATPD remains the 
smallest for ICFA based simulation irrespective to the number of obstacles.  
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Fig. 5.11 Average total path traversed versus number of obstacles 
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Fig. 5.12 Average total path deviation versus number of obstacles 
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Fig. 5.13 Average uncovered target distance vs. number of steps with number of obstacles= 5 (constant) 

The last analysis on performance is undertaken by comparing AUTD over the number of 
planning steps. Fig. 5.13 provides a plot of AUTD when the paths are planned using the five 
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algorithms referred to above with number of obstacles=5. It is apparent from Fig. 5.13, that 
AUTD returns the smallest value for ICFA irrespective of the number of planning steps. In 
brief, the proposed ICFA-based stick-carrying methodology outperforms the remaining four 
algorithms with respect to all three popular metrics. 

5.7.5 Experimental Setup with Khepera Robots 
The experiment is also undertaken in real environment with two homogeneous Khepera-II 
mobile robots [70, 71] (diameter of 7 cm) in a world-map of 8  6 grids of equal size. Each 
robot is equipped with 8 infrared sensors, two motor driven side wheels and one caster wheel 
with a flash memory of 512 KB, and a Motorola 68331, 25MHz processor. The range sensors 
placed at fixed angles have limited range detection capabilities. The robot represents 
measured range data in the scale: [0, 1023]. When the distance of the obstacle from the sensor 
exceeds 5cm, it is represented by zero. When an obstacle is approximately 2 cm away from 
the sensor, it corresponds to 1023. 

The robots are controlled by two Pentium-IV personal computers (PCs) through wired 
connections. An optimization algorithm-based control program determining the next position 
of each robot from its current position is run on the attached Pentium machine with the range 
data obtained from sensory measurements of the robots. The necessary commands for 
controlling motor movements are transferred to the robots from their connected computers. 
One sample run of the stick-carrying problem on the Khepera environment is given in Fig. 
5.14. The experiment is performed on 20 different world-maps of different grid counts, each 
with five different obstacle-maps, and in all the 100 environments, the robots could 
successfully follow the shortest paths avoiding collision with the obstacles. 

5.7.6 Experimental Results with Khepera Robots 
Results of the experiments performed are summarized in Table 5.4. Three performance 
metrics, namely 1) total number of steps taken to reach the goal, 2) ATPT, and 3) ATPD have  
 
Table 5.4 COMPARISON OF NUMBER OF STEPS, AVERAGE PATH TRAVERSED AND AVERAGE TOTAL PATH 

DEVIATION BY THE KHEPERA ROBOTS 

 

Algorithms 

Total 

Number 

of Steps 

ATPT 

(inch.) 

ATPD 

(inch.) 

ICFA 10 41.2 7.5 

ICA-DE 13 44.2 9.5 

ICAAI 16 45.7 12.1 

FA 18 48.3 13.7 

ICA 22 52.0 16.4 
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been used here too to determine the relative merits of ICFA over other algorithms.Table 5.4 
substantiates that ICFA outperforms the remaining four algorithms with respect to all the 
three metrics. 
 

 
 

Fig. 5.14 Final configuration of the world-map after experiment using Khepera-II mobile robots 

5.8 Conclusion 
The most intriguing issue of the present chapter is the unique formulation of a multi-robot 
stick-carrying problem in the framework of an evolutionary optimization problem. The 
integrity of the work lies in online optimization of the trajectory of the stick (carried by the 
robots) in a sequence of local steps from the predefined starting position to a given goal 
position without collision with obstacles in the workspace. The stick-carrying optimization 
problem is then solved using the proposed hybrid evolutionary optimization algorithm. 

The chapter also introduced a novel approach for efficiently employing both ICA and FA to 
develop a hybrid algorithm with an aim to utilize the composite benefits of the explorative and 
exploitative capabilities of both ancestor algorithms. The potential of local exploitation is 
captured by the colonizing behavior of countries (representing candidate solutions) 
surrounding the respective imperialist (representing the local optima in the search space) of the 
traditional ICA. Alternatively, the global explorative proficiency of FA is signified by the self-
organizing behavior of fireflies (representing candidate solutions) based on their light intensity 
(symbolizing the fitness) profile. The merit of the proposed hybridization policy lies in 
devising two interesting stratagems to realize the communal benefits of the two ancestor 
algorithms: 1) integration of the light intensity (fitness) induced motion dynamics of fireflies in 
the traditional ICA, and 2) modulation of step size for random motion of fireflies based on the 
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best position in the search space (discovered so far). The chapter also recommends a new 
policy of evaluating the threshold value for union of colonies (set of candidate solutions) based 
on search space dimensions. 

The incorporation of firefly motion dynamics of the traditional FA in the traditional ICA is 
significant due to its efficacy of distributing the information of the promising regions in the 
search space among the fireflies (candidate solutions) through the brighter ones (quality 
solutions with better fitness). The strategy thus allows each country (candidate solution) of 
ICA to improve its socio-political characteristics by following the more powerful countries 
(quality solutions with better fitness) in the colony, not only being guided by the respective 
imperialist country (local optima). Hence, it evades the possibility of the search strategy to get 
stuck at local optima. 

The second strategy provides a unique estimate of step size for random movement of 
fireflies based on their position in the search space relative to the so far best position. It 
differs from the conventional approach, which considers equal step size for random 
movement of all fireflies irrespective of their fitness, thereby offering a poor convergence rate 
in most of the real world applications. In the proposed alternative approach, the step size for 
random motion is decreased for a brighter firefly (quality solution with better fitness) to 
confine its search process in close proximity of the best position discovered so far. It thus 
assists in the local exploitation of quality solutions. Contrarily, the fireflies far away from the 
best location in the search space are assigned with a large value of step size to inspire them in 
global exploration. 

The experimental study undertaken reveals the effectiveness of the proposed hybrid 
algorithm in counterbalancing the trade-off between the global exploration and the local 
exploitation. It is capable of maintaining large population variance to ensure population 
diversity at earlier explorative phase of ICFA, while confining the search process in the local 
neighborhoods at later exploitative phase by preserving low population diversity. We have 
then undertaken a comparative study of the proposed ICFA algorithm with thirteen state-of-
the-art hybrid/traditional evolutionary/swarm algorithms. The efficacy of all the fourteen 
contender algorithms is scrutinized with respect to the test suit of 25 CEC 2005 benchmark 
functions. The relative performance of all the algorithms has been compared based on the 
solution quality and the convergence time. The quality performance of ICFA is substantiated 
by the reported simulation results. The experimental study clearly reveals that ICFA 
outperforms its competitor algorithms with respect to the computational accuracy and the run-
time complexity required for convergence, irrespective of settings of problem dimension. 

Three non-parametric tests including the Friedman test, the Iman-Davenport statistic, and 
the Bonferroni–Dunn post hoc analysis, are used to validate the statistical significance of the 
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results. The results of both the Friedman and the Iman-Davenport tests affirm the rejection of 
the null hypothesis, concerned with the equivalent performance of all the contender 
algorithms. Moreover, ICFA emerges as the winner achieving the highest average Friedman 
rank. The outcome of the Bonferroni-Dunn test further reveals that, apart from ICA-DE and 
ICAAI, the remaining eleven algorithms are outperformed by ICFA in a statistically 
significant manner.   

Finally, the proposed ICFA is employed to handle the multi-robot stick-carrying problem. 
The experiments undertaken reveal that the ICFA-based program here too outperforms all its 
competitors with respect to two parameters AUTD and ATPD. The experiments performed 
with Khepera-II mobile robots also indicate that ICFA outperforms other realizations in real 
environment, thereby justifying the merit of the proposed algorithm. 

A potential extension of the proposed multi-robot stick-carrying problem is to consider 
noise contaminating the sensory measurements of the robots. In real world problems, the 
sensory data of the robots are often found to be contaminated with noise due to sensor aging 
or noisy ambience or faulty measurement procedure. The application of traditional/hybrid 
evolutionary/swarm optimization algorithms may fail to solve such practical multi-robot 
coordination problems. The existing algorithms are biased towards the selection of candidate 
solutions with better fitness measures over evolutionary generations. However, this 
conventional fitness based selection of candidate solutions may lead the search process 
towards sub-optimal or deceptive regions in the search space in the presence of noise. Hence, 
new robust selection strategy needs to be incorporated in the traditional/hybrid 
evolutionary/swarm algorithms to cope with the uncertainty involved in the noisy sensory 
data of the robots. Although the quality performance of ICFA is evident on different 
complicated fitness landscapes, there is still scope to further amend its effectiveness to 
capture the global optima in the real world multi-modal objective surface. It can be 
accomplished by the online tuning of the algorithm control parameters to learn the objective 
space characteristics using, for instance, machine-learning methods. 

5.9 Summary  
Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The 
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which 
is employed to determine the time-optimal trajectory of a stick, being carried by two robots, 
from a given starting position to a predefined goal position amidst static obstacles in a robot 
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the 
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also the 
trade-off between the exploration and exploitation is balanced by modifying the random walk 
strategy based on the position of the candidate solutions in the search space. The superiority 
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of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and 
accureacy as the performance metrics. Finally, the proposed algorithm has been verified in 
real-time multi-robot stick-carrying problem.  

5.10 Appendix 5.1 
In order to compare the speeds of different competitive algorithms listed under section 5.6.1, 
we record the number of FEs the algorithm takes to reach below a predefined cut-off value of 
the objective function for the minimization problem. A lower number of FEs corresponds to a 
faster algorithm. Table 5.A.1 details the number of runs (out of 25) that successfully locate the 
optimum solution (within the given tolerance) as well as the success performance attained by 
the algorithms to converge within the prescribed threshold value. Table 5.A.1. A designates 
that the number of runs that converge below a pre-specified threshold value is also greater for 
ICFA over most of the benchmark problems considered here. This indicates the higher 
robustness of the algorithm as compared to its other thirteen contestants. 

 
Table 5.A.1 NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN 

PARENTHESIS (SUCCESS PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (# 

OF SUCCESSFUL RUNS)) FOR f01 TO f25 
Functions Tolerance ICFA ICA-DE ICAAI 

Memetic 

ICA 
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO 

f01 1.00e-18 
25 

(2.42e+03) 

25 

(2.72e+03) 

25 

(1.06e+04) 

24 

(1.34e+04) 

24 

(2.09e+04) 

24 

(2.72e+04)

23 

(4.03e+04) 

23 

(4.58e+04) 

22 

(5.13e+04) 

21 

(5.53e+04)

21 

(5.54e+04)

21 

(5.65e+04) 

21 

(6.14e+04) 

20 

(6.31e+04) 

f02 2.00e-14 
24 

(4.02e+03) 

24 

(5.31e+03) 

23 

(2.40e+04) 

23 

(2.57e+04) 

22 

(2.88e+04) 

22 

(3.23e+04)

22 

(3.48e+04) 

21 

(3.75e+04) 

21 

(4.16e+04) 

21 

(4.49e+04)

21 

(4.75e+04)

20 

(5.50e+04) 

19 

(5.55e+04) 

18 

(5.72e+04) 

f03 4.00e-02 
25 

(4.25e+03) 

24 

(6.53e+03) 

24 

(1.02e+04) 

24 

(1.03e+04) 

24 

(1.03e+04) 

24 

(1.80e+04)

23 

(2.66e+04) 

23 

(2.77e+04) 

22 

(2.87e+04) 

21 

(3.44e+04)

21 

(4.93e+04)

21 

(5.08e+04) 

21 

(1.85e+05) 

21 

(5.82e+04) 

f04 2.00e-04 
25 

(2.18e+03) 

24 

(2.24e+03) 

24 

(1.08e+04) 

24 

(1.36e+04) 

24 

(1.74e+04) 

23 

(1.96e+04)

23 

(2.83e+04) 

23 

(3.36e+04) 

21 

(4.19e+04) 

21 

(4.36e+04)

20 

(5.77e+04)

19 

(5.80e+04) 

19 

(5.83e+04) 

18 

(6.16e+04) 

f05 1.00e-10 
25 

(1.75e+02) 

25 

(2.06e+02) 

24 

(1.10e+03) 

24 

(1.77e+03) 

23 

(2.29e+03) 

23 

(2.99e+03)

23 

(3.04e+03) 

23 

(3.74e+03) 

22 

(3.85e+03) 

22 

(4.20e+03)

21 

(5.27e+03)

21 

(5.85e+03) 

21 

(7.56e+03) 

21 

(6.29e+03) 

f06 4.00e-02 
25 

(3.23e+03) 

24 

(3.64e+03) 

23 

(1.81e+04) 

23 

(2.50e+04) 

22 

(2.98e+04) 

22 

(3.58 e+04)

22 

(3.93e+04) 

21 

(4.79e+04) 

21 

(5.50e+04) 

21 

(6.10e+04)

20 

(6.47e+04)

20 

(6.50e+04) 

19 

(8.60e+04) 

19 

(6.60e+04) 

f07 3.00e-05 
25 

(5.22e+02) 

24 

(5.26e+02) 

24 

(1.63e+03) 

24 

(1.89e+03) 

23 

(2.80e+03) 

23 

(3.00e+03)

23 

(3.10e+03) 

22 

(3.65e+03) 

22 

(3.87e+03) 

21 

(4.42e+03)

21 

(5.21e+03)

20 

(5.83e+03) 

19 

(6.36e+03) 

18 

(8.83e+03) 

f08 2.00e-01 
25 

(7.60e+03) 

25 

(8.09e+03) 

25 

(1.84e+04) 

25 

(2.13e+04) 

25 

(2.73e+04) 

23 

(3.71e+04)

23 

(4.37e+04) 

22 

(4.48e+04) 

22 

(4.89e+04) 

21 

(4.90e+04)

20 

(4.97e+04)

20 

(5.18e+04) 

19 

(5.61e+04) 

19 

(5.21e+04) 

f09 2.00e-02 
24 

(1.90e+02) 

24 

(2.49e+02) 

23 

(1.04e+03) 

23 

(2.02e+03) 

22 

(3.49e+03) 

22 

(3.60e+03)

21 

(4.73e+03) 

21 

(4.75e+03) 

20 

(4.87e+03) 

20 

(5.48e+03)

20 

(6.20e+03)

19 

(6.31e+03) 

19 

(6.62e+03) 

19 

(6.83e+03) 

f10 3.00e-03 
24 

(3.19e+02) 

24 

(3.36e+02) 

24 

(1.15e+03) 

24 

(1.60e+03) 

23 

(2.34e+03) 

23 

(2.43e+03)

22 

(3.81e+03) 

21 

(4.76e+03) 

21 

(5.66e+03) 

20 

(5.75e+03)

19 

(1.29e+04)

19 

(2.30e+04) 

18 

(4.68e+04) 

19 

(2.47e+04) 

f11 1.00e-10 
25 

(3.09e+03) 

25 

(4.79e+03) 

25 

(1.18e+04) 

25 

(1.44e+04) 

24 

(2.06e+04) 

24 

(3.09e+04)

23 

(3.29e+04) 

23 

(3.72e+04) 

23 

(3.88e+04) 

21 

(4.43e+04)

20 

(4.61e+04)

20 

(4.86e+04) 

20 

(6.20e+04) 

20 

(7.05e+04) 

f12 8.00e-02 
25 

(1.61e+03) 

25 

(1.81e+03) 

25 

(1.80e+04) 

24 

(2.10e+04) 

24 

(2.36e+04) 

23 

(3.28e+04)

22 

(3.46e+04) 

22 

(4.09e+04) 

22 

(4.80e+04) 

21 

(5.12e+04)

21 

(5.21e+04)

21 

(5.22e+04) 

20 

(5.66e+04) 

20 

(5.80e+04) 

f13 9.00e-02 
25 

(8.00e+03) 

25 

(8.05e+03) 

23 

(1.42e+04) 

22 

1.72e+04) 

21 

(2.51e+04) 

21 

(2.75e+04)

20 

(3.56e+04) 

20 

(3.60e+04) 

20 

(3.65e+04) 

19 

(3.81e+04)

19 

(4.37e+04)

19 

(4.76e+04) 

19 

(5.84e+04) 

19 

(5.97e+04) 
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Functions Tolerance ICFA ICA-DE ICAAI 
Memetic 

ICA 
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO 

f14 7.00e-04 
25 

(4.62e+02) 

25 

(5.93e+02) 

24 

(1.75e+03) 

24 

(2.76e+03) 

24 

(2.78e+03) 

23 

(3.07e+03)

23 

(3.08e-+03)

23 

(3.13e+03) 

22 

(3.43e+03) 

22 

(3.65e+03)

21 

(3.83e+03)

20 

(4.46e+03) 

20 

(4.69e+03) 

18 

(5.25e+03) 

f15 7.00e-01 
25 

(6.00e+02) 

25 

(7.43e+02) 

25 

(1.60e+03) 

25 

(1.92e+03) 

24 

(1.10e+04) 

24 

(1.21e+04)

24 

(1.99e+04) 

23 

(3.49e+04) 

22 

(4.31e+04) 

22 

(4.55e+04)

22 

(4.91e+04)

21 

(5.72e+04) 

21 

(5.81e+04) 

21 

(6.56e+04) 

f16 9.00e-03 
24 

(2.45e+03) 

24 

(3.62e+03) 

23 

(1.67e+03) 

23 

(1.78e+03) 

22 

(1.27e+04) 

22 

(4.18+04) 

21 

(4.27e+04) 

21 

(4.91e+04) 

21 

(5.11e+04) 

20 

(5.18e+04)

20 

(5.68e+04)

20 

(5.70e+04) 

19 

(5.78e+04) 

19 

(7.02e+04) 

f17 1.00e-01 
25 

(1.36e+03) 

25 

(1.49e+03) 

23 

(3.32e+03) 

23 

(3.42e+03) 

22 

(3.82e+03) 

21 

(4.08e+03)

21 

(4.24e+03) 

21 

(5.22e+03) 

21 

(5.32e+03) 

20 

(5.49e+03)

20 

(5.71e+04)

19 

(6.01e+04) 

19 

(6.80e+04) 

19 

(7.04e+04) 

f18 2.00e-01 
25 

(2.53e+03) 

25 

(2.53e+03) 

24 

(1.18e+04) 

24 

(1.28e+04) 

24 

(1.97e+04) 

23 

(2.19e+04)

21 

(2.55e+04) 

20 

(3.33e+04) 

20 

(4.09e+04) 

19 

(5.57e+04)

18 

(6.21e+04)

18 

(6.53e+04) 

18 

(7.50e+04) 

17 

(8.76e+04) 

f19 3.00e-02 
24 

(7.53e+03) 

24 

(9.86e+03) 

24 

(1.92e+04) 

23 

(1.09e+04) 

23 

(1.91e+04) 

23 

(2.27e+05)

22 

(2.51e+05) 

21 

(3.04e+05) 

20 

(3.40e+05) 

20 

(3.89e+05)

20 

(4.89e+05)

19 

(5.15e+05) 

19 

(5.82e+05) 

18 

(6.92e+05) 

f20 2.00e+00 
25 

(8.40e+03) 

24 

(9.09e+03) 

23 

(1.79e+04) 

22 

(1.99e+04) 

22 

(2.36e+04) 

22 

(2.37e+04)

21 

(2.64e+04) 

21 

(4.23e+04) 

20 

(5.24e+04) 

19 

(5.72e+04)

19 

(5.95e+04)

19 

(6.28e+04) 

19 

(6.49e+04) 

18 

(6.80e+04) 

f21 4.00e+01 
25 

(4.19e+03) 

25 

(5.54e+03) 

24 

(6.87e+03) 

24 

(8.90e+03) 

24 

(2.04e+04) 

23 

(2.37e+04)

22 

(3.75e+04) 

22 

(4.54e+04) 

21 

(4.64e+04) 

21 

(5.08e+04)

21 

(5.58e+04)

21 

(5.80e+04) 

21 

(7.00e+04) 

20 

(9.33e+04) 

f22 2.00e+00 
24 

(7.22e+02) 

24 

(8.52e+02) 

24 

(8.63e+03) 

23 

(9.83e+03) 

23 

(1.00e+04) 

22 

(1.27e+04)

22 

(1.93e+04) 

21 

(3.51e+04) 

21 

(4.45e+04) 

19 

(4.46e+04)

19 

(5.07e+04)

19 

(1.20e+05) 

18 

(1.59e+05) 

18 

(2.79e+05) 

f23 7.00e+01 
25 

(2.00e+02) 

24 

(2.51e+02) 

24 

(2.72e+02) 

24 

(2.95e+02) 

23 

(3.26e+02) 

22 

(3.99e+02)

22 

(5.18e+02) 

21 

(5.30e+02) 

20 

(5.38e+02) 

20 

(5.50e+02)

20 

(5.72e+02)

19 

(6.60e+02) 

19 

(2.72e+03) 

18 

(4.86e+03) 

f24 2.00e+02 
24 

(5.04e+02) 

24 

(7.47e+02) 

24 

(1.52e+03) 

23 

(1.60e+03) 

23 

(1.73e+03) 

22 

(2.89e+03)

22 

(3.88e+03) 

20 

(4.16e+03) 

20 

(4.62e+03) 

20 

(5.36e+03)

20 

(5.48e+04)

20 

(1.92e+04) 

20 

(2.08e+04) 

19 

(2.31e+04) 

f25 2.00e+02 
24 

(2.47e+02) 

23 

(4.93e+02 

23 

(1.94e+03) 

23 

(2.24e+03) 

22 

(3.06e+03) 

22 

(3.67e+03)

22 

(4.45e+03) 

22 

(5.64e+03) 

21 

(5.75e+03) 

20 

(1.60e+04)

19 

(1.62e+04)

17 

(1.67e+04) 

17 

(2.76e+04) 

17 

(3.91e+04) 
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Chapter 6                                              
Conclusions and Future Directions 
 
 
 
 
 
 
 
 
 
This chapter concludes the thesis. Here novelties, originality of thesis are reclaimed and the 
future research directions are indicated.  
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6.1 Conclusions 
The thesis identifies a few fundamental problems in multi-robot coordination and proposes 
solutions to handle these preoblems by extending the traditional evolutionary algorithm (EA) 
and multi-agent Q-learning (MAQL). Chapter 1 provides the preliminaries of Reinforcement 
Learning (RL) and EA in view of the multi-robot coordination. Chapter 2 proposes two useful 
characteristic properties for exploration of the team-goal and joint action selection in multi-
agent system. The incorporation of the first property with traditional MAQL (TMAQL) 
ensures exploration of the team-goal by multi-phased transitions of the agents asynchronously 
or synchronously to finally reach the team-goal, and thereby offer high reward values to such 
pre-goal state to the goal state transitions. The second property helps in identifying common 
preferred joint actions for the entire team, thus avoiding same joint actions at the same states 
and thereby enhancing the learning speed of the agents. The Q-table obtained in joint state-
action space using the proposed fast cooperative multi-agent Q-learning (FCMQL) algorithms 
have been employed in the multi-agent planning algorithm to autonomously select goal state-
transitions (team-goal) from the pre-goal states based on their high reward values stored in the 
Q-table. TMAQL induced planners occasionally fail to reach the team-goal as such state-
transitions which might result in due to follow-up actions of Property 1 in FCMQL are 
missing from the Q-table obtained by TMAQL. It is shown in a Theorem, that the expected 
convergence time of the proposed FCMQL algorithms is less than the same of TMAQL 
algorithms. The complexity analysis reveals the superiority of the proposed FCMQL 
algorithms over the TMAQL algorithms. 

Chapter 3 proposes a novel Consensus Q-learning (CoQL) algorithm for multi-robot 
cooperative planning. The proposed CoQL algorithm addresses the problem of equilibrium 
selection among multiple equilibria, by evaluating the consensus (joint action) at the current 
joint state. An analysis reveals that a consensus at a joint state is a pure strategy Nash 
equilibrium (NE) as well as pure strategy correlated equilibrium (CE). The novelty of the 
CoQL lies in the adaption of the joint Q-values at consensus. The superiority of the proposed 
CoQL algorithm is verified over the reference algorithms in terms of the average of the 
average rewards (AAR) earned by the agents against the learning epoch. In addition, 
consensus-based multi-robot cooperative planning algorithm is proposed and its superiority is 
verified over reference algorithms, considering path length and torque requirement as the 
performance metrics.    

Chapter 4 introduces a novel approach to correlated Q-learning (CQL) and subsequent 
multi-robot planning. Two models are proposed in chapter 4. The principles adapted in the 
proposed models yield a single Q-table in joint state-action space, which contains sufficient 
information to plan by employing the proposed multi-agent planning algorithms. The Q-table 
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obtained from model-I and II have less computational cost than the traditional CQL. An 
analysis reveals that both time- and space- complexities of proposed learning and planning 
algorithms are significantly less to those of the CQL. A further reduction in complexity is 
obtained by dropping the infeasible joint state-action pairs from the joint Q-table. Unlike 
traditional CQL, in the proposed models computation of the CE is done partly in the learning 
and partly in the planning phases, thereby requiring CE computation once. It has been proved 
in a Theorem, that the CE obtained by the proposed models is same as that obtained by the 
traditional CQL algorithms. 

Chapter 5 introduces a novel approach for efficiently employing both imperslistic 
competitive algorithm (ICA) and firefly algorithm (FA) to develop a hybrid algorithm with an 
aim to utilize the composite benefits of the explorative and exploitative capabilities of both 
ancestor algorithms. The potential of local exploitation is captured by the colonizing behavior 
of countries (representing candidate solutions) surrounding the respective imperialist 
(representing the local optima in the search space) of the traditional ICA. Alternatively, the 
global explorative proficiency of FA is signified by the self-organizing behavior of fireflies 
(representing candidate solutions) based on their light intensity (symbolizing the fitness) 
profile. The merit of the proposed hybridization policy lies in devising two interesting 
stratagems to realize the communal benefits of the two ancestor algorithms: 1) integration of 
the light intensity (fitness) induced motion dynamics of fireflies in the traditional ICA, and 2) 
modulation of step size for random motion of fireflies based on the best position in the search 
space (discovered so far). The chapter also recommends a new policy of evaluating the 
threshold value for union of colonies (set of candidate solutions) based on search space 
dimensions. 

Finally, all the proposed learning and planning algorithms are verified first in simulation 
and then are implemented for real-time planning using Khepera mobile robots. The proposed 
learning-based planning and ICFA is employed to handle the multi-robot object-
transportation tasks. The experiments performed with Khepera mobile robots also indicate 
that the proposed algorithms outperform other realizations in real environment, thereby 
justifying the merit of the proposed algorithms. 

6.2 Future directions 
Cooperative robots have wide applications in flexible manufacturing systems (FMS) and 
factory automation, where the servicing robots picks up items from the conveyer and places 
the items again once the operation on the item by the servicing robot is over. In defense 
sector, cooperative robots would find applications in landmine/water mine clearing. In 
building construction/repair, robot team is a good choice as the skyscrapers invite high risks 
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for the masons or their assistants. We hope for the best, when a pair of robots might serve as a 
surgeon and nurse, where the latter may assist the former in surgery. 

The above dreams will be realized in near future by extending the thesis in the following 
dimension: i) multi-agent Fuzzy-Q learning, ii) multi-agent reinforcement learning employing 
function approximation techniques, iii) multi-agent reinforcement learning for distributed Q-
learning with the flavor of partially observable Markov decision process, iv) optimal 
trajectory generation in presence of dynamic obstacles employing PrEference Appraisal 
Reinforcement Learning, v) efficient strategies for mixed coordination and vi) deep 
reinforcement learning. 
 
 
 
 

 
 

 

 
 




