

MULTI-ROBOT COORDINATION BY MACHINE

LEARNING AND EVOLUTIONARY
ALGORITHMS

Thesis submitted
by

Arup Kumar Sadhu

Doctor of Philosophy (Engineering)

Artificial Intelligence Laboratory and Control Engineering Laboratory

Department of Electronics and Tele-Communication Engineering
Faculty Council of Engineering and Technology

Jadavpur University
Kolkata, India

2017

ii

JADAVPUR UNIVERSITY

KOLKATA ‒ 700032, INDIA

INDEX NO.: 257/13/E

1. Title of the thesis: Multi-Robot Coordination by Machine Learning and Evolutionary
Algorithms

2. Supervisor Name: Dr. Amit Konar, FNAE
 Designation: Professor, Dept. of Electronics & Telecommunication Engineering
 Institution: Jadavpur University, Kolkata.

3. List of Journal Publications:

1. Arup Kumar Sadhu, P. Rakshit and Amit Konar, “A modified Imperialist
Competitive Algorithm for multi-robot stick-carrying application,” Robotics and
Autonomous Systems, vol. 76, pp. 15-35, 2016.

2. Arup Kumar Sadhu and Amit Konar, “Improving the Speed of Convergence of Multi-
Agent Q-Learning for Cooperative Task-Planning by a Robot-Team,” Robotics and
Autonomous Systems, vol. 92, pp. 66-80, 2017.

3. Arup Kumar Sadhu and Amit Konar, “An Efficient Computing of Correlated
Equilibrium for Cooperative Q-Learning Based Multi-Robot Planning,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2017. (Under 2nd Revision)

4. Arup Kumar Sadhu, Amit Konar, Tanuka Bhatterjee and Swagatam Das, “synergism
of firefly and Q learning for robot arm trajectory planning,” Swarm and Evolutionary
Computation, Elsevier, 2017. (Under review)

3. List of Conferences Publications:

1. Arup Kumar Sadhu, Amit Konar, Bonny Banerjee and Atulya K Nagar “Multi-robot
Cooperative Planning by Consensus Q-learning,” International Joint Conference on
Neural Networks (IJCNN), pp. 4158-4164, 2017.

2. S. Lall, Arup Kumar Sadhu, Amit Konar, K. K. Mallik and S. Ghosh, “Multi-agent
reinfocement learning for stochastic power management in cognitive radio network,”
IEEE International Conference on Microelectronics, Computing and
Communications (MicroCom), pp. 1-6, 2016.

3. S. Saha, Amit Konar, A. Saha, Arup Kumar Sadhu, B. Banerjee and A. K. Nagar,
“EEG based gesture mimicking by an artificial limb using cascade-correlation
learning architecture,” IEEE International Joint Conference on Neural Networks
(IJCNN), pp. 4680-4687, 2016.

4. P. Das, Arup Kumar Sadhu, Amit Konar and S Ghosh, “Adaptive Fuzzy Type-I based
person identification,” IET International Summit on Michael Faraday, pp. 611-616,
2015.

iii

5. P. Das, Arup Kumar Sadhu, Amit Konar, A. Lekova and A. K. Nagar, “Type 2 fuzzy
induced person identification using Kinect sensor,” International Conference on
Fuzzy Systems FUZZ-IEEE, pp. 1-8, 2015.

6. P. Das, Arup Kumar Sadhu, Amit Konar, B. S. Bhattacharya and A. K. Nagar,
“Adaptive Parameterized AdaBoost Algorithm with application in EEG Motor
Imagery Classification,” International Joint Conference on Neural Networks
(IJCNN), pp. 1-8, 2015.

7. P. Das, Arup Kumar Sadhu, R. R. Vyas, Amit Konar and D. Bhattacharyya, “Arduino
based multi-robot stick carrying by Artificial Bee Colony optimization algorithm,”
Third International Conference on Computer, Communication, Control and
Information Technology (C3IT), pp. 1-6, 2015.

8. S. Nanda, S. Manna, Arup Kumar Sadhu, Amit Konar and D. Bhattacharya, “Real-
time surface material identification using infrared sensor to control speed of an
arduino based car like mobile robot,” Third International Conference on Computer,
Communication, Control and Information Technology (C3IT), pp. 1-6, 2015.

9. Arup Kumar Sadhu, S. Saha, Amit Konar and R. Janarthanan, “Person identification

using Kinect sensor,” International Conference on Control, Instrumentation, Energy
and Communication (CIEC), pp. 214-218, 2014.

10. Arup Kumar Sadhu, P. Das, Amit Konar and R. Janarthanan, “Online Template

Matching Using Fuzzy Moment Descriptor,” In Advanced Computing, Networking
and Informatics-Volume 1, Springer International Publishing, pp. 275-282, 2014.

11. P. Rakshit, Arup Kumar Sadhu, A. Halder, Amit Konar and R. Janarthanan, “Multi-

robot Box-Pushing Using Differential Evolution Algorithm for Multiobjective
Optimization,” Proceedings of the International Conference on Soft Computing for
Problem Solving (SocProS 2011), Springer, pp. 355-365, 2012.

12. P. Rakshit, Arup Kumar Sadhu, P. Bhattacharjee, Amit Konar, and R. Janarthanan.

"Multi-robot box-pushing using non-dominated sorting bee colony optimization
algorithm." In Swarm, Evolutionary, and Memetic Computing, Springer, Berlin
Heidelberg, pp. 601-609, 2011.

4. List of Patents: NIL

5. List of Presentations in International Conferences

1. In the “International conference on Control, Instrumentation, Energy and
Communication,” IEEE, 2014, held in Kolkata, India from 31th January to 2nd
February, 2014.

2. In the “International conference on Advanced Computing, Networking, and

Informatics,” IEEE, 2014, held at Kolkata, India from 24th to 26th June, 2014.

iv

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled “Multi-Robot Coordination by Machine
Learning and Evolutionary Algorithms” submitted by Shri Arup Kumar Sadhu,
who got his name registered on 30/12/2013 for the award of Ph.D. (Engineering)
degree of Jadavpur University is absolutely based upon his own work under the
supervision of Prof. Amit Konar and that neither his thesis nor any part of the thesis
has been submitted for any Degree or any other academic award anywhere before.

Signature of the Supervisor
and date with Official seal

v

The Thesis is dedicaTed To

Reviewers of my papers

vi

Preface
Coordination is a fundamental trait in lower level organisms as they used their collective effort
to serve their goals. Hundreds of interesting examples of coordination are available in nature.
For example, ants individually cannot carry a small food item, but they collectively carry quite
a voluminous food to their nest. The tracing of the trajectory of motion of an ant following the
pheromone deposited by its predecessor also is attractive. The queen bee in her nest directs the
labor bees to specific directions by her dance patterns and gestures to collect food resources.
These natural phenomena often remind us the scope of coordination among agents to utilize
their collective intelligence and activities to serve complex goals.

Coordination and planning are closely related terminologies from the domain of multi-robot
system. Planning refers to the collection of feasible steps required to reach a predefined goal
from a given position. However, coordination indicates the skillful interaction among the
agents to generate a feasible planning step. Therefore, coordination is an important issue in
the field of multi-robot coordination to address complex real-world problems. Coordination
usually is of three different types: cooperation, competition and mixed. As evident from their
names, cooperation refers to improving the performance of the agents to serve complex goals,
which otherwise seems to be very hard for an individual agent because of the restricted
availability of hardware/software resources of the agents or deadline/energy limits of the
tasks. Unlike cooperation, competition refers to serving conflicting goals by two (team of)
agents. For example, in robot soccer, the two teams compete to win the game. Here, each
team plans both offensively and defensively to score goals and thus act competitively. Mixed
coordination indicates a mixture of cooperation and competition. In the example of a soccer
game, inter-team competition and intra-team cooperation is the mixed coordination. Most of
the common usage of coordination in robotics lies in cooperation of agents to serve a common
goal. The thesis deals with the cooperation of robots/robotic agents to efficiently complete a
complex task.

In recent times, researchers are taking keen interest to employ machine learning in multi-
robot cooperation. The primary advantage of machine learning is to generate the action plans
in sequence from the available sensory readings of the robots. In case of a single robot,
learning the action plans from the sensory readings is straight-forward. However, in the context
of multi-robot, the positional changes of the other robots act as additional inputs for the learner
robot, and thus learning is relatively difficult. Several machine learning and evolutionary
algorithms have been adopted over the last two decades to handle the situations. The simplest
of all is the supervised learning technique that requires an exhaustive list of sensory instances
and the action plan by the robots. Usually, a human experimenter provides these data from his
long acquaintance with such problems or by direct measurement of the sensory instances and

vii

decisions. The training instances being too large, sometimes has a negative influence to the
engineer, and he/she feels it uncomfortable not to miss a single instance that carries valuable
mapping from sensory instance to action plan by the robots.

Because of the difficulty of generating training instances and excessive computational
overhead to learn those instances, coupled with the need for handling dynamic situations,
researchers felt the importance of reinforcement learning (RL). In RL, we need not provide any
training instance, but employ a critic who provides a feedback to the learning algorithm about
the possible reward/penalty of the actions by the agent. The agent/s on receiving the
approximate measure of penalty/reward understands which particular sensory-motor instances
they need to learn for future planning applications. The dynamic nature of environment thus
can easily be learned by RL. In the multi-agent scenario, RL needs to take care of learning in
joint state/action space of the agents. Here, each agent learns the sensory-motor instances in
the joint state/action space with an ultimate motive to learn the best actions for itself to
optimize its rewards.

The superiority of evolutionary algorithms (EA) in optimizing diverse objective functions is
subjected to the No Free Lunch Theorem (NFLT). According to NFLT, the expected
effectiveness of any two traditional EAs across all possible optimization problems is identical.
A self-evident implication of NFLT is that the elevated performance of one EA, say A, over
the other, say B, for one class of optimization problems is counterbalanced by their respective
performances over another class. It is therefore practically difficult to devise a universal EA
that would solve all the problems. This apparently paves the way for hybridization of EAs
with other optimization strategies, machine learning techniques, and heuristics.

In evolutionary computation paradigm, hybridization refers to the process of integrating the
attractive features of two or more EAs synergistically to develop a new hybrid EA. The
hybrid EA is expected to outperform its ancestors with respect to both accuracy and
complexity over application-specific or general benchmark problems. The fusion of EAs
through hybridization hence can be regarded as the key to overcome their individual
limitations.

Hence, apart from the RL, hybridization of the evolutionary algorithms (EA) is also an
effective approach to serve the purpose of multi-robot coordination in a complex
environment. The primary objective of an EA in the context of multi-robot coordination is
concerned with the minimization of the time consumed by the robots (i.e., the length of the
path to be traversed by the robots) for complete traversal of the planned trajectory. In other
words, robots plan their local trajectory, so that robots shifted from given positions to the next
positions (sub-goals) in a time-optimal sense avoiding collision with the obstacles or the
boundary of the world-map. The optimization algorithm is executed in each local planning

viii

step to move a small distance. Hence, cumulatively robots move to the desired goal position
using the sequence of local planning. There are traces of literature on hybridization of the
EAs.

Several algorithms for multi-agent learning are available in the literature, each with one
specific flavor to optimize certain learning intents of the agents. Of these algorithms, quite a
few interesting works on the MAQL have been reported in the literature. Among the state-of-
the-art MAQL algorithms, the following need special mentions. Claus and Boutilier, aimed at
solving the coordination problem using two types of reinforcement learners. The first one,
called independent learner (IL), takes care of the learning behavior of individual agents by
ignoring the presence of other agents. The second one, called joint action learner (JAL),
considers all agents including the self to learn at joint action-space. Unlike JAL, in Team Q-
learning proposed by Littman, an agent updates its Q-value at a joint state-action pair without
utilizing associated agents' reward; rather the value function of the agent at the next joint state
is evaluated by obtaining the maximum Q-value among the joint actions at the next joint state.
Ville proposed Asymmetric-Q learning (AQL) algorithm, where the leader agents are capable
of maintaining all the agents Q-tables. However, the follower agents are not allowed to
maintain all the agents’ Q-tables and hence, they just maximize their own rewards. In AQL,
agents always achieve the pure strategy Nash equilibrium (NE), although there does exist
mixed strategy NE. Hu and Wellman extended the Littman’s Minimax Q-learning to the
general-sum stochastic game (where the summation of all agents’ payoff is neither zero nor
constant) by taking into account of other agents’ dynamics using NE. They also offered a
proof of convergence of their algorithm. In case of multiple NE occurrences, one is selected
optimally. Littman proposed Friend-or-Foe Q-learning (FQL) algorithm for general-sum
games. In this algorithm, the learner is instructed to treat each other agent either as a friend in
Friend Q-learning or as a foe in Foe Q-learning. Friend-or-Foe Q-learning provides a stronger
convergence guarantee in comparison to that of the existing NE based learning rule.
Greenwald and Hall proposed correlated Q-learning (CQL) employing correlated equilibrium
(CE) to generalize both Nash Q-learning (NQL) and FQL. The bottlenecks of the above
MAQL algorithms are update policy selection for adaptation of the Q-tables in joint state-
action space and the curse of dimensionality with an increase in the number of learning
agents. Several attempts have been made to handle the curse of dimensionality in MAQL.
Jelle and Nikos proposed Sparse Cooperative Q-learning, where a sparse representation of the
joint state-action space of the agents is done by identifying the need for coordination among
the agents at a joint state. Here, agents undertake coordination by their actions only in a few
joint states. Hence, each agent maintains two Q-tables: one is the individual-action Q-table for
un-coordinated joint states and another one is the joint action Q-table to represent the

ix

coordinated joint states. In case of uncoordinated states, a global Q-value is evaluated by
adding the individual Q-values. Zinkevich offers a neural network based approach for
generalized representation of the state-space for multi-agent coordination. By such
generalization, agents (here robots) can avoid collision with an obstacle or other robots by
collecting minimum information from the sensors. Reinaldo et al. proposed a novel algorithm
to heuristically accelerate the TMAQL algorithms.

In the literature of MAQL agents either converge to NE or CE. The equilibrium-based
MAQL algorithms are most popular for their inherent ability to determine optimal strategy
(equilibrium) at a given joint state. Hu et al. identified the phenomenon of similar equilibria in
different joint states and introduced the concept of equilibrium transfer to accelerate the state-
of-the-art equilibrium-based MAQL (NQL and CQL). In equilibrium transfer, agents recycle
the previously computed equilibria having very small transfer-loss. Recently Zhang et al.
attempted to reduce the dimension of the Q-tables in NQL. The reduction is done by allowing
the agents to store the Q-values in joint state-individual action space, instead of joint state-
action space.

In the state-of-the-art MAQL (NQL and CQL), balancing exploration/exploitation
during the learning phase is an important issue. Traditional approaches used to balance
exploration/exploitation in MAQL are summarized here. The greedy exploration,
although has wide publicity, needs to tune the value of which is time-costly. In the
Boltzmann strategy, the action selection probability is controlled by tuning a control
parameter (temperature) and by utilizing the Q-values due to all actions at a given state.
Here, the setting of temperature to infinity (zero) implies pure exploration
(exploitation). Unfortunately, the Boltzmann strategy antagonistically affects the speed
of learning. Evolution of the Boltzmann strategy towards better performance is
observed in a series of literature. However, the above selection mechanisms are not
suitable for selecting a joint action preferred for the team (all the agents) because of the
dissimilar joint Q-values offered by the agents at a common joint state-action pair.
There are traces of literature concerning joint action selection at a joint state during
learning. However, with the best of our knowledge, there is no work in the literature,
which considers the work, presented in this thesis.

The thesis includes six (6) chapters. Chapter 1 provides an introduction to the multi-robot
coordination algorithms for complex real-world problems, including transportation of a
box/stick, formation control for defense applications and soccer playing by multiple robots
utilizing the principles of reinforcement learning, the theory of games, dynamic
programming, and/or evolutionary algorithm. Naturally, this chapter provides a thorough
survey of the existing literature of reinforcement learning with a brief overview of the

x

evolutionary optimization to examine the role of the algorithms in the context of multi-agent
coordination. Chapter 1 includes multi-robot coordination employing evolutionary
optimization, and especially reinforcement learning for cooperative, competitive, and their
composition for application to static and dynamic games. The latter part of the chapter deals
with an overview of the metrics used to compare the performance of the algorithms while
coordinating. Fundamental metrics for performance analysis are defined to study the learning
and planning algorithms.

Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-
agent Q-learning algorithms (Nash Q-Learning and Correlated Q-Learning) for multi-robot
coordination and planning. This extension is achieved by employing two interesting
properties. The first property deals with the exploration of the team-goal (simultaneous
success of all the robots) and the other property is related to the selection of joint action at a
given joint state. The exploration of team-goal is realized by allowing the agents, capable of
reaching their goals, to wait at their individual goal states, until remaining agents explore their
individual goals synchronously or asynchronously. Selection of joint action, which is a crucial
problem in traditional multi-agent Q-learning, is performed here by taking the intersection of
individual preferred joint actions of all the agents. In case the resulting intersection is a null
set, the individual actions are selected randomly or otherwise following classical techniques.
The superiority of the proposed learning and learning-based planning algorithms are validated
over contestant algorithms in terms of the speed of convergence and run-time complexity
respectively.

In chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above
perspective, robots need to adapt to such a strategy, which can select the optimal equilibrium
in each step of the learning and the planning. To address the bottleneck of the optimal
equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-learning
for multi-robot coordination, by extending the equilibrium-based multi-agent Q-learning
algorithms. It is also shown that a consensus (joint action) jointly satisfies the conditions of
the coordination type pure strategy Nash equilibrium and the pure strategy correlated
equilibrium. The superiority of the proposed consensus Q-learning algorithm over traditional
reference algorithms in terms of the average reward collection are shown in the experimental
section. In addition, the proposed consensus-based planning algorithm is also verified
considering the multi-robot stick-carrying problem as the testbed.

Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite
rewards of all the agents in one Q-table in joint state-action space during learning, and
subsequently, these rewards are employed to compute correlated equilibrium in the planning

xi

phase. Two separate models of multi-agent Q-learning have been proposed. If the success of
only one agent is enough to make the team successful, then model-I is employed. However, if
an agent’s success is contingent upon other agents and simultaneous success of the agents is
required then model-II is employed. It is also shown that the correlated equilibrium obtained
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order
to restrict the exploration within the feasible joint states, constraint versions of the said
algorithms are also proposed. Complexity analysis and experiments have been undertaken to
validate the performance of the proposed algorithms in multi-robot planning on both
simulated and real platforms.

Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which
is employed to determine the time-optimal trajectory of a stick, being carried by two robots,
from a given starting position to a predefined goal position amidst static obstacles in a robot
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also, the
trade-off between the exploration and exploitation is balanced by modifying the random walk
strategy based on the position of the candidate solutions in the search space. The superiority
of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and
accuracy as the performance metrics. Finally, the proposed algorithm has been verified in a
real-time multi-robot stick-carrying problem.

Chapter 6 concludes the thesis based on the analysis made, experimental and simulation
results obtained from the earlier chapters. The chapter also examines the prospects of the
thesis in view of the future research trends.

In summary, the thesis aimed at developing multi-robot coordination algorithms with a
minimum computational burden and less storage requirement as compared to the traditional
algorithms. The novelty, originality, and applicability of the thesis are illustrated below.

Chapter 1 introduces fundamentals of the multi-robot coordination. Chapter 2 offers two
useful properties, which have been developed to speed-up the convergence of TMAQL
algorithms in view of the team-goal exploration, where team-goal exploration refers to the
simultaneous exploration of individual goals. The first property accelerates exploration of the
team-goal. Here, each agent accumulates high (immediate) reward for team-goal state-
transition, thereby improving the entries in the Q-table for state-transitions leading to the
team-goal. The Q-table thus obtained offers the team the additional benefit to identify the
joint action leading to a transition to the team-goal during the planning, where TMAQL-based
planning stops inadvertently. The second property directs an alternative approach to speed-up
the convergence of TMAQL by identifying the preferred joint action for the team. Finding

xii

preferred joint action for the team is crucial when robots are acting synchronously in a tight
cooperative system. The superiority of the proposed algorithms in Chapter 2 is verified both
theoretically as well as experimentally in terms of the convergence speed and the run-time
complexity.

Chapter 3 proposes the novel consensus Q-learning (CoQL), which addresses the
equilibrium selection problem. In case multiple equilibria exist at a joint state by adapting the
Q-functions at a consensus. Analytically it is shown that a consensus at a joint state is a
coordination type pure strategy NE as well as a pure strategy CE. Experimentally, it is shown
that the average rewards earned by the robots are more when adapting at consensus, than by
either NE or CE.
Chapter 4 introduces a new dimension in the literature of the traditional CQL. In traditional

CQL, CE is evaluated both in learning and planning phases. In Chapter 4, CE is computed
partly in the learning and the rest in the planning phases, thereby requiring CE computation
once only. It is shown in an analysis, that the CE obtained by the proposed techniques is same
as that obtained by the traditional CQL algorithms. In addition, the computational cost to
evaluate CE by the proposed techniques is much smaller than that obtained by traditional
CQL algorithms for the following reasons. Computation of CE in the traditional CQL requires
consulting m Q-tables in joint state-action space for m robots, whereas in the present context,
we use a single Q-table in the joint state-action space for evaluation of CE. Complexity
analysis (both time-and space-complexity) undertaken here confirms the last point. Two
schemes are proposed: one for a loosely-and the other one for a tightly-coupled multi-robot
system. Also, the problem-specific constraints are taken care of in Chapter 4 to avoid
unwanted exploration of the infeasible state-space during the learning phase, thereby saving
additional run-time complexity during the planning phase. Experiments are undertaken to
validate the proposed concepts in simulated and practical multi-agent robotic platform (here
Khepera-environment).
Chapter 5 offers the evolutionary optimization approach to address the multi-robot stick-

carrying problem using the proposed Imperialist Competitive Firefly Algorithm (ICFA).
ICFA is the synergistic fusion of the motion dynamics of a firefly in the Firefly Algorithm
(FA) and the local exploration capabilities of the Imperialist Competitive Algorithm. In ICA,
an evolving colony is not guided by the experience of more powerful colonies within the
same empire. However, in ICFA each colony attempts to contribute to the improvement of its
governing empire by improving its socio-political attributes following the motion dynamics of
a firefly in the FA. To improve the performance of the above mentioned hybrid algorithm
further, the step-size for random movement of each firefly is modulated according to its
relative position in the search space. An inferior solution is driven by the explorative force

xiii

while a qualitative solution should be confined to its local neighborhood in the search space.
The chapter also recommends a novel approach of evaluating the threshold value for uniting
empires without imposing any serious computational overhead on the traditional ICA.
Simulation and experimental results confirm the superiority of the proposed ICFA over the
state-of-art techniques. Chapter 6 concludes the thesis with interesting future research
directions.

Artificial Intelligence Laboratory and
Control Engineering Laboratory
Department of Electronics & Tele-Communication Engineering Arup Kumar Sadhu
Jadavpur University

xiv

Acknowledgement
I am obliged sincere and earnest thankfulness to my supervisor Prof. Amit Konar for his
persistent motivation to struggle for the best of knowledge and to surpass in research, which
is being illustrated across the pages of this thesis. His presence was the massive value-add in
the field of multi-robot planning, reinforcement learning, and evolutionary optimization, and
it has always been a privilege to me to have his guidance throughout.

I also reckon it as a great boon to be backed with support from the present Head of the
Department, Prof. P. Venkateswaran, and the former Head of the Department, Prof. Iti Saha
Misra and Prof. Subir K. Sarkar. It was also a pleasure to express my gratitude to Prof.
Suranjan Das, the Vice-Chancellor, for his valuable inputs. I would also like to thank Council
of Scientific and Industrial Research, India for their financial support.

The realization of this practical work would not have been possible without the whole-
hearted co-operation from fellow researchers and students of our lab for making my stay
enjoyable and memorable. I am grateful to put on record the contribution of Dr. Aruna
Chakraborty, Dr. Sanchita Ghosh, Dr. Anisha Halder, Dr. Sumanantra Chakraborty, Dr.
Pratyusha Rakshit, Dr. Diptendu Bhattacharya, R. Janarthanan, Archana Chowdhury,
Anurada Saha, Reshma Kar, Sriparna Saha, Shreyasi Dutta, Monalisa Pal, Shounak Dutta,
Shounak Roy, Abhishek Ghosh Roy, Pratyusha Das, Rishi Raj Vyas, Snehalika Lall, Rimita
Lahiri, Amiyangshu De, Mousumi Laha, Tanuka Bhattacharjee, Arnab Rakshit, Saugat
Bhattacharyya, Anwesha Khasnobish, Mr. Tarun Kanti Mondal, Mr. Shyamal Chandra Laha
and Mr. Amitava Dey in this regard. I should not forget to mention the name of my friends
Arunava Chatterjee, Shubhrojit Sarkar, and Shoumyojit Ghosh, who always motivated me to
complete my thesis, especially during the difficult time period.

Big thanks to my parents, Mr. Prabhat Kumar Sadhu and Mrs. Purnima Sadhu, for their
constant encouragement, their everlasting support and words of optimism. Without them,
nothing would have been possible. In addition, the unfathomable love, and affection from
Adrita Pal, my siblings Sucheta Sadhu, Mithu Sadhu and brother-in-law Jayanta Pal they
always kept me happy during the difficult period of my research work.

Finally, I thank all the reviewers of my papers, who help me to improve the technical
quality of my paper, my well-wishers who have contributed directly and indirectly towards
the completion of this work and the supreme positive power or “GOD” for everything.

Artificial Intelligence Laboratory and
Control Engineering Laboratory
Department of Electronics & Tele-Communication Engineering Arup Kumar Sadhu
Jadavpur University

xv

Table of Contents
Preface .. vi

Acknowledgement .. xiv

Table of Contents ... xv

List of Figures .. xxi

List of Tables ... xxiv

CHAPTER 1 INTRODUCTION: MULTI-ROBOT COORDINATION BY MACHINE LEARNING AND

EVOLUTIONARY ALGORITHMS ... 1

1.1 INTRODUCTION ... 2

1.2 SINGLE AGENT PLANNING .. 3

1.2.1 Terminologies used in single agent planning .. 4

1.2.2 Single agent search-based planning algorithms ... 9

1.2.2.1 Dijkstra’s algorithm ... 10

1.2.2.2 A* (A-star) Algorithm ... 12

1.2.2.3 D* (D-star) Algorithm .. 14

1.2.2.4 Planning by STRIPS-like language .. 16

1.2.3 Single agent reinforcement learning... 16

1.2.3.1 Multi-Armed Bandit Problem .. 17

1.2.3.2 Dynamic programming and Bellman equation .. 19

1.2.3.3 Correlation between reinforcement learning and Dynamic programming 20

1.2.3.4 Single agent Q-learning ... 20

1.2.3.5 Single agent planning using Q-learning ... 23

1.3 MULTI-AGENT PLANNING AND COORDINATION .. 24

1.3.1 Terminologies related to multi-agent coordination .. 24

1.3.2 Classification of multi-agent system ... 25

1.3.3 Game theory for multi-agent coordination ... 27

1.3.3.1 Nash equilibrium (NE) .. 30

1.3.3.1.1 Pure strategy NE (PSNE) .. 31

1.3.3.1.2 Mixed strategy NE (MSNE)... 33

1.3.3.2 Correlated equilibrium (CE) ... 36

1.3.3.3 Static game examples .. 37

1.3.4 Correlation among RL, DP, and GT.. 39

1.3.5 Classification of MARL .. 39

1.3.5.1 Cooperative multi-agent reinforcement learning .. 41

1.3.5.1.1 Static .. 41

1.3.5.1.1.1 Independent Learner (IL) and Joint Action Learner (JAL) ... 41

xvi

1.3.5.1.1.2 Frequency maximum Q-value (FMQ) heuristic .. 44

1.3.5.1.2 Dynamic ... 46

1.3.5.1.2.1 Team-Q .. 46

1.3.5.1.2.2 Distributed –Q .. 47

1.3.5.1.2.3 Optimal Adaptive Learning .. 50

1.3.5.1.2.4 Sparse cooperative Q-learning (SCQL) ... 52

1.3.5.1.2.5 Sequential Q-learning (SQL) ... 53

1.3.5.1.2.6 Frequency of the maximum reward Q-learning (FMRQ) ... 53

1.3.5.2 Competitive multi-agent reinforcement learning .. 55

1.3.5.2.1 Minimax-Q Learning .. 55

1.3.5.2.2 Heuristically–accelerated multi-agent reinforcement learning ... 56

1.3.5.3 Mixed multi-agent reinforcement learning ... 57

1.3.5.3.1 Static .. 57

1.3.5.3.1.1 Belief-based Learning rule ... 57

1.3.5.3.1.1.1 Fictitious play ... 57

1.3.5.3.1.1.2 Meta strategy ... 58

1.3.5.3.1.1.3 Adapt When Everybody is Stationary, Otherwise Move to Equilibrium (AWESOME)

 .. 60

1.3.5.3.1.1.4 Hyper-Q .. 62

1.3.5.3.1.2 Direct policy search based ... 63

1.3.5.3.1.2.1 Fixed learning rate ... 63

1.3.5.3.1.2.1.1 Infinitesimal Gradient Ascent (IGA) .. 63

1.3.5.3.1.2.1.2 Generalized Infinitesimal Gradient Ascent (GIGA) ... 65

1.3.5.3.1.2.2 Variable learning rate ... 66

1.3.5.3.1.2.2.1 Win or Learn Fast-IGA (WoLF-IGA) ... 66

1.3.5.3.1.2.2.2 GIGA-Win or Learn Fast (GIGA-WoLF) .. 66

1.3.5.3.2 Dynamic ... 67

1.3.5.3.2.1 Equilibrium dependent .. 67

1.3.5.3.2.1.1 Nash-Q Learning ... 67

1.3.5.3.2.1.2 Correlated-Q Learning (CQL) .. 68

1.3.5.3.2.1.3 Asymmetric-Q Learning (AQL) .. 68

1.3.5.3.2.1.4 Friend-or-Foe Q-learning ... 70

1.3.5.3.2.1.5 Negotiation-based Q-learning .. 71

1.3.5.3.2.1.6 MAQL with equilibrium transfer .. 74

1.3.5.3.2.2 Equilibrium independent ... 76

1.3.5.3.2.2.1 Variable learning rate ... 76

xvii

1.3.5.3.2.2.1.1 Win or Learn Fast Policy hill-climbing (WoLF-PHC) .. 76

1.3.5.3.2.2.1.2 Policy Dynamic based Win or Learn Fast (PD-WoLF) 78

1.3.5.3.2.2.2 Fixed learning rate ... 78

1.3.5.3.2.2.2.1 Non-Stationary Converging Policies (NSCP) ... 78

1.3.5.3.2.2.2.2 Extended Optimal Response Learning (EXORL) .. 79

1.3.6 Coordination and planning by MAQL .. 80

1.3.7 Performance analysis of MAQL and MAQL-based coordination ... 81

1.4 COORDINATION BY OPTIMIZATION ALGORITHM ... 83

1.4.1 Particle Swarm Optimization (PSO) Algorithm.. 84

1.4.2 Firefly Algorithm (FA) .. 87

1.4.2.1 Initialization ... 87

1.4.2.2 Attraction to Brighter Fireflies ... 87

1.4.2.3 Movement of Fireflies ... 88

1.4.3 Imperialist Competitive Algorithm (ICA) ... 89

1.4.3.1 Initialization ... 89

1.4.3.2 Selection of Imperialists and Colonies ... 89

1.4.3.3 Formation of Empires .. 89

1.4.3.4 Assimilation of Colonies .. 90

1.4.3.5 Revolution ... 91

1.4.3.6 Imperialistic Competition .. 91

1.4.3.6.1 Total Empire Power Evaluation.. 91

1.4.3.6.2 Reassignment of Colonies and Removal of Empire ... 92

1.4.3.6.3 Union of Empires ... 92

1.4.4 Differential evolutionary (DE) algorithm ... 93

1.4.4.1 Initialization ... 93

1.4.4.2 Mutation .. 93

1.4.4.3 Recombination .. 93

1.4.4.4 Selection .. 93

1.4.5 Offline optimization .. 94

1.4.6 Performance analysis of optimization algorithms .. 94

1.4.6.1 Friedman test .. 94

1.4.6.2 Iman–Davenport test ... 95

1.5 SCOPE OF THE THESIS ... 95

1.6 SUMMARY ... 98

References ... 98

xviii

CHAPTER 2 IMPROVING SPEED OF CONVERGENCE OF MULTI-AGENT Q-LEARNING FOR

COOPERATIVE TASK-PLANNING BY A ROBOT-TEAM .. 107

2.1 INTRODUCTION ... 108

2.2 LITERATURE REVIEW ... 112

2.3 PRELIMINARIES ... 114

2.3.1 Single agent Q-learning .. 114

2.3.2 Multi-agent Q-learning ... 115

2.4 PROPOSED MULTI-AGENT Q-LEARNING .. 118

2.4.1 Two useful properties.. 119

2.5 PROPOSED FCMQL ALGORITHMS AND THEIR CONVERGENCE ANALYSIS .. 120

2.5.1 Proposed FCMQL algorithms .. 120

2.5.2 Convergence analysis of the proposed FCMQL algorithms ... 121

2.6 FCMQL-BASED COOPERATIVE MULTI-AGENT PLANNING ... 122

2.7 EXPERIMENTS AND RESULTS ... 123

2.8 CONCLUSIONS .. 130

2.9 SUMMARY ... 131

2.10 APPENDIX 2.1 .. 131

2.11 APPENDIX 2.2 .. 135

References ... 152

CHAPTER 3 MULTI-ROBOT COOPERATIVE PLANNING BY CONSENSUS Q-LEARNING 157

3.1 INTRODUCTION ... 158

3.2 PRELIMINARIES ... 159

3.2.1 Single agent Q-learning .. 159

3.2.2 Equilibrium-based multi-agent Q-learning ... 160

3.3 CONSENSUS ... 161

3.4 PROPOSED CONSENSUS Q-LEARNING AND PLANNING .. 162

3.4.1 Consensus Q-learning ... 162

3.4.2 Consensus-based multi-robot planning .. 164

3.5 EXPERIMENTS AND RESULTS .. 165

3.5.1 Experimental setup ... 165

3.5.2 Experiments for CoQL.. 165

3.5.3 Experiments for consensus-based planning .. 166

3.6 CONCLUSIONS .. 168

3.7 SUMMARY ... 168

References ... 168

xix

CHAPTER 4 AN EFFICIENT COMPUTING OF CORRELATED EQUILIBRIUM FOR COOPERATIVE Q-

LEARNING BASED MULTI-ROBOT PLANNING .. 171

4.1 INTRODUCTION ... 172

4.2 SINGLE-AGENT Q-LEARNING AND EQUILIBRIUM BASED MAQL ... 175

4.2.1 Single Agent Q learning .. 175

4.2.2 Equilibrium based MAQL ... 175

4.3 PROPOSED COOPERATIVE MULTI-AGENT Q-LEARNING AND PLANNING ... 176

4.3.1 Proposed schemes with their applicability ... 176

4.3.2 Immediate rewards in Scheme-I and -II .. 177

4.3.3 Scheme-I induced MAQL .. 178

4.3.4 Scheme-II induced MAQL .. 180

4.3.5 Algorithms for scheme-I and II .. 182
4.3.6 Constraint QL-I/ QL-II(CΩQL-I/CΩQL-II)  ... 183

4.3.7 Convergence ... 183

4.3.8 Multi-agent planning .. 185

4.4 COMPLEXITY ANALYSIS ... 186

4.4.1 Complexity of Correlated Q-Learning .. 187

4.4.1.1 Space Complexity .. 187

4.4.1.2 Time Complexity .. 187

4.4.2 Complexity of the proposed algorithms .. 188

4.4.2.1 Space Complexity .. 188

4.4.2.2 Time Complexity .. 188

4.4.3 Complexity comparison ... 189

4.4.3.1 Space complexity ... 190

4.4.3.2 Time complexity .. 190

4.5 SIMULATION AND EXPERIMENTAL RESULTS .. 191

4.5.1 Experimental platform .. 191

4.5.1.1 Simulation .. 191

4.5.1.2 Hardware ... 192

4.5.2 Experimental approach ... 192

4.5.2.1 Learning phase .. 193

4.5.2.2 Planning phase .. 193

4.5.3 Experimental results ... 194

4.6 CONCLUSION .. 201

4.7 SUMMARY ... 202

4.8 APPENDIX .. 203

xx

References ... 209

CHAPTER 5 A MODIFIED IMPERIALIST COMPETITIVE ALGORITHM FOR MULTI-ROBOT STICK-

CARRYING APPLICATION .. 213

5.1 INTRODUCTION ... 214

5.2 PROBLEM FORMULATION FOR MULTI-ROBOT STICK-CARRYING .. 219

5.3 PROPOSED HYBRID ALGORITHM ... 222

5.3.1 An Overview of Imperialist Competitive Algorithm (ICA) .. 222

5.3.1.1 Initialization ... 222

5.3.1.2 Selection of Imperialists and Colonies ... 223

5.3.1.3 Formation of Empires .. 223

5.3.1.4 Assimilation of Colonies .. 223

5.3.1.5 Revolution ... 224

5.3.1.6 Imperialistic Competition .. 224

5.3.1.6.1 Total Empire Power Evaluation.. 225

5.3.1.6.2 Reassignment of Colonies and Removal of Empire ... 225

5.3.1.6.3 Union of Empires ... 226

5.4 AN OVERVIEW OF FIREFLY ALGORITHM (FA) .. 226

5.4.1 Initialization .. 226

5.4.2 Attraction to Brighter Fireflies .. 226

5.4.3 Movement of Fireflies ... 227

5.5 PROPOSED IMPERIALIST COMPETITIVE FIREFLY ALGORITHM ... 227

5.5.1 Assimilation of Colonies .. 229

5.5.1.1 Attraction to Powerful Colonies .. 230

5.5.1.2 Modification of Empire Behavior ... 230

5.5.1.3 Union of Empires ... 230

5.6 SIMULATION RESULTS .. 232

5.6.1 Comparative Framework .. 232

5.6.2 Parameter Settings ... 232

5.6.3 Analysis on Explorative Power of ICFA .. 232

5.6.4 Comparison of Quality of the Final Solution ... 233

5.6.5 Performance Analysis.. 233

5.7 COMPUTER SIMULATION AND EXPERIMENT .. 240

5.7.1 Average total path deviation (ATPD) .. 240

5.7.2 Average Uncovered Target Distance (AUTD) .. 241

5.7.3 Experimental Setup in Simulation Environment .. 241

5.7.4 Experimental Results in Simulation Environment ... 242

xxi

5.7.5 Experimental Setup with Khepera Robots ... 244

5.7.6 Experimental Results with Khepera Robots .. 244

5.8 CONCLUSION .. 245

5.9 SUMMARY ... 247

5.10 APPENDIX 5.1 .. 248

References ... 249

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS .. 255

6.1 CONCLUSIONS .. 256

6.2 FUTURE DIRECTIONS ... 257

 List of Figures
Fig. 1.1 Single agent system .. 4

Fig. 1.2 Three discrete states in an environment ... 4

Fig. 1.3 Robot executing action Right (R) at state s1 and moves to the next state s2 5

Fig. 1.4 Deterministic state-transition ... 6

Fig. 1.5 Stochastic state-transition... 6

Fig. 1.6 Two dimensional 5×5 grid environment .. 7

Fig. 1.7 Refinement approach in robotics ... 8

Fig. 1.8 Hierarchical tree ... 9

Fig. 1.9 Hierarchical model ... 9

Fig. 1.10 Two dimensional 3×3 grid environment .. 11

Fig. 1.11 Corresponding graph of Fig. 1.10 .. 11

Fig. 1.12 Two dimensional 3×3 grid environment with an obstacle 14

Fig. 1.13 Structure of reinforcement learning ... 17

Fig. 1.14 variation of average reward with the number of trial for different  in 10-Armed

Bandit Problem .. 19

Fig. 1.15 Correlation between the RL and DP .. 20

Fig. 1.16 Single agent Q-learning ... 21

Fig. 1.17 Possible next state in stochastic situation ... 22

Fig. 1.18 Single agent planning ... 24

Fig. 1.19 Multi-agent system with m agents .. 24

Fig. 1.20 Robots executing joint action <R, L> at joint state <1, 8> and move to the next state
<4, 5> .. 25

Fig. 1.21 Classification of multi-robot systems ... 26

Fig. 1.22 Hands gestures in rock-paper-scissor game ... 29

Fig. 1.23 rock-paper-scissor game ... 29

xxii

Fig. 1.24 Reward mapping from joint Q-table to reward matrix ... 31

Fig. 1.25 Pure strategy Nash equilibrium evaluation .. 32

Fig. 1.26 Evaluation of mixed strategy Nash equilibrium ... 34

Fig. 1.27 reward matrix for tennis game ... 35

Fig. 1.28 Reward matrix of in a common reward two-agent static game 35

Fig. 1.29 Pure strategy Egalitarian equilibrium, which is one variant of CE 36

Fig. 1.30 Game of Chicken.. 37

Fig. 1.31 Reward matrix in Game of Chicken ... 37

Fig. 1.32 Constant-sum-game.. 38

Fig. 1.33 matching pennies .. 38

Fig. 1.34 Reward matrix in Prisoner’s Dilemma Game .. 39

Fig. 1.35 Correlation among the MARL, DP, and GT .. 39

Fig. 1.36 Classification of multi-agent reinforcement learning ... 40

Fig. 1.37 The climbing game reward matrix ... 44

Fig. 1.38 The penalty game reward matrix .. 45

Fig. 1.39 The penalty game reward matrix .. 45

Fig. 1.40 Individual Q-values obtained in the climbing game reward matrix by Distributed Q-
learning .. 49

Fig. 1.41 The penalty game reward matrix .. 49

Fig. 1.42 Individual Q-values obtained in the penalty game reward matrix by Distributed Q-
learning .. 49

Fig. 1.43 Reward matrix of a three player coordination game .. 50

Fig. 1.44 reward matrix in a two-player two-agent game ... 64

Fig. 1.45 Nonstrict EDNP in Normal-form game ... 73

Fig. 1.46 multistep negotiation process between agent A and B ... 74

Fig. 1.47 Multi-robot coordination for the well-known stick-carrying problem 81

Fig. 1.48 Multi-robot local planning by swarm/evolutionary algorithm 84

Fig. 1.49 Surface plot of (1.97) ... 86

Fig. 1.50 Surface plot of (1.98) ... 86

Fig. 1.51 Steps of Differential evolutionary (DE) algorithm .. 93

Fig. 2.1 Block diagram of reinforcement leaning (RL) ... 114

Fig. 2.2 Experimental workspace for two agents during the learning phase 123

Fig. 2.3 Convergence plot of NQLP12 and reference algorithms for two agents 126

Fig. 2.4 Average of average reward (AAR) plot of NQLP12 and reference algorithms for two
agents ... 126

Fig. 2.5 Joint action selection strategy in EQLP12 and reference algorithms for two agents 127

xxiii

Fig. 2.6 Cooperative path planning to carry a triangle by three robots in deterministic situation
 ... 127

Fig. 2.7 Cooperative path planning to carry a stick by two Khepera-II mobile robots using
NQIMP algorithm (bigger dimension in Fig. A2. 2.15 [64]) .. 129

Fig. 2.8 Cooperative path planning to carry a stick by two Khepera-II mobile robots using
Algorithm 3 ... 129

Fig. 3.1 Equilibrium selection in multi-agent system .. 163

Fig. 3.2 AAR versus learning epoch for two agent system ... 166

Fig. 3.3 AAR versus learning epoch for three agent system ... 166

Fig. 3.4 planning path offered by the consensus-based multi-agent planning algorithm 167

Fig. 3.5 planning path offered by the Nash Q- learning based planning algorithm............... 167

Fig. 4.1 Corner cell, boundary cell and other cell ... 189

Fig. 4.2 Feasible joint states for two agent systems in stick-carrying problem 189

Fig. 5.1 Diagram illustrating the calculation of d .. 221

Fig. 5.2 Evolution of the expected population variance .. 233

Fig. 5.3 Relative performance in mean best objective function versus function evaluation for
f05 with Max_FEs=500000 ... 236

Fig. 5.4 Relative performance in mean best objective function versus function evaluation for
f17 with Max_FEs=300000 ... 236

Fig. 5.5 Relative performance in mean best objective function versus function evaluation for
f07 with Max_FEs=100000 ... 236

Fig. 5.6 Relative performance in mean best objective function versus function evaluation for
f20 with Max_FEs=500000 ... 237

Fig. 5.7 Relative performance in accuracy versus function evaluation for ICFA over other
competitive algorithms for f25 with Max_FEs=5×106 .. 238

Fig. 5.8 Variation of FEs required for convergence to predefined threshold accuracy (1.00e–
08) with increase in search space dimensionality for f04 and f11 ... 239

Fig. 5.9 Graphical representation of Bonferroni-Dunn’s procedure considering ICFA as
control method ... 240

Fig. 5.10 Initial (a) and final configuration of the world-map after execution of the (b) ICFA-
(c) ICA-DE- (d) ICAAI- (e) FA- and (f) ICA-based simulations with 5 obstacles requiring 23,
29, 32 and 34 steps respectively .. 242

Fig. 5.11 Average total path traversed versus number of obstacles 243

Fig. 5.12 Average total path deviation versus number of obstacles 243

Fig. 5.13 Average uncovered target distance vs. number of steps with number of obstacles= 5
(constant) ... 243

xxiv

Fig. 5.14 Final configuration of the world-map after experiment using Khepera-II mobile
robots ... 245

List of Tables
Table 1.1 Trace of Dijkstra’s algorithm for Fig. 1.11 ... 12

Table 1.2 Trace of A* algorithm from Fig. 1.10 .. 13

Table 1.3 Trace of D* algorithm from Fig. 1.12 ... 15

Table 1.4 Expected reward of R1 and R2 at MSNE .. 33

Table 2.1 List of acronyms .. 108

Table 2.2 Details of 10×10 grid maps ... 124

Table 2.3 Run-time complexity of Algorithm 2.3 over reference algorithms in deterministic
situation ... 128

Table 2.4 Run-time complexity of Algorithm 2.3 over reference algorithms in stochastic
situation ... 128

Table 2.5 Time taken by Khepera-II mobile robots to reach a team-goal with different speeds
in Algorithm 2.3 .. 130

Table 3.1 List of acronyms .. 158

Table 3.2 Planning performance .. 167

Table 4.3 Average run-time complexity of different planning algorithms (second) 201

Table 5.1 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER

ALGORITHMS BASED ON SOLUTION QUALITY FOR f01 TO f25 .. 234

Table 5.2 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER

ALGORITHMS BASED ON CONVERGENCE TIME IN SECONDS FOR f01 TO f25 235

Table 5.3 AVERAGE RANKINGS OBTAINED THROUGH FRIEDMAN’S TEST 240

Table 5.4 COMPARISON OF NUMBER OF STEPS, AVERAGE PATH TRAVERSED AND AVERAGE

TOTAL PATH DEVIATION BY THE KHEPERA ROBOTS ... 244

Chapter 1
Introduction: Multi-Robot Coordination by
Machine Learning and Evolutionary Algorithms

This chapter provides an introduction to the multi-robot coordination by reinforcement
learning and evolutionary algorithms. A robot (agent) is an intelligent programmable
manipulator capable of performing complex tasks and decision-making like the human
beings. Mobility is part and parcel of modern robots. Mobile robots employ sensing-action
cycles to sense the world around them with an aim to plan their journey to the desired
destination. Coordination is an important issue in modern robotics. In recent times,
researchers are taking keen interest to synthesize multi-agent-coordination in complex real-
world problems, including transportation of a box/stick, formation control for defense
applications and soccer playing by multiple robots by utilizing the principles of reinforcement
learning, theory of games, dynamic programming, and/or evolutionary optimization
algorithms. This chapter provides a thorough survey of the exiting literature of reinforcement
learning with a brief overview of evolutionary optimization to examine the role of the
algorithms in the context of multi-agent coordination. The study includes the classification of
multi-agent coordination based on different criterion, such as, the level of cooperation,
knowledge sharing, communication, and the like. The chapter also includes multi-robot
coordination employing evolutionary optimization, and specially reinforcement learning for
cooperative, competitive, and their composition for application to static and dynamic games.
The later part of the chapter deals with an overview of the metrics used to compare the
performance of the algorithms in coordination. Two fundamental metrics of performance
analysis are defined, where the first one is required to study the learning performance, while
the other to measure the performance of the planning algorithm. Conclusions are listed at the
end of the chapter with possible explorations for the future real-time applications.

2

1.1 Introduction
A robot is an intelligent and programmable manipulator, targeted at developing the
functionality similar to those of a living creature [1]. It can serve complex and/or repetitive
tasks efficiently. Based on the ability of locomotion, robots are categorized into two basic
types: fixed base robots and mobile robots. Depending upon the type of locomotion, mobile
robots are categorized into three types: wheeled/legged robots, winged/flying robots,
underwater robots, where for the last one, locomotion is controlled by water thrust. In this
chapter, we would deal with wheeled robots only.

Agency is a commonly used jargon in modern robotics [1]. An agent is a piece of
program/hardware that helps a robot to serve a directed goal. Like humans, when complexity
of the problem grows, collective intelligence of the agents is required to achieve the target.
The thesis is on collective/group behavior of agents, who can sense and act rationally. On
occasions, agents can share the sensory information or its decision with its teammates directly
through a communication network or by displaying its gestural/postural patterns, carrying a
specific signature, to communicate a message to its team members.

Communication is a vital issue to generate plans by the agents. However, communication is
time-costly and thus is often disregarded for real world robotic applications. In the present
thesis, we attempted to learn the agent behavioral patterns by a process of learning, and thus
avoid communication overhead in real-time planning [1].

There exists quite a vast literature on planning algorithms [2]-[30]. One of the early robot
planning algorithms is due to Nilsson in connection with his research on reasoning based
planning undertaken in Stanford AI research laboratory, which later was adopted in STRIPs
[31]-[33]. In late 1980s to early 1990’s several planning algorithms, including A* [32], [33]
Voronoi diagrams [34], Quad tree, and potential field [35] were evolved. These algorithms
presume static world. At the beginning of 1990’s Michalewicz in one of his renowned papers
introduced genetic operators to undertake dynamic planning with local adaptation in trial
solutions by specialized mutation operators. The period: 1990-2000 has seen significant
changes in the planning algorithm with the introduction of supervised/unsupervised neural
learning in planning algorithms [33]. The neural algorithms worked in both static and
dynamic environments. Typically, in dynamic environments they predict the direction and
speed of motion to determine possible avoidance of collisions. However, they had limited
learned experience, and thus were unable to handle planning in presence of random motions
of dynamic obstacles/persons in the environment. Almost at the beginning of the first quarter
of 1990’s, Sutton proposed reinforcement learning (RL) algorithm [36], which can help the
robot learn its environment through semi-supervised learning. We would deal with multi-
agent RL (MARL) in this chapter.

3

Planning and coordination are two closely used terms in multi-agent robotics [31]. While
planning is concerned with determining the sequence of steps to achieve a goal, coordination
refers to skilful interaction among the agents to serve their individual short-run/long-run
purposes. Apparently, coordination among the agents is required to implement the steps of
planning. In centralized planning, the agents need not require coordination, as the central
manager takes care of all the agents’ states as if its own state and generate a planning cycle by
taking care of all the agents’ states and goals jointly. Unfortunately, centralized planning is
very slow and single point failure may occur. Thus centralized planning is not amenable for
real-time applications, when the number of agents is excessive. In distributed planning, each
agent generates one step of planning by coordinating with other active agents.

Coordination is broadly divided into two types: cooperation and competition [37]. As the
names indicate, cooperation requires agents to work hand-in-hand to purposefully serve the
common objective of the team. Competition, on the other hand, leads to the success of one
team against the failure of its opponent. For instance, in robot soccer, teammates work
harmoniously in a cooperative manner, while each team of agents competes for winning at the
cost of defeat of the other team.

Researchers are taking keen interest to model agent cooperation/competition by various
models/tools. A few of these that need special mention include RL, theory of games (GT)
[38]-[44], [84] dynamic programming (DP) [45], [46], evolutionary optimization (EO) [47]-
[55], and many others [16]-[30], [56]-[58]. In RL, agents learn the most profitable joint action
at each joint state through a feedback from the environment, and use them for subsequent
planning applications [36]. GT requires for strategic analysis in multi-agent domain. In GT,
agents evaluate the equilibrium, representative of the most-profitable joint action for the team
in a joint state, and execute the joint action for joint state-transition in a loop until the joint
goal is explored [38], [41]-[43], [59]. In DP [45], a complex problem is divided into finite
overlapping sub problems. Each sub problem is solved by a DP algorithm and the solution is
stored in a database. In the subsequent iterations, if a sub problem already addressed
reappears, then that sub problem is not readdressed, but its solution is exploited from the
database. In EO algorithm [60]-[70] the constraint to satisfy the cooperation is checked on the
members of the trial solutions before the solutions are entertained for the next generation.
Recently, researchers aimed at developing multi-agent RL (MARL) fusing RL, DP, and GT
[71], [72]. In this thesis, we would explore new algorithms of MARL and novel EO.

1.2 Single agent planning
In single agent planning [5], an agent searches for the sequence of actions, for which it
reaches its predefined goal state from a given state optimally in terms of predefined
performance metric. The section describes the single agent planning terminologies and

4

algorithms. Here single agent planning algorithm includes search-based and learning-based
planning algorithms.

1.2.1 Terminologies used in single agent planning
Definition 1.1: An agent [1] is a mathematical entity that acts on its environment and senses
the changes in the environment due to its action. The agent is realized by hardware/software
means. A hardwired agent has an actuator (motors/levers) and a sensor to serve the purpose of
actuation and sensing respectively.

A learning agent learns its right action at a given location/grid, called state, from its
sensory-action doublets. A planning agent identifies its best action at its current state to obtain
maximum reward for its action in the given environment.

In a single agent system, the environment includes a single agent. Naturally, the
learning/planning steps/moves of the agent is undisturbed by the environment. Fig. 1.1 offers
architecture of a single agent system.

Environment

Actuation

Agent 1

Fig. 1.1 Single agent system

Definition 1.2: The state of an agent represents a situation of the agent, concerning the
position and/or orientation of the agent in the environment at an instant.

A state-space is a collective set of states of an agent. The definition of the state-space is
required a priori, to address a planning problem. Such description of the state-space is
problem specific. The state-space may be discrete or continuous. We in this thesis, however,
deal with discrete state-space. Fig. 1.2 illustrates three discrete states (s1, s2, and s3) of an
environment.

s1 s2 s3

Fig. 1.2 Three discrete states in an environment

Definition 1.3: The action selection by an agent is done randomly or using specific strategies,
such as ε-greedy strategy [36] or the Boltzmann strategy [73]. Random action selection

5

sometimes is inefficient, when the same action is selected repeatedly during the learning
phase.

The   greedy strategy [36] allows an agent to select random actions from a pool with a
probability . For example, if 0.2,  then the agent would select 20 actions randomly and

80 greedy actions out of 100 trials from a pool of actions.
Unlike the above, the Boltzmann strategy [73] employs a probability distribution based on

the reward function value obtained for individual actions. Usually, an exponential distribution
is used to determine the probability of an action in a pool of actions. The larger is the
individual reward, the higher is the action selection probability. One control parameter
temperature is used to tune the action selection probabilities.

1

2

3

4

5

6

7

8

9

B

RL

L=Left move
F=Forward move
R=Right move
B=Back move

Robot
R

F

Fig. 1.3 Robot executing action Right (R) at state s1 and moves to the next state s2

In Fig. 1.3, we consider one agent capable of state-transitions using only four actions: Left-
move (L), Forward-move (F), Right-move (R) and Back-move (B).
Definition 1.4: A state-transition [36] function at state { }s s due to action { }a a is a

mapping from (,)s a to / { },s s where /s be a next state, i.e.
/ (,).s s a (1.1)

In deterministic system, for each pair of (,)s a we have a fixed / .s In non-deterministic (or

stochastic) situation, for each pair of (,)s a we may have different / .s Traditionally, non-

determinism is handled in an easier way by assigning a probability mass for each state–
transition (,),s a such that sum of the state-transition probabilities is equal to one.

 Non-determinism creeps into the system by various ways. For instance, in robot planning
application, the condition of floor, such as its “slippery condition” is a guiding factor to
determine the transition probabilities.

6

Suppose, in Fig. 1.4, a robot executes an action a at state s and moves to the next state
/ ,s receiving an immediate reward (,)r s a as a feedback from the environment. Suppose the

floor on which the robot moves on is slippery. In that case, from a state s because of an
action a the robot can have more than one state transition, each with a state-transition
probability of /(| (,)),P s s a /

1 2 3[, ,],s s s s where,

/

/(| (,)) 1
s

P s s a


 (1.2)

as shown in Fig. 1.5 . For each state-transition agent receives an individual immediate reward
(,)r s a with its corresponding state-transition probability.

a
(,)r s a

Fig. 1.4 Deterministic state-transition

a

(,)r s a

(,)r s a

(,)r s a

/
1 2 3

/

{ , , }
(| (,)) 1

s s s s
P s s a




3(| (,))P s s a

2(| (,))P s s a

1(| (,))P s s a

Fig. 1.5 Stochastic state-transition

Definition 1.5: A policy [36]  is a decision making mapping function, representing the
probability assignment to a set of actions { }a at a given state { }s s such that,

(,) 1, i.e.,
a

s a




: { } [0,1],s a   (1.3)
subject to (,) 1.

a
s a


 (1.4)

holds for each state .s

7

In Fig. 1.3, at state 1s there is a set of finite possible actions: L, F, R and B. Now, random
selection of an action from this finite set infinite times results in a policy,

(1,) 0.25, { , , , }.s a a L F R B  

In a planning problem, an agent starts by executing its individual action from a predefined
state (starting state) with an aim to reach its individual predefined absorbing state (goal state),
optimally in terms of time, path length, energy, and the like. Feasibility and optimality are
two desired criterions need to be satisfied while addressing the planning problem [31].
Definition 1.6: Feasibility refers to the locomotion of an agent to a feasible next state because
of an action form the current state.
Definition 1.7: Optimality indicates the performance optimization of the planning algorithm
in each step, by minimizing the system resource utilization.
Definition 1.8: The sequence of actions lead to the predefined goal state from a given starting
state maintaining the feasibility and optimality jointly in each step is well-known as plan.

To understand the concept of planning, Example 1.1 is given to realize the movement of a
single agent (here robot) in a two dimensional discrete environment.
Example 1.1: Suppose a robot moves in a two dimensional 5×5 grid environment as shown in

Y

1

2

9

3

4

5

6

7

8

10

11

12 17

13

14

15

16

18

19

20

21

22

23

24

25

1 2 3 4 5

1

2

3

4

5

X

B

RL

L=Left
F=Forward
R=Right
B=Back

S0

SG

Robot

Fig. 1.6 Two dimensional 5×5 grid environment

Fig. 1.6. There are 25 states and each state is represented by an integer or the Cartesian
coordinate (x, y), where [1,5]x and [1,5].y An agent can execute one among the four
possible actions { , , , }a L F R B at a state [1,25].s After executing an action a at a state s

8

a state-transition takes place and the robot moves from s to the next state / [1,25]s  by

(1.1). The collection of state transitions for which the robot moves from its current state ‘1’ to
the goal state ‘25’ is called a feasible path. Among the feasible paths the optimal one is
chosen. One optimal path (here in terms of number of state transitions) is shown in Fig 1.6 by
doted lines. The example can be made more interesting by adding obstacles in the optimal
path.

After finalizing a plan (sequence of actions) by an agent, the agent follows the plan either
by execution, refinement, or hierarchical approach.
Execution: In the execution phase, planner’s plan is executed in a simulator or by a robot
connected to the real environment. There are two types of robots for execution. In the first
type, the robot is programmable and acts as an autonomous agent. This approach has the
provision of updating the plans after finite time interval. However, most planning algorithms
are designed to tackle new situations during the planning phase and hence, the above type of
execution is not preferred. The second one is the special-purpose robot designed to solve a
specific task given to it.
Refinement: Refinement is the evolution of the planning algorithms towards the better
performance as shown in Fig. 1.7. In Fig. 1.7, agents first compute a collision-free path in
presence of obstacles after that agents optimize (smoothen) the path. Finally, a trajectory is
planned following the path and a feedback controller is added for that.

Fig. 1.7 Refinement approach in robotics

Hierarchical: In hierarchical model, each plan is considered as an action under a larger plan.
The same plan may also be defined as a subroutine under the larger plan. In Fig. 1.8, the
master plan is known as the root node. Remaining subsequent plans act as an action for the
master plan or plan. There may be infinite number of plans under a master plan or plan. In
Fig. 1.8, n, m, and p are the real positive integer number. In Fig. 1.9 (hierarchical model),
agent 1 interacts with environment 1 and agent 2 with environment 2. Again in Fig. 1.9,

9

environment 2 includes agent 1 and environment 1. So, Agent 2 interacts with the
environment 2 as well as 1.

Fig. 1.8 Hierarchical tree

Fig. 1.9 Hierarchical model

The search-based planning algorithms are employed to evaluate low cost planning paths in
terms of path length, time, energy and the like, for single-robot planning. The search-based
planning algorithms are popular mainly because of their simplicity. The search-based
algorithm compromises of the following two parts:

1) In the first part, the realization of the goal following a number of feasible plans is done
by employing a search algorithm.
2) The second part is related to the optimal planning, which employs principle of optimality
to reduce the computational effort in the planning algorithms.

The search-based planning algorithms avoid the geometric models or differential equations.
The search based algorithms also avoids uncertainty and hence it avoids complications due to
probability calculation.

1.2.2 Single agent search-based planning algorithms
By search-based planning algorithms a plan (or sequence of feasible actions) is searched by
one of the following methods: forward search, backward search, and bidirectional search [31].

10

Forward search algorithm deals with the three variant of states. First one is the state which has
not been visited yet or the unexplored one is known as unvisited state. If all possible state-
transitions are explored in a given state, then the state is referred to as a dead state. The state
which has been visited but still there exist a few unexplored next state is defined as alive
state. Breadth first [31], Depth first [31], Dijkstra’s [74], Best first search [31], Iterative
deepening [31], A-star (A*) [33], D-star (D*) [6] are the examples of forward search
algorithms. The above forward search algorithms are extendable to the backward search
algorithm, by solving the same planning problem by traversing from the goal state to the
starting state. The bidirectional search is the combination of forward and backward search. In
every search-based planning algorithm, a tree is maintained. For the forward (backward)
search initial (goal) state is the root node of the tree. The advantage of bidirectional search is
the radical reduction in the exploration required. In this chapter, only the Dijkstra’s, A* and
D* and STRIPS like algorithms are discussed as given below.

1.2.2.1 Dijkstra’s algorithm

Dijkstra’s algorithm was proposed by computer scientist Edsger W. Dijkstra’s in [74].
Dijkstra’s algorithm is employed to find out the shortest path between two nodes in a graph.
In case of robotics, each state is represented by a node of the graph. The starting state is
denoted by the source node and instead of finding the shortest path from the source node to all
other nodes, shortest path is obtained from the source node to a specific goal node (goal state
of the robot).

Algorithm 1.1 Dijkstra’s algorithm

Input: Mark all the unvisited nodes and the current node is set as the source node;
Generate a search graph G, including the starting node x. Mark node x as an open;
Output: The optimal path;
Begin
Initialize: Set a distance value to all the nodes in the graph. Set zero for the source node (here state
1) and ∞ for the remaining nodes;
 Repeat
 1. From the current node, explore all the unvisited neighbors and evaluate their distances from
 the initial node. (For example, let the current node, x has a distance of 3 unit from the source
 node, and an edge connecting x with another node y has distance of 2. Now, the distance to y
 through x from the source node becomes 3+2=5. Compare the currently evaluated distance
 with the previously recorded distance (∞ at the beginning). If the currently evaluated distance
 is less than previously recorded distance, then update the database by the currently evaluated
 distance, otherwise do nothing.
 2. Once all the neighbors of the current node have been explored, the current node is marked as
 visited (not checked further), and the evaluated distances are recoded as the final and minimal
 distances.
 3. Select one unvisited node with smallest distance as the next current node;
 Until goal state reached;
End.

11

Fig. 1.10 Two dimensional 3×3 grid environment

The Dijkstra’s algorithm is explained for the 3×3 grid shown in Fig. 1.10. In Fig. 1.10, there
are nine states (nodes). State 1 is the source node and state 9 is the goal node. From each node
there are maximum four possible paths as shown in the graph (Fig. 1.11). Weights of all the
edges are 1, ∞ and -1. 1 is assigned for a feasible edge. The self-loop and/or collision between
robot and the boundary in Fig. 1.11 signify the penalty with reward of -1. ∞ is assigned for an
invalid edge. The steps of Dijkstra’s algorithm are given in Algorithm 1.1.

Fig. 1.11 Corresponding graph of Fig. 1.10

The trace of the Dijkstra’s algorithm for robot path planning is given in Table 1.1. The bold
numbers are the selected node corresponding to the column's node from the current node. The
run-time complexity of the Dijkstra’s algorithm is (| | log | | | |).O V V E Where | |V and
| |E are the number of edges and nodes respectively.

12

Table 1.1 Trace of Dijkstra’s algorithm for Fig. 1.11

 Nodes →

1 2 3 4 5 6 7 8 9

V
is

ite
d

←

no
de

s

{1} -1 1 ∞ 1 ∞ ∞
∞ ∞ ∞

{1,2} 1 -1 2 2 2 ∞
∞ ∞ ∞

{1,2,3} 2 1 -1 3 2 3
∞ ∞ ∞

{1,2,3,6} 3 2 1 4 3 -1 5 6 4

1.2.2.2 A* (A-star) Algorithm

A* is a heuristic search-based algorithm [33]. In A* algorithm, the quality of a node is
measured by introducing two cost functions: one is heuristic cost and another is the
generation cost. The heuristic cost, denoted by h(x) is a measure of distance (here city block
distance) between the current node x to the goal node. The generation cost of a node x
denoted by g(x), measures the distance of node x from the source node. Total cost function at
node x is the summation of f(x) and g(x). The following definitions are required before
explaining the A* algorithm [33].
Definition 1.9: A node x is called open if the node x has been generated and the heuristic cost
h(x) has been computed over it but it has not been expanded yet.
Definition 1.10: A node x is called closed if it has been expanded for generating offspring.
The steps of A* algorithm is given Algorithm 1.2. Example 1.2 is given for better
understanding of A* algorithm in the perspective of robot path planning problem.

Algorithm 1.2 A* Algorithm
Input: Generate a search graph G, including the starting node x. Mark node x as an open;
Output: The optimal path;
Begin
 Initialize: Create a list of closed node keeping them initially empty;
 Repeat
 1. If list of open node is empty, then exit with failure;
 2. Let node n is selected from the list of open nodes and removes it from the set. Put the node n on
 the closed nodes list;
 3. If n is the goal node, then exit and return the solution obtained to trace a path from the node n to
 node x in the search graph G;
 4. Expand node n and generate the set M, which contains its successors that are not already the
 ancestors of n in G. Add the elements of M as successors of n in G;
 5. Point n from each members of M, which does not belong to G and add them in the open list. If
 for all the members of M already belong to open or closed list of nodes, then redirect the pointer
 to n, subject to the shortest path is found through n. If all the members of M are belong to closed
 list of nodes, then redirect the pointers of its entire offspring in G, so that they point
 toward the back along the best paths found till now to these offspring;
 6. Sort the elements of open list in order of increasing cost function (sum of heuristic cost and
 generation cost);
 Until goal state reached;
End.

13

Example 1.2: In this example, the A* algorithm is employed to find the shortest path between
source node 1 to the goal node 9 as shown in Fig. 1.10. The heuristic cost h(x) of node x (xx,
xy) is given by the city-block distance and it is defined in (1.5).

() | | | |,g x g xh x x x y y    (1.5)

where, (,)g gx y is the goal coordinate.

Table 1.2 Trace of A* algorithm from Fig. 1.10

Step State-space Heuristic cost Generation cost Total cost

0 1

4 0 4

1

For node 2
(selected)

3
1

4

For node 4
3

1

4

2

For node 3
(selected)

2 2 4

For node 5

2

2

4

3

1

3

4

4

0

4

4

14

The trace of the A* algorithm is given in Table 1.2. In step 0, robot starts from node 1 and its
heuristic cost is 4 and generation cost is 0. Hence, total cost is 4. In step 1, node 1 is expanded
by the action forward (F) to node 2 and by the action right (R) to node 4. The total cost of
both the nodes 2 and 4 is 3+1=4. Node 2 is selected and it is expended further by the actions
forward (F), right (R), and Back (B) to the nodes 3, 5 and 1 respectively. The total cost of the
nodes 3 and 5 is 2+2=4. Node 1 is not selected following Definition 1.10. Node 3 is selected
and it is extended further to node 2 and 6 by the action back (B) and right (R) respectively.
Here, node 2 is a closed node by Definition 1.10 and hence, it is eradicated. So, node 6 is
expanded to node 6 and 9 by the action back (B) and forward (F). Again node 6 is eradicated
by Definition 1.10 and node 9 is the goal state. The total cost function of the node 9 is 4 with
0 heuristic cost. Hence, optimal path is generated by sequentially following the nodes 1, 2, 3,
6, and 9.

1.2.2.3 D* (D-star) Algorithm

Unlike, A* [68], D* [6] algorithm may be employed to efficiently plan in a dynamic unknown
or partially known environments, by adjusting the weights of the edges (arcs). In the present
path-planning application, each state is assumed as a node and weight of each edge (arc)
connecting two nodes represents the cost of moving from one node to another. Initially, a path
is planned from current node to the goal employing the A* algorithm using the known
information. In the journey of the robot towards the goal state, it discovers the presence of
obstacles in its path and the graph is modified by adapting the arc weight. The robot again
computes the shortest path from its node position to the goal. The process continues until it
reaches its goal position or it concludes that the goal is inaccessible. The Trace of the D*
algorithm is shown below in Table 1.3 by adding an obstacle in state 3 of Fig. 1.10 as shown
in Fig. 1.12. Step 0 and 1 are same as A* algorithm. In step 2, node 3 is expanded to node 1
and 5 by action right (R) and back (B) respectively.

Fig. 1.12 Two dimensional 3×3 grid environment with an obstacle

15

Table 1.3 Trace of D* algorithm from Fig. 1.12

Step State-space Heuristic cost Generation cost Total cost

0 1

4

0

4

1

For node 2
(selected)

3

1

4

For node 4
3

1

4

2

1

42

F R

15
R BX

For node 5

2

2

4

3

1

42

F R

15
R BX

2 6 8 4
RFL B

X

X

For node 6

(selected)

1

3

4

For node 8

1

3

4

4

0

4

4

Node 3 is not accessible as there is an obstacle at node 3. So, node 5 is expanded by left (L),
forward (F), right (R) and back (B) actions to nodes 2, 6, 8 and 4 respectively. Node 2 and 4
are closed nodes following Definition 1.10. Selecting node 6 and expanding it to node 5 and 9

16

by actions back (B) and right (R) respectively, the goal node 9 is reached. So, optimal path is
generated by sequentially following the nodes 1, 2, 5, 6, and 9.

1.2.2.4 Planning by STRIPS-like language

Representation is the main bottleneck of the earlier explained search-based planning
techniques due to enormous state-space. To address such representation problem, STRIPS-
like language [31] is proposed by the Stanford Research Institute Problem Solver group,
which is expressive enough to characterize a planning problem logically. STRIPS stands for
Stanford Research Institute Problem Solver. STRIPS is the first well-known logic-based
representation of the discrete planning algorithm, which is the extension of first order logic
(propositional logic). Following representations are employed in STRIPS.
State: In STRIPS, agent decomposes the environment into logical conditions (TRUE or
FALSE), and then the state is represented by conjunctions of function-free ground literals.
Ground literal refers to the predicates, which cannot break any more. Suppose, a home service
robot is instructed to bring a cup of tea with a biscuit and a magazine. So, in STRIPS, the
initial state is formed using the following predicates “at(home),” “┐have(tea),”
“┐have(biscuit),” “┐have(magazine).” Here, home represents the initial position. Now initial
state is the conjunctions of the function free predicates (ground literals), i.e.,
“at(home)˄┐have(tea)˄ ┐have(biscuit)˄┐have(magazine).” However, the goal state is the
“at(home)˄have(tea)˄have(biscuit)˄have(magazine)”. Now, the task is to find out the
sequence of actions to reach from initial state to the goal state.
Action: An action follows following two conditions: preconditions and effect. In
precondition, an agent needs to satisfy certain feasibility condition before executing an action.
For example, for “have(tea)” the agent must go to a nearby tea stall because tea is not
available at(home). Also the preconditions are always positive ground literals. On the other
hand, effects are the conjunction of positive and negative ground literals. For example, if
there is an action “go(tea stall)” from “at(home)”, then the precondition is
“at(home)˄path(here, there)” and the effect is “at(tea stall))˄┐at(home)”. Hence, to reach
the goal state “at(home)˄have(tea)˄have(biscuit)˄have(magazine)” an agent must satisfy all
the preconditions and effects.

1.2.3 Single agent reinforcement learning
In single agent RL [36], (Fig. 1.13) an agent receives a reward/penalty as a feedback due to an
action at its present (current) state or situation from the surrounding (environment). Such
scalar feedback measures the quality of the action in that state. In the literature of RL, this
quality value is well-known as state-action value. The robot remembers or stores the <state,
action, reward> profile as an experience for future reference. Once robot learns all possible

17

<state, action, reward> profiles, it plans optimally in terms of time and/or energy, from any
state within the environment it learns. The single agent RL can be explained by the well-
known multi-armed bandit problem [75], [76].

Fig. 1.13 Structure of reinforcement learning

1.2.3.1 Multi-Armed Bandit Problem

In the literature of English, a bandit refers to a robber or gambler, who belongs to a gang
typically isolated from the human society. If a bandit has only one arm, then the bandit is
called one-armed bandit. The one-armed bandit is also well-known as a slot machine, because
a slot machine is operated by a button located on the front panel of the machine. A slot
machine is a casino gambling machine, which rolls three or more times once the button is
pushed. As the slot machine stops rolling, it pays off the bandit based on the pattern formed
by the symbols visible on the front side of the machine. A multi-armed bandit consists of a
series of slot machines arranged in a row. In multi-armed bandit problem [75], [76], the
bandit has to decide which slot machine to play and for how many times to maximize the sum
of the rewards earned.

The gambler starts playing the multi-armed bandit problem without any knowledge about
the slot machines. In each trial, the gambler faces a trade-off between the “exploration” of a
new slot machine to obtain better reward than the present rewards, and “exploitation” of a slot
machine that has already obtained highest expected rewards. Similar trade-off is experienced
by a reinforcement learner in RL. Hence, the multi-armed bandit is employed to manage
several projects in a large organization, where initially the properties of the projects are
partially known or unknown, but as time passes the properties becomes fully known to the
bandit.
Suppose, a multi-armed bandit [75], [76] has N-slot machines (or N-arms), which are being
played by the bandit, and the bandit receives different reward for each arm, with an aim to
determine the arm having the maximum reward. To choose the best arm, i.e., an arm
corresponding to the maximum reward (or greedy reward); the agent (or bandit) may compute
the running average of rewards of all the arms given in (1.6).

1 2 ...
() ,k

t
r r r

Q a
k

  
 (1.6)

18

where ()tQ a refers to the estimated value of the action a in t trials (play). We assume that
action a was played k times in t trials and kr was the reward of choosing the action (arm)

a at kth time step. As choosing an arm is analogous to choosing an action, the value of each
arm may also be defined as the expected reward of the arm. Let the expected optimal reward
of the action a is *().Q a Based on the greedy action selection policy, the optimal action *a is

chosen by (1.7).
* *arg max ()

a
a Q a (1.7)

The said greedy action selection may trap the agent (bandit) in local minima. To overcome
the problem of trapping in local minima, an agent has to explore a new arm to receive new
reward (well-known as exploration), which might be better than the present reward.
Randomization of the probability of choosing an arm, which is not the greedy one, is referred
to as the exploration. In RL, always there is a trade-off between the exploration and
exploitation. For example, let N=10 in the said multi-armed bandit problem. Each arm
(analogous to an action) [1,10]a has a random reward given in (1.8) drawn from a normal
random distribution with mean zero and variance one, (0,1).N (1.8) represents the true value

or expected reward of the ten arms.
*() [0.0325, 0.8530, 0.1341, 0.0620, -0.2040, 0.6525, 0.8927, -0.9418, -1.4122, 0.8089]Q a  (1.8)

By (1.7) and (1.8)
 * *arg max ()

a
a Q a

 arg max[0.0325, 0.8530, 0.1341, 0.0620, -0.2040, 0.6525, 0.8927, -0.9418, -1.4122, 0.8089]

 7. (1.9)
By (1.9) seventh action is the optimal action denoted by *.a The learning process is started by
estimating the true values from the earlier distribution of (0,1)N setting the exploration

parameter  to 0.2 the first estimate is given in (1.10).
0 () [0.6761, -1.4321, -0.1824, 3.1140, -1.5285, -2.4264, -1.6687, -0.5252, -0.1021, -0.7124]estQ a 

 (1.10)
By (1.7), (1.10) and assuming * 0() ()estQ a Q a

* *arg max ()
a

a Q a

 arg max[0.6761, -1.4321, -0.1824, 3.1140, -1.5285, -2.4264, -1.6687, -0.5252, -0.1021, -0.7124]

 4. (1.11)

By (1.11) bandit should choose the fourth action but by (1.9) the optimal action is the seventh
one. So, the greedy choice is misleading the action selection. Several estimations are done to
update the ()estQ a vector using (1.6). The learning process continues until the agent

recognizes the seventh action as its best choice among the ten actions. The variation of
average reward with the number of trial for different  is given in Fig. 1.14.

19

0 200 400 600 800 1000

0

0.5

1

1.5

Number of trial

Av
er

ag
e

re
w

ar
d

=0.2
=0.01
=0.1
=0.0

 Fig. 1.14 variation of average reward with the number of trial for different  in 10-Armed Bandit

Problem

1.2.3.2 Dynamic programming and Bellman equation

DP [45] is an optimization technique, which transforms a large complex problem into a
sequence of simple problems, by dividing it into finite overlapping sub problems; where
overlapping indicates that the sub problems can recursively form the actual large complex
problem. Breaking a large complex problem into finite overlapping sub problems is the
condition of applying DP upon the large complex problem. In DP, there is a relation between
the solution offered by the large problem and solutions offered by the sub problems. In the
literature of optimization, this relationship is well-known as the Bellman equation (BE) or DP
equation.

Each sub problem is solved by a DP algorithm and the solution is stored in a database. In
the subsequent iterations, if a sub problem already addressed reappears, then that sub problem
is not readdressed, but its solution is exploited from the database. Finally, one optimal
solution is chosen from the evaluated value functions. The basic four steps for a DP algorithm
are given below [45].

1. Divide the large complex problem into finite overlapping sub problems.
2. A value function is defined recursively based on the overlapping sub problems.
3. Compute and memorize the value functions of the overlapping sub problems to avoid
repetition.
4. Obtain an optimal solution from the evaluated value functions.
Value function is the heart of DP, as it expresses the quality of a state because of an optimal

action in terms of numerical value. If one needs to maximize the value function ()v s at a state
{ },s s then using the principle of DP, the problem can be expressed in the BE as given in

(1.12).

20

/() max[(,) ()], (0,1)
a

v s r s a v s    (1.12)

where, (,)r s a refers to the reward received at state s because of an action a and /()v s

denotes the value function at next state / .s

1.2.3.3 Correlation between reinforcement learning and Dynamic programming

It is apparent from the earlier sections that the RL works on the principle of reward/penalty
received by the agents as a feedback from the environment, DP is nothing but an optimization
technique, which optimizes the BE [71], [72]. Fig. 1.15 indicates that the single agent Q-
learning (QL) is the combination of the RL and the DP. The details of single agent Q-learning
are given in the next section.

Fig. 1.15 Correlation between the RL and DP

1.2.3.4 Single agent Q-learning

Q-learning is one well-known paradigm among the RL techniques coined by Watkins and
Dayan [77] in 1989. In Q-learning, an agent (robot) adapts in an unknown environment, and
receives two types of reward due to an action at a given state within the environment. One
reward is immediate reward received as a feedback from the environment as explained earlier
in section 1.2.3. Another reward is evaluated at the next state. The evaluated reward at the
next state is of two types based on the nature of the environment. If the environment is
deterministic, then best (or optimal) future reward is evaluated at the next state, shown in Fig.
1.16. Since, in deterministic environment, an agent can move from a given state to the next
state with probability one due to an action. On the other hand, in stochastic environment, a
robot moves from a given state to the next one by assigning a probability in [0, 1] due to an
action. Hence, in stochastic environment, robot evaluates the expected best (or optimal) future
reward at the next state. The expected best future reward in the next state is the expectation of
selecting the best action in the next state in terms of numerical value. The mechanism of
evaluating the expected best future reward in Q-learning is shown in Fig. 1.17.

21

In Fig. 1.16, initially all the Q-values at Q-table are set to zero. At the current state 1 robot
executes an action right (R) and receives an immediate reward r(1, R)=0 from the
environment. In the next state 3, maximum future reward is evaluated from the Q-table. Until
(3, F) is not explored, in the next state, Q(3, L)=81 is the best future reward and updated Q-
value at (1, R) is Q(1, R)=72.9. On the other hand, once (3, F) is explored in the next state,
Q(3, F)=100 is the best future reward and updated Q-value at (1, R) is Q(1, R)=90.

In Fig. 1.17, ‘R’ inside the circle symbolizes a robot. Here, each state 1 to 3 has distinct
frictional properties. In such stochastic environment, any one next state among the three
possible next states may be reached due to left action executed by R at 1. So, there is a
probability of moving to the next state from the current state due to an action. In the literature,
such probability is well-known as the state-transition probability and the expected future
reward is evaluated thereof.

In Q-learning, the future reward prediction depends on the current state-action pair. It is
apparent, that the future reward prediction in Q-learning of an agent depends exclusively
upon the current state but not on the past state-action pairs, which is the Markov property.
The Markov property is also well-known as the memory less property. This idea is framed
inside the Markov Decision Process (MDP). In Q-learning, MDP plays a significant role in
finding the optimal value function corresponding to the optimal policy .*π The definition of

MDP is given in Definition 1.11 [78].

0 0
0 0 0
81 100 89

Action

G

1

2

3

4

1
2
3

0 0 04

0
0

81
0

L F R B

-1

1000
F

L R
B

(1,) (1,) max (3,); { , , , }
a

Q R r R Q a a L F R B  

0.9 

80.1

(1,) 0r R 

Environment

89 100 Q-table

80.1 90

Q-Learning

90

R1

Actions

Fig. 1.16 Single agent Q-learning

22

Definition 1.11: A Markov decision process (MDP) is a 4 - tuple S, A, r, p [79], [80] where,

S refers to a finite set of states, A denotes a finite set of actions, r : S A   refers to the
reward function of the agent, and : [0,1]p S A  indicates the state transition probability.

/

* / / *(,) max[(,) [| (,)] (,)]
a s

v s r s a p s s a v s     (1.13)

where, *(,)v s  and / *(,)v s  represent the value at current state s and next state /S due to

optimal policy *,  denotes the discounting factor, /[| (,)]p s s a is the state-transition

probability to reach next state /s from current state s due to action ,a A (,)r s a is the

immediate reward at state s due to action .a

Fig. 1.17 Possible next state in stochastic situation

If an agent directly learns its optimal strategy without knowing either reward function or the
state-transition probability, then the learning policy is called model-free RL [81]. Q-learning
is one such model-free learning, involving the basic equation given in (1.14).

/

* / / *(,) [(,) [| (,)] (,)].
s

Q s a r s a p s s a v s    (1.14)

Here, *(,)Q s a is the optimal Q-value. After infinite revisit of state S due to action ,a (,)Q s a
turns to * (,).Q s a If next state is deterministically known for each action, then the Q-learning

is called deterministic. In deterministic situation / /[| (,)] 1, .p s s a s 

Combining (1.13) and (1.14) we can write,
* *(,) max[(,)].

a
v s Q s a  (1.15)

Hence, the problem transforms to determining *(,)Q s a for all (,).s a If *(,)Q s a is found, one
can identify the action which maximizes the *(,).v s  So, the Q-learning update rule

becomes,

/
/(,) (,) max [(,),)]

a
Q s a r s a Q s a a   (1.16)

where, / (,)s s a (1.17)

23

be the state-transition function. Hence, / / /(,) ((,),).Q s a Q s a a By combining (1.16) and

(1.17) we obtain (1.18).

/
/ /(,) (,) max (,).

a
Q s a r s a Q s a  (1.18)

where,
/

/ /max (,)
a

Q s a indicates the action /a A for which maximum Q-value, / /(,)Q s a is

received at next state /s Now, the Q-learning update rule with learning rate (0,1]  is given

by (1.19).
/ *(,) (1) (,) [(,) (,)]Q s a Q s a r s a Q s a      (1.19)

However, in the stochastic situation, the state-transition probability to reach the next state
/ { }s s from the state s because of action ,a is /[| (,)] 1.P s s a  So, Q-value adaption rule

in the stochastic situation is given by (1.20): [81]

//

/ / /(,) (1) (,) [(,) [| (,)]max (,)].
as

Q s a Q s a r s a P s s a Q s a       (1.20)

After infinite revisit of (,),s a Q-value, (,)Q s a turns to the optimal Q-value *(,).Q s a The

convergence proof of (1.20) is given in [2]. Single agent Q-learning steps are given in
Algorithm 1.3.

Algorithm 1.3: Single agent Q-learning
Input: Current state s and action set ;A
Output: Optimal Q-value *(,), , ;Q s a s a 
Begin
 Initialize: (,) 0, ,Q s a s a   and [0,1) ; 
 Repeat
 Select an action a A randomly and execute it;
 Receive an immediate reward (,);r s a

 Evaluate next state / (,);s s a

 Update: (,)Q s a by (1.19) for deterministic situation,

 by (1.20) for stochastic situation and / ;s s
 Until (,)Q s a converges;

 Obtain: *(,) (,), , ;Q s a Q s a s a  
 End.

1.2.3.5 Single agent planning using Q-learning

Fig. 1.18 explains the single robot planning mechanism. At first the robot (R1) observes its
current state 3 and its corresponding Q-values from the Q-table. Then at 3 the robot evaluates
the action corresponding to the maximum Q-value using the learned Q-table. In Q-table, at
the row of 3 the action R corresponds to the maximum Q-value. Robot executes the action R

24

and moves to the next state 4. The above steps are repeated until the robot reaches it goal
state.

State

Fig. 1.18 Single agent planning

1.3 Multi-agent planning and coordination
Multi-agent planning and coordination are two almost similar terminologies both belong to
the multi-agent systems. Multi-agent planning refers to determining the sequence of feasible
actions of the agents to achieve individual goals maintaining optimality. However,
coordination refers to skilful and effective interaction among the agents to serve the purpose
of all the agents. The section describes the multi-agent planning and coordination
terminologies with corresponding algorithms.

1.3.1 Terminologies related to multi-agent coordination
A multi-agent system includes several agents. Naturally, action of an agent influences the
rewards received by the other agents. This calls for special arrangement for learning and
planning in a multi-agent system. Fig. 1.19 outlines the architecture of a multi-agent system.

In multi-agent system, a state-space is a collective set of states of an agent. The definition of
the state-space is required a priori, to address a planning problem. Such description of the
state-space is problem specific. In a multi-robot coordination problem, instead of states, the
joint state is defined.
Definition 1.12: A joint state is the collection or union of individual states in a fixed order
following the ascending order of the agents.

Actuation

Fig. 1.19 Multi-agent system with m agents

25

Suppose, is is the individual state of agent [1,],i m then the joint state for m agents system

is given by 1 .m
i iS s  

Definition 1.13: The phrase: joint-action is a widely used term in multi-agent system and is
defined by the collection or union of individual actions in a fixed order following the
ascending order of the agents.

Fig. 1.20 Robots executing joint action <R, L> at joint state <1, 8> and move to the next state <4, 5>

Suppose, ia is the individual action of agent [1,],i m then the joint action for the m agent

system is given by 1 .m
i iA a   In Fig. 1.20, due to joint action <R, L> at <1, 8> robots

move to the joint next state <4, 5> as shown in Fig. 1.20.

1.3.2 Classification of multi-agent system
There exist several state-of-the-art attributes, based on which the multi-agent system (MAS)
is classified [1], [37]. Attributes relevant to the present thesis are employed here to classify
the MAS. Basically MAS is of two types: cooperative and competitive. Like any social living
beings an agent belongs to cooperative MAS cooperate with remaining agents. However, in
the competitive MAS, agents do compete among themselves to acquire limited resources
required for livelihood. In this chapter, we consider only the cooperative MAS.
Classification based on cooperation: Classification of MAS based on the cooperative aspect
of the agents is done by measuring the ability of an agent to cooperate with remaining agents
while performing a task. Agents cooperate with the remaining agents are well-known as
cooperative agent and those do not cooperate rather they compete with others are
distinguished as non-cooperative agent. The goal of cooperative agents is to achieve a
common objective. On the other hand, the non-cooperative agents have always conflicting
objectives. Fig. 1.21 provides a detailed classification of cooperative agents only based on the
knowledge level.

26

Classification based on knowledge level: Further classification of cooperative MAS can be
done based on the knowledge level of an agent about the remaining agents in the same team.
In Fig. 1.21, one is aware agent, which has knowledge about its teammates and the unaware
agent does not have such knowledge about the remaining agents in the environment.
Classification based on coordination: Next the aware agents are classified based on the
coordination procedure employed by the agents. There are three types of coordination. In
strong (weak) coordination, agents strictly (do not strictly) follow the coordination protocols.
In the third type, i.e., not coordinated, agents do not coordinate with other agents.
Classification based upon the coordination is shown in Fig. 1.21.

Fig. 1.21 Classification of multi-robot systems

Classification based on organization: Strongly coordinated agents are further classified
based on the responsibilities of the agents in a team (or organization) as shown in Fig. 1.21.

27

By this aspect, the centralized approaches are distinguished from the distributed approaches.
In centralized approach, an agent is elected as a leader for the entire team. The leader is
responsible to distribute the task among all the agents in the team. The remaining agents
(follower) act according to the instructions provided by the leader. However, in the distributed
system, agents are completely autonomous in view of the decision making process, as there is
no leader in the team. On the other hand, the centralized system can further be classified
based upon the way the leader is elected among the team members. If only one robot leads the
complete mission, then such centralized system is known as strongly centralized. However, in
a weakly centralized system, more than one agent is allowed to lead the team towards the
completion of the mission.
Classification based on communication: Distributed robots are classified based upon the
dependency on communication among the agents as shown in Fig. 1.21. There are two types
of distributed agents, one is communication dependent, and another is communication
independent.

Besides the above classification, MAS can further be classified considering “Team
Composition” (combination of heterogeneous and homogeneous robots), “System
Architecture,” and “Team Size.”

Several approaches are available in the literature of multi-robot coordination. Among them
coordination by MAQL and EO algorithms are described in this chapter. To improve
readability GT and DP are briefly described below.

1.3.3 Game theory for multi-agent coordination
GT formally analyzes the strategic situation of the multi-agent system, where each agent
potentially affects the interests of other agents in the environment [38], [41], [42]. Two types
of game are considered in the present thesis: static and dynamic. The definitions of static and
dynamic games are given below.
Definition 1.14: A static game with m player is defined by a tuple

1 2 1 2, ..., , ,...m mm A , A , A r , r r [42],

where,
 , [1,]iA i m is the set of finite actions of player i

 and 1 , [1,]m
i iir : A i m   refers to the reward function of player ,i where,  denotes

 the Cartesian product.
Definition 1.15: If a static game is played repeatedly, then the game is well-known as
repeated game.

In static game, multiple agents execute their actions at a joint state and agents do not have
any state-transition. Hence, a static game is also known as state-less game. Now, to handle the
games with state-transitions, another version of game called dynamic game is defined below.

28

Definition 1.16: A dynamic game with m number of agents is defined as a 5-tuple
,{ } { } i im S , A ,r , p

 where, 1{ } m
iiS S  is the joint state-space,

 1{ } m
iiA A  is the joint action-space,

 { } { }ir S A    is the reward function at joint state-action of agent ,i

 and { } { } [0,1]iP S A   is state-transition function of agent .i

Suppose, an agent [1,]i m selects an action ia from the pool of its action set iA and plays

the repeated game. The conjunction of the individually chosen actions for all the agents form
a joint action 1 .m

iiA A Let ()i ia refers to the probability of selecting an action i ia A

by agent ,i where
: [0,1].i iA  (1.21)

If () 1,i ia  then the strategy of agent , ii  is deterministic for .i ia A The strategy profile

for m agents is given by
{ : [1,]},i i m   (1.22)

The strategy profile
1 1 1{ ,..., , ,..., }i i i m       (1.23)

denotes the strategy of all the agents except the strategy of agent ,i ,i where
{ }.i i    (1.24)

It is apparent from Definition 1.14 and Definition 1.16 that a dynamic game is also a static
game with state-transitions. In a static game, agents look for a balanced condition or
equilibrium among them, such that no one would receive any incentive by unilateral
deviation. In the literature, there are two well-known equilibria exist: Nash equilibrium (NE)
and correlated equilibrium (CE).

Before understanding equilibrium, let at a given state s an agent (here robot) have an
action set .A An action *a A corresponding to the maximum reward at state s refers to the

optimal or greedy action. Collection of such optimal actions executed at each state is termed
as optimal policy or strategy. In a particular state, if a robot executes an action, then the action
is well-known as a pure strategy. However, the mixed strategy is the randomization over the
pure strategies. To understand mixed strategy rock-paper-scissor game is given in Example
1.3.
Example 1.3: Rock-paper-scissor [41], [42] is a two player hand game, played for fun by kids
and sometimes for decision making by adults. Each player has three options: rock, paper or
scissor and a player can choose one in a trial. The player expresses his/her choice to another
player by using a hand to form one of the shapers as shown in Fig. 1.22. With these options

29

this game can have three possible outcomes excluding a tie. The three possible outcomes are
given one by one.

1. One rock crushes scissor. Here, player playing rock beats the player playing scissor.
2. But if paper covers rock, then the player chooses to play paper beats the player playing
rock.
3. On the other hand, if scissors cut paper; then the play of paper is defeated by the play of
scissor.

However, if the choices of both the players are same, then a tie occurs and the game is
replayed until the tie is broken.

 (a) rock (b) paper (c) scissor

Fig. 1.22 Hands gestures in rock-paper-scissor game

After finite trials of the game the rewards of both the players are given in the reward matrix
as shown in Fig. 1.23. In Fig. 1.23, one cell contains two rewards. The first reward is for
Player 1 and second one is for Player 2. In case of a tie, both the players receive zero (0)
reward. If a player wins the game, then the player is rewarded by one (1). On the other hand,
if the player loses, then the player is penalized by negated one (-1).

 Fig. 1.23 rock-paper-scissor game

It is apparent that in the rock-paper-scissor game (Fig. 1.22 and Fig. 1.23), optimal mixed
strategy of Player 1 and 2 is to execute each action with a probability 1/3. Now, suppose,

Pl
ay

er
 1

 Player 2
 rock paper scissor

rock (0,0) (-1,1) (1,-1)
paper (1,-1) (0,0) (-1,1)

Scissor (-1,1) (1,-1) (0,0)

30

Player 1 knows in advance that the Player 2 is playing the pure strategy "paper," then optimal
pure strategy for Player 1 is “scissor" as it provides maximum reward to Player 1.

1.3.3.1 Nash equilibrium (NE)

NE is a solution concept of the multi-agent interactive system from where no player deviates
to maintain its current reward, which is the maximum one. The Definition of NE is given in
Definition 1.17. NE is of two types: pure strategy NE (PSNE) and mixed strategy NE
(MSNE). To evaluate PSNE at a joint state, an agent selects an action from its own action set,
which corresponds to its maximum reward due to joint action, where remaining agents’
actions are kept fixed. The joint action at a joint state for which all the agents receive
maximum reward and no one has any selfish intension to deviate from its chosen action is
well-known as PSNE at that joint state. An example is considered in Fig. 1.24 and Fig. 1.25 to
evaluate PSNE in a static game or state-less or one-stage or normal-form game [82].
Definition 1.17: Nash equilibrium is a stable joint action (or strategy) at a given joint state
()S of a system that involves m interacting agents, such that no unilateral deviation

(deviation of an agent independently) can occur as long as all the agents follow the same
optimal joint action *

1
m

N i iA a   at a joint state { }S S for pure strategy NE. Further, for

a mixed strategy NE agents perform the joint action 1
m

i iA a   with a probability

* *
1

() (),
m

i i
i

p A p a


 where * :{ } [0,1],i ip a  * :{ } [0,1]p A  .

Let * { }i ia a be the optimal action of agent i at is and *
iA A  be the optimal joint action

profile of all agents except agent i at joint state 1,
m

j j j iS s    and (,)iQ S A be the joint

Q-value of agent i at S because of joint action { }.A A Then the condition of pure strategy

NE at S is
 * * *(, ,) (, ,), i i i i i iQ S a A Q S a A i  

/(,) (,), i N iQ S A Q S A i   * * / *[where , and ,]N i i i iA a A A a A     (1.25)

and condition of mixed strategy NE at S is
* * *(, ,) (, ,), ,i i i i i iQ S p p Q S p p i   (1.26)

where, (,) () (,)i i
A

Q S p p A Q S A


 and * *
1,

() ()
m

i i j j
j j i

p A p a 
 

 be the joint probability of

selecting joint action profile of all agents except agent i denoted by iA A  .

Agents follow Fig. 1.25 to evaluate PSNE * *,N i iA a A  and Fig. (1.26) for mixed

strategy NE * *(), ()i i i ip a p A   respectively at joint state .S

31

1.3.3.1.1 Pure strategy NE (PSNE)

Assuming in the one-stage game there are two robots R1, R2 and each has two actions. Robot
1 (R1) selects one action from the set {L, F} and robot 2 (R2) selects one from {L, F}. As a
result there is a joint action set. The joint action set {LL, LF, FL, FF} is the all possible
combinations (the Cartesian product) of {L, F} and {L, F}. Fig. 1.24(a) and (b) provide the
reward tables of R1 and R2 at joint state-action space respectively. The rows of the state-
action tables indicate the joint state. Joint state is the conjunction of individual states, here S
and S/. Each column corresponds to a joint action A. A can be any one from the set {LL, LF,
FL, FF}. The entries for each joint state-action pair are called joint state-action value. To
evaluate PSNE at joint state S/ the rewards at S/ due to joint actions are mapped in the reward
matrix, as shown in Fig. 1.24(c) and (d). In Fig. 1.24(c) and (d), each cell of the reward
matrices displays the rewards at a joint state S/ due to individual actions respectively for R1
and R2. In Fig. 1.24(c) to (e), rows indicate the actions of R1 and columns indicate the actions
of R2. However, in Fig. 1.24(e), each cell shows the rewards of both the agent. First entry is
for R1 and the second one is for R2.

L
L

F

F
L
F

L F

LL LF FL FF
/S

S

LL LF FL FF
/S

S

L

L

F

F

Fig. 1.24 Reward mapping from joint Q-table to reward matrix

Fig. 1.25(a) to (d) show the reward matrices of R1 and R2 at joint state S/. In Fig. 1.25(a),
R1 selects its best action assuming that R2 has been selected L indicated by solid black
arrows. In this situation, R1 prefers action F and receives 1 as a reward indicated in Fig.
1.25(a). Similarly, R1 receives 20 as a reward assuming that R2 has been selected F as shown
in Fig. 1.25(b). Similarly, R2 earns 20 and 1, when R1 selects L and F respectively as
indicated in Fig. 1.25(c) and (d). Finally, Fig. 1.25(e) shows the common solution producing
cells, which are the PSNE. Computation of PSNE for two agents is performed by the

32

following three steps.
1. Fix the action of R1, then select the best reward of R2, considering all possible actions of
itself.
2. Fix the action of R2, then select the best reward of R1, considering all possible actions of
itself.
3. If the results of selection fall in the same cell, then PSNE = joint actions corresponding to
the selected common grid.

L

L

F

F

L

L

F

F

L

L

F

F

L

L

F

F

L

L

F

F

(a) Fix 2= and 1= /A L A L F (b) Fix 2= and 1= /A F A L F

(c) Fix 1= and 2= /A L A L F (d) Fix 1= and 2= /A F A L F

(e) Nash equilibrium and FL LF

Fig. 1.25 Pure strategy Nash equilibrium evaluation

Here, two PSNE are obtained: <F, L> and <L, F>. Let us examine them one by one. For the
<F, L> both the robots receive 1. Now, if any one robot selfishly attempts to change its action
aiming at maximizing its own reward, then the robot, which changes its action, causes to
decrease its reward from 1 to -10. Besides, if R1 changes its action from F to L then R2’s

33

reward improves from 1 to 10. Again, if R2 changes its action from F to L then R1’s reward
improves from 1 to 10. So, the joint action <F, L> is an adversarial equilibrium. Adversarial
equilibrium is a PSNE in competitive situation. Now, the joint action <L, F> is coordination
equilibrium, where both the robots receive maximum reward selflessly i.e., 20. Coordination
equilibrium is a PSNE in cooperative situation. The present thesis considers coordination
equilibrium only.

1.3.3.1.2 Mixed strategy NE (MSNE)

MSNE is stochastic. In MSNE, each robot randomizes its own pure strategies by assigning a
probability in between zero and one for each pure strategy. Let R1 selects its actions L and F
with a probability p and (1-p) respectively. Also, let R2 selects its actions L and F with a
probability q and (1- q) respectively. The summary of rewards at MSNE is given in Fig. 1.26.
At MSNE the expected reward of L and F against q are equal. Equating these two expected
rewards yield p and (1-p) as shown in Fig. 1.26(a). Similarly, one can find q and (1-q) as
shown in Fig. 1.26(b). The expected reward of a mixed strategy is the weighted sun of the
expected rewards of all the pure strategies in the mix. Finally, the expected reward of R1 by
employing p against q and the expected reward of R2 by employing q against p are given in
Table 1.4. Also it is listed in Fig. 1.26(d). Finally, the MSNE is <(p, (1-p)); (q, (1-q))> given
in Fig. 1.26(c). Table 1.4 provides the expected reward at MSNE for two players. Example
1.4 provides an example of MSNE for a two player tennis game. Example 1.4 is given below
to illuminate MSNE.

Example 1.4: Fig. 1.27 shows the reward matrix for a two player tennis game between Venus
and Serena. Let in Fig. 1.27, Venus is the row player and Serena is the column player. If
Venus chooses Left (L), then she attempts to pass Serena to Serena’s left (l). If Venus decides
Right(R), then she is attempting to pass Serena to Serena’s right (r). Serena chooses l, means
that she bends slightly towards her l. Similarly, Serena chooses r means she slightly bends
towards her r. There is no PSNE in Fig. 1.27. Let’s find MSNE for the tennis game. In
MSNE, each agent’s mix should be the best for the remaining agents’ mix. To find Serena’s
NE mix (,1)q q look at Venus’s rewards. Now, Venus’s rewards against q while choosing
L and R is given by 50 80(1)q q  and 90 20(1)q q  respectively. In MSNE, L and R both
themselves must be the best response against .q So,

50 80(1) 90 20(1).q q q q     (1.27)

Table 1.4 Expected reward of R1 and R2 at MSNE
expected reward of R1 by employing p against q [10 20(1)] (1)[1 10(1)]p q q p q q      
expected reward of R2 by employing q against p [10 1(1)] (1)[20 10(1)]q p p q p p     

34

L

L

F

F

L

L

F

F

10 20(1)q q   1 10(1)q q 

 At NE
10 20(1) 1 10(1)q q q q     

10
21

q  111
21

q 

L

L

F

F

L

L

F

F

10 1(1)p p 

 At NE
10 1(1) 20 10(1)p p q p    

11
21

p  101
21

p 

20 10(1)p p 

NE=<(p,(1-p));(q,(1-q))>
11 10 10 11 =<(,);(,)>
21 21 21 21

Fig. 1.26 Evaluation of mixed strategy Nash equilibrium

35

Therefore, solving (1.27) we obtain 0.6q  and 1 0.4.q  Now, to find Venus’s NE mix
(,1)p p look at Serena’s rewards. Serena’s reward against p while choosing l and r is given
by 50 10(1)p p  and 10 80(1)p p  respectively. In MSNE, l and r both themselves must
be the best response against .p So,

50 10(1) 10 80(1)p p p p     (1.28)

Therefore, solving (1.28) we obtain 0.7p  and 1 0.3.p  Hence, the MSNE is given by
[(,1);(,1)] [(0.7,0.3);(0.6,0.4)].p p q q  

Fig. 1.27 reward matrix for tennis game

For multi-agent coordination without any communication among the agents, agents face
coordination problem in the presence of multiple coordination equilibria [72]. Here,
coordination problem refers to the problem of selecting unique equilibrium by all the robots.
Such problem can be resolved by selecting a joint action based on a signal (e.g., traffic
signal), which is commonly accessible by all the robots. Before discussing about the remedies
of equilibrium selection Example 1.5 is provided to realize the problem.
Example 1.5: The reward matrix for a common reward two-agent static game is given in Fig.
1.28, where both a and b are the rewards. There are two action sets { 0, 1}x x and { 0, 1}y y for
agent X and Y respectively. Now, if 0,a b  then there are two equilibria 0, 0x y  and

1, 1 .x y  But, only 0, 0x y  is the optimal and hence, one would expect that the agents
play 0, 0 .x y  If 0,a b  then none of the agents’ have any reason to prefer any one action.

Fig. 1.28 Reward matrix of in a common reward two-agent static game

In such situation, there exist multiple equilibria. Choosing one equilibrium among multiple
equilibria by random selection or by focusing personal basing may leads to suboptimal (or
uncoordinated) equilibrium.

A
ge

nt
 X

 Agent Y

 0y 1y
0x a 0
1x 0 b

V
en

us

Serena

 l r

L 50, 50 80, 20 p

R 90, 10 20, 80 1 p

 q 1 q

36

A robot can resolve the problem of equilibrium selection [38] in a coordinated game by
repeatedly playing a game by the same robot. In the literature, correlated equilibrium (CE)
addresses the problem of equilibrium selection.

1.3.3.2 Correlated equilibrium (CE)

CE is more general than the NE [72]. There are four variants of CE: Utilitarian, Egalitarian,
Republican, and Libertarian equilibria [72]. In each variant, a numerical value is
maximized and its corresponding index (joint action) is well-known as CE. The former
numerical value may be evaluated by one of the following techniques.

1. In Utilitarian equilibrium, the numerical value to be maximized is evaluated by adding all
robots’ rewards.
2. The least efficient robot’s reward is maximized in the Egalitarian equilibrium.
3. Most efficient robot’s reward maximized in Republican equilibrium.
4. In Libertarian equilibrium, the numerical value to be maximized is evaluated by
multiplying all the robots’ rewards.
Like NE in CE, there are pure strategy and mixed strategy CE. The definition of CE is

given in Definition 1.18. The pure strategy Egalitarian equilibrium evaluation is shown in
Fig. 1.29.

Fig. 1.29 Pure strategy Egalitarian equilibrium, which is one variant of CE

37

Definition 1.18: Correlated equilibrium (CE) at a joint state, 1
m

i iS s   with m

interacting agents is the pure strategy CE, CA and mixed strategy CE, *()Cp A if agents

follow (1.29) and (1.30) respectively.
arg max[((,))]C i

A
A Q S A  (1.29)

*
()

() arg max[[()((,))]]C i
Ap A

p A p A Q S A   (1.30)

where,
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

   (1.31)

Game of chicken reflects the idea of CE and is illustrated in Example 1.6.
Example 1.6: In game of chicken, two players play by heading toward each other as shown in
Fig. 1.30. If both the players move (M) on the same way, then they collide, which results in
penalty for both the agents. If one player moves and another player waits (cooperate (C)),
then both the players are rewarded. The player which successfully moves receives more
reward, than the player which cooperates. Both the players receive zero reward if none of
them move. In Fig. 1.31, both the joint action (,)M C and (,)C M is the PSNE. To achieve

PSNE without establishing any communication among the players, they should follow a
signal (like traffic signal), which is commonly accessible for both the players.

Fig. 1.30 Game of Chicken

Fig. 1.31 Reward matrix in Game of Chicken

1.3.3.3 Static game examples

A few examples of static games are given below.

Pl
ay

er
 1

 Player 2

 M C

M -5, -5 10, 5

C 5, 10 0, 0

38

Constant-sum-game: In constant-sum-game [41], summation of the two players’ rewards is
constant as shown in Fig. 1.32, where ,a b  and ,x y  are the action sets of player 1 and

2 respectively. In Fig. 1.32, the value of the constant is 1.

Fig. 1.32 Constant-sum-game

Zero-sum-game: Zero-sum-game is a special case of constant-sum-game [41]. It is a two
player game, where the summation of the two players’ reward is always zero. This indicates
that one player’s gain is equivalent to another player’s loss. Hence, net change in reward is
zero. Chess and tennis are the examples of zero-sum-game, where there is a winner and a
loser. Financial market is also an example of zero-sum-game. In the literature of GT,
matching pennies and rock-paper-scissor (given in Example 1.3) are the well-known
examples of zero-sum-game. Example 1.7 illustrates the game of matching pennies.
Example 1.7: In matching pennies, two pennies are thrown by two players simultaneously.
The rewards of the players depend on whether the pennies match or not. If both pennies result
in head (H) or tail (T), then player 1 wins and rewarded by player 2’s penny. If there is a
mismatch, then player 2 wins and rewarded by player 1’s penny. As one player’s gain is other
player’s loss, hence, matching pennies is a zero-sum-game as shown in Fig. 1.33. In matching
pennies, there is no PSNE instead there exists MSNE.

Fig. 1.33 matching pennies

In some situation, a game does not have a PSNE but every game have a MSNE [42]. For
example in rock-paper-scissor game, there is no PSNE but there exists MSNE.
General-sum-stochastic game: In general-sum-stochastic game, the summation of all the
players’ rewards is neither zero nor constant. Prisoner’s Dilemma is an example of general-
sum-stochastic game and is illustrated in Example 1.8.
Example 1.8: In Prisoner’s Dilemma two criminals are suspected of committing a crime and
are being interrogated in two separate cells. From human physiology both the criminals want
to minimize their jail sentence. Both of them face the same scenarios as follows (Fig. 1.34):

Pl
ay

er
 1

 Player 2

 H T

H 1, -1 -1, 1

T -1, 1 1, -1

Pl
ay

er
 1

 Player 2

 x y

a 5, -4 -7, 8

b -2, 3 4, -3

39

 If Player 1 and 2 each Deny (D) each other, then each of them are sentenced by 9 year
jails.

 If Player 1 Deny (D) but Player 2 remains Confess (C), then Player 1 will be set free and
Player 2 will serve 10 years jails (and vice versa).

 If both Player 1 and 2 remain Confess (C), then both of them will only serve 1 years jail.
Hence, in Prisoner’s Dilemma game, (C, C) is the PSNE.

Fig. 1.34 Reward matrix in Prisoner’s Dilemma Game

1.3.4 Correlation among RL, DP, and GT
It is apparent from the earlier sections that the RL works on the principle of reward/penalty
received by the agents as a feedback from the environment. DP is nothing but an optimization
technique, which optimizes the BE. On the other hand, GT helps in analyzing the strategic
situation of the agents in multi-agent system, where an agent significantly affects the interests
of other agents in the environment. Fig. 1.35 indicates that the multi-agent Q-learning
(MAQL) comprising of the MARL, GT and DP. However, in the literature, MARL is well-
known as MAQL for simplicity.

Fig. 1.35 Correlation among the MARL, DP, and GT

1.3.5 Classification of MARL
Based on the task type, MARL is classified as cooperative, competitive, and mixed as shown
in Fig. 1.36 [82]. Now, the cooperative and mixed algorithms may be designed for static

Pl
ay

er
 1

 Player 2

 C D
C -1, -1 -10, 0

D 0, -10 -9, -9

40

(stateless) games or for stagewise (dynamic) games. However, there are only two competitive
algorithms for two agents namely Minimax-Q and heuristically accelerated multi-agent RL
(HAMRL).

MARL

Cooperative Competitive Mixed

Minimax-QStatic Dynamic Static Dynamic

JAL
FMQ

Team-Q
Distributed-Q
OAL
SCQL

Belief-based
Learning rule

Direct policy
search based

SQL

HAMRL

FMRQ

FP
Meta Strategy
AWESOME
Hyper-Q Fixed

learning rate
Variable

learning rate

IGA GIGA WoLF-
IGA

GIGA-
WoLF

Equilibrium
dependent

Equilibrium
independent

NQL
CQL

Asymmetric-Q
FFQ

NegoQ
MAQLET

Variable
learning rate

Fixed
learning rate

WoLF-PHC
PD-WoLF

NSCP
EXORL

Fig. 1.36 Classification of multi-agent reinforcement learning

Joint Action Learners (JAL) and Frequency Maximum Q-value (FMQ) heuristic are
classified as cooperative static algorithm. Team-Q, Distributed-Q, Optimal Adaptive Learning
(OAL), Sparse Cooperative Q-learning (SCQL), Sequential Q-learning (SQL), and Frequency
of the maximum reward Q-learning (FMRQ) fall within the scope of cooperative dynamic
algorithms.

41

The mixed static algorithms are classified based on the belief on the other agents’ policy of
an agent and the steps required in searching the optimal policy (direct policy search). Belief
based learning include Fictitious play (FP), Meta Strategy, AWESOME and Hyper-Q. The
direct policy search based algorithms are classified based on variation of the learning rate:
fixed learning rate and variable learning rate. Fixed learning rate includes Infinitesimal
Gradient Ascent (IGA) and Generalized IGA (GIGA). Win-or-Learn-Fast-IGA (WoLF-IGA)
and GIGA-WoLF are under the variable learning rate. The dynamic mixed strategy
algorithms are classified as equilibrium dependent and equilibrium independent. Equilibrium
dependent algorithms are Nash Q-Learning (NQL), Correlated Q-Learning (CQL),
Asymmetric-Q learning, Friend-or-Foe Q-Learning (FFQ) (for more than two agents),
Negotiation-based Q-learning (NegoQ) and MAQL with equilibrium transfer (MAQLET).
Again equilibrium independent learning algorithms are classified as fixed learning rate and
variable learning rate. Fixed learning rate includes Nonstationary Converging Policies
(NSCP) and Extended Optimal Response (EXORL) heuristic. WoLF Policy Hill-Climbing
(WoLF-PHC) and PD-WoLF are under the variable learning rate. The details of all the
algorithms are given in the subsequent sections.

1.3.5.1 Cooperative multi-agent reinforcement learning

The cooperative MARL algorithms are given below as listed in Fig. 1.36.

1.3.5.1.1 Static

The static MARL does not involve any state transitions as described in Section 1.3.3. The
static MARL algorithms are discussed below.

1.3.5.1.1.1 Independent Learner (IL) and Joint Action Learner (JAL)

In [78], Claus and Boutilier proposed two variants of learners. One is the Independent Learner
(IL) and another is the Joint Action Learner (JAL). IL learns Q-value at its own action–space
employing the classical single agent Q-learning rule ignoring the presence of other agents.
For an IL i the single agent Q-learning rule (1.19) becomes (1.32) with ,a r  as the
experience profile. Also the Q-value earned by IL denoted by ()i iQ a converges to the

optimal Q-value *()i iQ a for all action i ia A in the single agent system.
() () [() ()]i i i i i i i iQ a Q a r a Q a   (1.32)

In multi-agent system, all the agents are adapting simultaneously and hence, the
environment is no longer stationary, which does not ensure the convergence of Q-values any
more. Reconsidering the 1.5, in IL, Agent X learns for the actions 0x and 1.x However, if
Agent X is a JAL, then it learns for the four joint actions. It is interesting that the expected
value of selecting 0x and 1x exclusively depends on the strategy played by Y. In 1.5, if

10,a b  then Agent X’s expected Q-value for 0x is

42

0 0 0 0 0 0 1 1 0() (,) (|) (,) (|)x x xQ x Q x y P y x Q x y P y x   
  

 0 0 1 010 (|) 0 (|)P y x P y x    [by 1.5 0 0 0 1(,) 10 and (,) 0x xQ x y Q x y 
 

]

 10 0.5 0 0.5   
 5, (1.33)
where 0 0(|)P y x and 1 0(|)P y x refer to the probability of 0y and 1y are being executed

respectively by agent Y subject to 0x is being selected by agent X. To handle the above

explained dynamics in multi-agent systems, the JAL maintains a belief about the other agents’
strategies and the expected value of action ia by agent i is given below.

[]
ˆ () (,)

jii i

i
i i i i i aa A j i

Q a Q a a P
 

 
 

 (1.34)

where, (,) (,) [(,) (,)]i i i i i i i i i i i iQ a a Q a a r a a Q a a      (1.35)
The experience tuple of JAL is denoted by , , .i i ia a r 

So, JAL learns the Q-value at joint action-space considering the presence of other agents by
synergistically combining the RL and equilibrium (or coordination) learning methods [83]-
[86]. Learning equilibrium depends on the rewards corresponding to the joint actions at a
given joint state and these rewards are obtained by the well-known RL more especially by Q-
learning. The convergence of Q-learning does depend on the already explained trade-off
between the exploration and exploitation. If an agent i chooses an action ia with
probability (),i iP a then probability of choosing remaining actions is 1 ().i iP a The said

trade-off can be balanced by tuning the temperature parameter T of the Boltzmann strategy
given by (1.36). The variation of T is done in such a way so that the convergence is
guaranteed [134].

()/

()/()
i i

i i

i

Q a T
i i Q a T

a

eP a
e



 


 (1.36)

Following conditions are required to satisfy for convergence of both the IL and JAL [78]:
1. The learning rate  decreases with respect to time

i.e., 0
t
     and

21
0 .    

2. Each agent selects each of its actions infinitely.
3. The probability of choosing action a by agent ,i () 0.i

tP a 

4. All the agent’s exploration strategy is exploitive. That is, lim () 0,i
t t tP X  where

tX is a random variable denoting the event that some non-optimal action was taken

based on 'i s estimated value at time .t
Finally, myopic heuristic based optimistic exploration strategies are proposed in [78] for

optimal action selection.

43

1 Optimistic Boltzmann (OB): Choose the action ia using the Boltzmann strategy,
assuming () (,),i i i i iMax Q a Max Q a a

2 Weight OB (WOB): Explore using the Boltzmann strategy using the factor
(optimal match for)i i iP a a i.e., (). (optimal match for).i i i i iMax Q a P a a

3 Combined: Employ the Boltzmann strategy, assuming
() () (1) ()i i i iV a Max Q a EV a    as the value of action ia , where [0,1].

Considering the biasing 0.5  in [78], it is shown that combined exploration strategy

outperforms the OB, WOB and the Boltzmann strategy in terms of the average accumulated
reward. The algorithm for IL and JAL are given in Algorithm 1.4 and 1.5 respectively.

Algorithm 1.4: Independent Learners
Input: Action set of agent , ,ii A [0,1); 

Output: Optimal Q-value of agent ,i *(), ;i i i iQ a a A

Initialize: () 0;i iQ a 
Begin
 Repeat
 Execute an action ia by agent i employing the
 Boltzmann strategy;
 Receive immediate reward ();i ir a

 Update: () () [() ()];i i i i i i i iQ a Q a r a Q a  

 *() ();i i i iQ a Q a

 Until ()i iQ a converges;
 End.

Algorithm 1.5: Joint Action Learners
Input: Action set , ,iA i [0,1); 

Output: Optimal joint Q-value *(,), ;i i iQ a a i 

Initialize: (,) 0;i i iQ a a 
Begin
 Repeat
 Execute an action ia by agent i employing the
 Boltzmann strategy;
 Receive immediate reward (,)i i ir a a by
 observing other agents’ rewards;

 Update:
(,) (,)

[(,) (,)]
i i i i i i

i i i i i i

Q a a Q a a
r a a Q a a

 

 

 


 and

 ˆ, ()
j

i
i iaP Q a by (1.50), (1.51) respectively;

 *(,) (,);i i i i i iQ a a Q a a 

 Until (,)i i iQ a a converges;
 End.

44

Unfortunately, the above conditions do not guarantee convergence to equilibrium in the
practical and complicated games such as in the climbing game [3], [78] and the penalty game
[3], [78].

1.3.5.1.1.2 Frequency maximum Q-value (FMQ) heuristic

The independent agent in [87] and [2] including the JAL in [78], does not guarantee
convergence to the optimal joint action in the absence of coordination with high penalties. In
the Frequency Maximum Q-value (FMQ) heuristic [3], a novel action selection strategy is
proposed assuming agents can observe other agents actions and are tested in two coordination
problems mentioned in [78]: the climbing game and the penalty game. The said games are
repeated cooperative single-stage games and they provide suitable platforms for studying the
multi-agent coordination problem.
Climbing game: It is apparent from Fig. 1.37 that in the climbing game [3], [78], (,)x x is the

optimal joint action and both the agent should go for it. Now, if Agent 1 plays x and Agent 2
plays ,y then both the agents receive negative reward (-30). After learning this situation both
the agents avoid joint action (,).x y Later, if Agent 1 plays action ,z then Agent 2 plays
either y or z as due to both the joint action (,)z y and (,)z z agents receive positive rewards

of 6 and 5 respectively. Suppose, Agent 2 is playing x but Agent 1 does not play x as it
receives negative reward in the past due to ,x and also Agent 1 does not play y as it provides

negative reward. Hence, Agent 1 plays z and both the agents receive reward of 0. Similarly,
if Agent 2 plays ,z then agents receive at least 0 independent of Agent 1’s choice. From the

above analysis it is apparent that in the climbing game, agents always move away from the
optimal joint action.

Fig. 1.37 The climbing game reward matrix

Penalty game: Similar to the climbing game presence of multiple equilibria in the penalty
game [3], [78] is also challenging to check the performance of the coordination in multi-agent
system. In penalty game (Fig. 1.38), both the agents should avoid the joint actions (,)x z and
(,)z x to avoid the negative reward of -10. Now, in penalty game, there are two optimal joint
actions (,)x x and (,).z z Agents can play for any one of them. Suppose, Agent 1 plays x with

an expectation that Agent 2 also plays x to receive maximum reward of 10. In this situation,
if Agent 2 plays ,z expecting Agent 1 plays z to receive maximum reward of 10. In the
above circumstances, y is the safe choice for both the agents regardless of what other agent’s

A
ge

nt
 1

 Agent 2

 x y z
x 11 -30 0
y -30 7 0
z 0 6 5

45

play and is guaranteed to receive a reward of 0 or 2. Hence, it is challenging to identify the
optimal joint action in penalty game for multi-agent coordination.

Fig. 1.38 The penalty game reward matrix

From the climbing game and the penalty game it is apparent that an agent should select its
action wisely for convergence. Maintaining a balance between the exploration and
exploitation is an intelligent approach for action selection. Balancing the
exploration/exploitation is a trade-off and is addressed by the well-known Boltzmann strategy
given in (1.36). In (1.36), the probability of selecting an action ia for agent i is evaluated by

utilizing the Q-value and the tuning parameter temperature ().T If ,T  then each action

has an equal probability to execute and hence, pure exploration occur. If 0,T  then the

action has a probability of one to execute and hence, exploitation occur. In [3], T is given by

max() 1,stT t e T   (1.37)

where t is the learning epoch, s is a parameter to control the exploration rate and maxT is

initial value of temperature.
In [92], an optimistic assumption based algorithm is proposed. By optimistic assumption an

agent updates its Q-value only if the new value is greater than the current one. Unfortunately,
the optimistic assumption fails to converge to the optimal joint action due to misleading
maximum reward. FMQ heuristic is based on the experience of the agent. Agent counts the
frequency of the action which yields the best reward. Instead of optimistic assumption an
agent i uses the Boltzmann strategy with the modified Q-value ()iQ A given in (1.38).

max
max

()
() () (),

()i i
c A

Q A Q A f r A
c A

    (1.38)

Fig. 1.39 The penalty game reward matrix

where max ()c A is the number of times agent i receives maximum reward max ()r A after

executing the action A ()c A times. f refers to the control parameter to control the

 A

ge
nt

 1

 Agent 2
 x y z

x 10 0 -10
y 0 2 0
z -10 0 10

 A

ge
nt

 2

 Agent 1
 x y z
x 11 -30 0
y -30 14/0 6
z 0 0 5

46

importance of the FMQ heuristic. The value of f increases proportionally with the increase

in problem difficulty.

Algorithm 1.6: FMQ heuristic
Input: Action set , ,iA i [0,1),  [0,1), ;f 

Output: Optimal joint Q-value *(), , [1,];iQ A i i m 

Initialize: () 0, ;iQ A i 
Begin
 Repeat
 Execute action ,i ia A i  employing FMQ heuristic;

 Receive immediate reward (), ;ir A i

 Update: () () [() ()]i i i iQ A Q A r A Q A   and modify Q-value (),i iQ a i by (1.54) for
 modified Boltzmann strategy (FMQ heuristic);

 *() ();i iQ A Q A

 Until (),iQ A i converge;
 End.

It is observed from the experiments that the FMQ heuristic outperforms the baseline

experiments in terms of the convergence to the optimal joint action both in the climbing game
and the penalty game [3]. To compare the FMQ heuristic with optimistic assumption a
partially stochastic version of the climbing game is given in Fig. 1.39. In the partially
stochastic climbing game, at least one of the rewards is stochastic as shown in Fig. 1.39. In
Fig. 1.39, the joint action (,)y y yields a reward of 14 or 0 with probability 0.5. So, in the
long run both the agents receive a reward of 7 due to joint action (,).y y Hence, the reward

matrix given in Fig. 1.37 and 1.39 are equivalent in the long run. The FMQ heuristic also
outperforms the baseline experiment and the optimistic assumption in the partially stochastic
climbing game, in terms of the convergence to optimal joint action. Unfortunately, the FMQ
heuristic fails to convergence to optimal joint action in the fully stochastic penalty game and
climbing game. The algorithm for FMQ heuristic is given in Algorithm 1.6.

1.3.5.1.2 Dynamic

Dynamic RL is stochastic Markov game with more than one joint state.

1.3.5.1.2.1 Team-Q

Team-Q is a cooperative dynamic Q-learning algorithm. Dynamic indicates the existence of
state transitions. In [88], Littman proposed Team-Q learning designed for team games in the
framework of team Markov games (Coordination game). In Team-Q learning, the value
function /()iVQ S of agent [1,]i m at joint next state /S for the m agents’ team is given in

(1.39).

47

1 2

/
1 2

, ,...,
() (; , ,...,)

m
i i m

a a a
VQ S Max Q S a a a (1.39)

The update rule in Team-Q learning for agent i is given in (1.40), without using reaming
agents’ model like in [78].

/(,) (1) (,) [(,) (),i i i iQ S A Q S A r S A VQ S      (1.40)
where 1 2, ,..., mA a a a  be the joint action at joint state 1 2, ,..., .mS s s s  The Team-Q

learning is convergent following the generalized Q-learning algorithm [90], [91]. Team-Q
learning is similar to Nash Q-Learning (NQL) [89] for the coordination games. Still there
exists a challenge regarding the equilibrium selection among multiple equilibria in noisy
environment. The algorithm for Team-Q learning is given in Algorithm 1.7.

Algorithm 1.7: Team-Q
Input: Action set , ,iA i [0,1),  [0,1); 

Output: Optimal joint Q-value *(,), , [1,];iQ S A i i m 

Initialize: (,) 0, ;iQ S A i 
Begin
 Repeat
 Execute action , ;i ia A i 

 Receive immediate reward (,), ;ir S A i

 Update: (,) (1) (,) [(,) max (;)]i i i i
A

Q S A Q S A r S A Q S A     

 and / ;S S

 *(,) (,);i iQ S A Q S A

 Until (,),iQ S A i converge;
 End.

1.3.5.1.2.2 Distributed –Q

In [92], model-free Distributed Q-learning is proposed for cooperative multi-agent system in
deterministic situation with a motivation to compute an optimal policy in a cooperative multi-
agent environment. The Distributed Q-learner solves two problems. The first problem is
concerned with determination of the optimal policy. The second problem deals with selection
of one optimal policy among alternatives, which is optimal for the entire team.

To handle multi-agent dynamics MDP is extended to Multi-agent MDP (MMDP), where
each agent maximizes its own reward having different goals (i.e. reward-function). However,
in the cooperative MMDP, all the agents have identical reward function. Such identical
reward-functions are advantageous in finding an equilibrium point, which is an optimal joint
action and it maximizes the reward of all the agents. In cooperative MMDP, the learning
algorithm is responsible in making cooperation among the agents. Here, also two types of
agents are considered: one is JAL and another is IL as mentioned in [78]. IL cannot
distinguish the difference between the individual (elementary) action [92] and joint action.

48

Hence, IL maintains a Q-table of smaller size i.e., ,S A instead of maintaining the Q-table at

joint state-action space, .mS A In [92], the smaller Q-tables are assumed as the projection
from the larger central Q-table with a conjecture about the strategies of teammates. So, in
[92], a projection approach is proposed by evaluating the individual Q-table in a distributed
way without adapting Q-table in joint state-action space by weighting the Q-values from
larger Q-table given in (1.41).

/
1

/ /(,) [(, |).[(,) max (,)]],
m ii i

i i i i i i i
aA a

q S a P S A a r S a q S a




  

  (1.41)

where, (, |)iP S A a refers to the probability of joint action A to be executed at joint state S
including the action of agent ,i .ia

Another way of projection is the ‘pessimistic assumption.’ By pessimistic assumption the
individual smaller Q-value is the least efficient agent’s Q-value obtained from larger central
Q-value. Such approach creates robust policies but is not extended in [92], because of its
cautious nature. Instead of pessimistic assumption its dual form is utilized to obtain the
smaller Q-value from the central Q-table as given in (1.42).

(,) max (,)i i
A

q S a Q S A (1.42)

It can also be written in terms of small Q-table given in (1.43).
(,) max (,)

i
i i i i

a A
q S a q S a


 (1.43)

Algorithm 1.8: Distributed Q-learning

Input: Action set , ,iA i [0,1); 

Output: Optimal Q-value *(,), , [1,], ;i i iq S a i i m a A  

Initialize: (,) 0, ;i iq S a i 
Begin
 Repeat
 Execute action , ;i ia A i 

 Receive immediate reward (,), ;i ir S a i

 Update:
/

/ /(,) max{ (,), (,) max (,)}
i

i i i i i i i i
a

q S a q S a r S a q S a  and / ;S S

 *(,) (,);i i i iq S a q S a

 Until (,),i iq S a i converge;
 End.

The projection technique introduced in (1.43) is also known as optimistic assumption. It is

assumed that all agents are acting optimally and the conjunction of the individual optimal
actions is also an optimal joint action. However, such assumption is necessarily not true. This
inspires the researchers in [92], to propose a Proposition, which states that in cooperative
deterministic MMDP

49

1

(,) max (,)
m

i i

t t
i i

A a
q S a Q S A

 
 (1.44)

holds and also its prove is given in [92], where t is the learning epoch. The steps of the
Distributed Q-learning are given in Algorithm 1.8. The climbing game and the penalty game
are extended for the Distributed Q-learning respectively in Example 1.9 and Example 1.10.
Example 1.9: To extend the climbing game for Distributed Q-learning as shown in Fig. 1.40,
let both the agents are at joint state S and for brevity discount factor  is set to 0. The reward
function (,)i iq S a is evaluated employing Algorithm 1.8. Such greedy approach of Algorithm

1.8 yields highest Q-value for both the agents as shown in Fig. 1.40. In Fig. 1.40, the optimal
joint action is (,).x x However, in the IL, JAL, and the FMQ-heuristic algorithm agents
supposed to find the sub-optimal joint action (,)y y as explained in Fig. 1.37.

Fig. 1.40 Individual Q-values obtained in the climbing game reward matrix by Distributed Q-learning

Example 1.10: Like Example 1.9 to extend the penalty game for Distributed Q-learning as
shown in Fig. 1.42, the discount factor  is set to 0 and the Algorithm 1.8 is employed to

evaluate distributed rewards. In the FMQ-heuristic algorithm (Fig. 1.41), there are four
optimal joint actions: (,),x x (,),x z (,)z x and (,)z z but only (,)x x and (,)z z are optimal

joint actions with reward 10 as shown in Fig. 1.42 offered by Algorithm 1.8. Unfortunately
application of the Distributed Q-learning is limited to the deterministic system only.

Fig. 1.41 The penalty game reward matrix

Fig. 1.42 Individual Q-values obtained in the penalty game reward matrix by Distributed Q-learning

In
di

vi
du

al

Q
-v

al
ue

 Actions
x y z

1 1(,)q S a 11 7 5

2 2(,)q S a 11 7 5

In
di

vi
du

al

Q
-v

al
ue

 Actions
x y z

1 1(,)q S a 10 2 10

2 2(,)q S a 10 2 10

A
ge

nt
 1

 Agent 2

 x y z
x 10 0 9
y 0 2 0
z 9 0 10

50

1.3.5.1.2.3 Optimal Adaptive Learning

There are many straight forward solutions to choose optimal equilibrium among multiple
equilibrium solutions, like enforce convention [93] and fictitious play [78], [39]. In [78], the
JAL guarantees the convergence to NE in a team game. However, it is not guaranteed that the
selected NE is the optimal one. Similar problem arises in game theory like Adaptive play
(AP) [94] and evolutionary model proposed in [40].

In model-free RL, agents do not have any idea about the environment; in addition they may
receive noisy rewards. Hence, it is impossible to converge properly. In [92], [95], the MDP is
extended to Team Markov Game (cooperative MMDP) with an aim to find a deterministic
joint strategy to maximize the expected sum of discounted rewards. In [95], Optimal Adaptive
Learning (OAL) algorithm is proposed with convergence proof where agents learn to choose
the optimal NE among multiple NE with probability one. Let in a three-player coordination
game, 1 2, ,a a  1 2,b b  and 1 2,c c  be the individual action sets of agent 1, 2, and 3

respectively. The reward matrix of this coordination game is shown in Fig. 1.43. It is apparent
from Fig. 1.43, that there are three pure strategy NEs 1 1 1 2 2 2 3 3 3, ,a b c a b c a b c  and six sub-

optimal NEs. The rewards corresponding to the sub-optimal NE are italicized.

Fig. 1.43 Reward matrix of a three player coordination game

Before discussing about the OAL algorithm, the AP algorithm [94] is discussed. In AP
game, it is assumed that agents know the game before playing it and one virtual game (VG) is
designed. In Team Markov Game, to eliminate the sub-optimal NE, the following
arrangement is made. Suppose, in cooperative situation (,)VG S A be the payoff of the agents

at joint state S because of joint action .A In VG, it is assumed that at optimal NE the reward
denoted by *(,)VG S A is equal to one and else it is set to zero, e.g. in Fig. 1.43, *(,)VG S A is
equal to one if A is an optimal NE, i.e. 1 1 1 2 2 2 3 3 3{ , , }A a b c a b c a b c and else it is zero.

Considering weakly acyclic game (WAG) [94] as a VG, where each joint action { }A A is

considered as a vertex. The vertices are connected with the directed edge avoiding self loop,
where for an agent i the action i ia A is the best response to ,iA here i stands for all

except agent .i By the principle of WAG represented as a best-response graph, from any
starting vertex A there exists a directed path to some vertex * { }A A and from *A there is no

outgoing path [94].

←
 A

ge
nt

 1
 Joint actions of Agent 2 and 3 →

1 1b c 1 2b c 1 3b c 2 1b c 2 2b c 2 3b c 3 1b c 3 2b c 3 3b c

1a 10 -20 -20 -20 -20 5 -20 5 -20

2a -20 -20 5 -20 10 -20 5 -20 -20

3a -20 5 -20 5 -20 -20 -20 -20 10

51

To eliminate the sub-optimal NE or tackle the equilibrium selection problem in WAG,
Young proposed AP in [94]. In AP, suppose in a m  player matrix game the joint action at
time t is denoted by { }.tA A Also assume two integers k and n such that 1 k n  and

.t n After acting randomly agents look at its experience and restart the learning at 1.t n 
At 1t n  each agent looks reverse at their most recent n experiences and randomly choose
k samples from that. Now, the expected reward of agent 'i s action ia is given in (1.45).
After evolution of ()iER a randomly an action is chosen from a set of best response given in

(1.46).
1

{ }

()
() ({ }) ,

i i

t i
i i i i

A A

K A
ER a u a A

k
 

 



  (1.45)

 where, 1()t iK A  refers to the count the joint action iA in the k samples and
({ }) ()i i i iu a A u A  is the reward of agent i because of joint action .A

/

/{ | arg max ()}
i i

t
i i i i

a A
BR a a ER a


  (1.46)

 It is shown in [94], that by AP WAG converges to a strict NE. Unfortunately, all the VGs
are not WAG and hence, the AP may not converge to a strict NE for all VGs. To address the
said problem the WAG and AP algorithms are modified as follows.

The WAG and AP are modified as WAG with respect to a biased set (WAGB). In WAGB,
there is a set D containing a few Nash equilibria of the WAGB. A game is a WAGB if from
any vertex A one path exists leading to the NE belongs to set D or a strict NE [95]. In AP,
agents randomly select the NE among multiple best responses of the agents. On the other
hand, in biased AP (BAP) [95], agents deterministically select the best-response action as a
NE belongs to .D Suppose, tW denotes the set of k samples drawn from the most recent n

joint actions. The following two conditions are satisfied. First condition is that the joint action
/A D such that, ,A ,t iA W A A  and / .iA A  Second condition is that there must exist

at least a joint action A D so that tA W and .A D If the above two conditions are

satisfied, then agent i chooses its best response action ia such that ,t
ia a  where

max{ | }.T T
tt T a W a D     (1.47)

 The philosophy of (1.47) is that the action ia is the component of the most recent NE

belonging to .D If the above two conditions are not satisfied, then AP is implemented. Hence,

it can be concluded that the BAP on WAGB converges to either a NE belongs to D or a strict
NE. The above techniques are applicable only when the game structure is known. To learn in
an unknown game structure multi-agent  optimality is employed. By definition a joint
action is  optimality at joint state S and time t if

/
/ /(,) max (,), { }.t t

A
Q S A Q S A A A   

Let the set of  optimal joint action, which converges tQ to *Q with slower rate then tVG

52

converges to *.VG Here,  varies proportionately to the function () [0,1],tB N  where ()tB N
decreases slowly and monotonically to zero with .tN tN refers to the minimum time required

to sample a state-action pair. The algorithm for OAL is given in Algorithm 1.9 [95]. The
convergence proof of the OAL algorithm is given in [95].

Algorithm 1.9: Optimal Adaptive Learning
Input: Action set ,iA i at joint state ,S [0,1); 

Output: Optimal Q-value *(,);Q S A

Initialize: / 10, (,) 1, (| (,)) , (,) 0, , () , ;
| |

tt t t tt n S A T S S A R S A C A S A D A
S

       

Repeat // (,)tn S A is the number of times the joint action A has been executed in joint state S up to time t
If ,t m
 Then randomly select an action , ;ia i
Else do
 Begin
 Update the virtual game tVG at joint state ;S
 Randomly select records from n recent observations of other agents' joint actions played at joint state ;S
 Evaluate expected payoff of individual action ia of the VG at joint state S by (1.45) and construct the best
 response set by (1.46);
 If condition 1 and 2 in BAP are TRUE
 Then choose best response action with respect to the biased set ;D

 Else randomly select a best response action from ();t
iBR S

 End If.
 End.
End If.

 Receive immediate reward (,);t
ir S A

 Update: (,) (,) 1,t tn S A n S A 
1(,) (,) ((,) (,)),

(,)
t

t t i t
t

R S A R S A r S A R S A
n S A

  

 / / /1(| (,)) (| (,)) (1 (| (,)),
(,)t t t

t
T S S A T S S A T S S A

n S A
  

//
/ / /

1
,{ }{ }

(,) (,) (| (,)) max (,), 1, min (,);t t t t t t
S AA AS S

Q S A R S A T S S A Q S A t t N n S A
  

     

 If ()t tCB N 
 Then do
 Begin

 (),t tCB N  *(,) (,),Q S A Q S A i  and
/

/

{ }
() { | (,) max (,)};t t t t

A A
A S A Q S A Q S A


  

 End;
 End If.
Until (,),Q S A i converge;

1.3.5.1.2.4 Sparse cooperative Q-learning (SCQL)

One of the principle bottlenecks of the MAS is the exponential increase in the space and time
complexity, with the increase in number of agents. Kok et al. [96] observed that in most of
the MAS agents are required to coordinate their actions only in a few states and in the

53

remaining they act independently. In the coordinated joint state S, the Q-value of an agent i is
denoted by (,).iQ S A However, if S be the uncoordinated joint state, then the Q-value of agent
i is denoted by (,).i iQ S a In case of uncoordinated joint state, the global Q-value (,)Q S A for

m number of agents is defined as the summation of individual Q-values given by (1.48).

1

(,) (,).
m

i i
i

Q S A Q S a


  (1.48)

Based on the above observations, in [96], Kok and Vlassis proposed Sparse Cooperative Q-
learning (SCQL), where the Q-tables of the agents are sparsely maintained as discussed
above.

1.3.5.1.2.5 Sequential Q-learning (SQL)

In [97], Wang and Silva proposed Sequential Q-learning (SQL) to handle conflicting behavior
of the agents that arises in tightly coupled multi-robot object transportation. In SQL, robots do
not select their actions simultaneously; rather they do it sequentially based on their predefined
priorities. In SQL, the problem of behavior conflict is addressed by avoiding the selection of
same actions those already selected by the preceding robots. Assuming thi robot is denoted by

, [1,]iR i m and all the robots are arranged in a special sequence. The subscript i in iR

indicates its position in the sequence. All the robots repeat steps given in Algorithm 1.10 to
form a joint action avoiding the conventional steps in the classical steps MAQL. The joint
action offered by Algorithm 1.10 avoids the bottleneck of behavior conflict in tightly coupled
multi-robot object transportation.

Algorithm 1.10: Joint action formation in SQL

Initialize ;  // be the empty set.
Observe current joint state ;S
For 1i  to m
 Evaluate the currently available action set ,i where iA the action set of robot be .i

 (());i i iA A   

 iR selects the action j
iia   by probability

(,)

|{ }| (,)

1

() .
j

i i

r
i i

Q S a
j

i i Q S a

r

eP a
e









 Include the action j
ia to the set ;

End For

Execute the corresponding selected action , ;j
ia i

1.3.5.1.2.6 Frequency of the maximum reward Q-learning (FMRQ)

In [98], Zhang et al. proposed a MARL algorithm for fully cooperative tasks, namely
frequency of the maximum reward Q-learning (FMRQ), which aims at achieving the optimal
NE to maximize the system performance with respect to the metric of interest. In FMRQ, a
modified immediate reward signal is used, which is obtained by identifying the highest global

54

immediate reward. In FMRQ, an agent needs to share only its state and reward at each
learning epoch with remaining agents.

In FMRQ, authors considered two issues: first they investigated whether the NE is good
enough for the fully cooperative MAS, secondly the curse of dimensionality of the MARL is
considered by storing the Q-value at joint state-individual action space.

To describe the dynamics of the FMRQ differential equations are formulated for the four
cases including two-agent two-action repeated game, and a three-agent two action repeated
game. In each case, the critical points of the differential equations are analyzed and it is
observed that FMRQ converges to equilibrium with maximum global rewards in all the five
cases [98]. In case 1, there exists only one global immediate reward. Case 2 and 3 have two
maximum immediate rewards in diagonal positions and in the same row respectively. In case
4, three maximum immediate rewards exist and in case 5, only one global immediate reward
exists [98].

Algorithm 1.11: FMRQ for an agent i in repeated games

Input: Action set ,i ia A i  and learning rate [0,1); 

Output: Optimal Q-value *();iQ a

Initialize: () 0,iQ a  count of selecting action ,ia 0,ian  number of times maximum global immediate

reward received by action ,ia max_ 0ian  and frequency of getting maximum immediate reward after

selecting action ,ia () 0;ifre a 
Repeat
 Select an action ia by the Boltzmann exploration scheme;

 1;i ia an n 

 Execute the action ia and update max_ ian and ();irh a

 For each action i ia A do // ()irh a refers to history of global immediate reward obtained by action ia
 Begin
 Evaluate ()ifre a by (1.49);

 () () (() ());i i i iQ a Q a fre a Q a  

 Set 0,ian  max_ 0ian  and () 0;ifre a 

 End
 End For

Until *();iQ a converges;

In FMRQ, the size of a Q-table for an agent i is |{ } | |{ }| .iS A In FMRQ, algorithm

(Algorithm 1.11), the immediate reward of an agent ,i denoted by ()i ir a is replaced by the
frequency of getting the maximum global immediate reward by the same action ,ia denoted
by ().ifre a

55

max_() ,i

i

a
i

a

n
fre a

n
 (1.49)

where ian refers to the number of times action ia is selected by agent i and max_ ian is the

number of times agent i achieves the maximum global immediate reward. Moreover, the

superiority of the FMRQ algorithm is verified by two case studies: one is the 12-vertex box-
pushing by 4-agents and the other one is the distributed sensor network optimization problem.
The FMRQ algorithm is provided in Algorithm 1.11 for an agent i in repeated games.

1.3.5.2 Competitive multi-agent reinforcement learning

The competitive MARL algorithms are discussed below. Here two competitive MARL
algorithms are discussed. One is Minimax Q-learning for two agents and its extension for
general sum game for more than two agents called Heuristically–accelerated multi-agent
reinforcement learning.

1.3.5.2.1 Minimax-Q Learning

In [99], Littman proposed a competitive algorithm namely minimax-Q learning for two
agents. In minimax-Q learning, both the agents have conflicting goals with an objective of
maximizing the sum of its own discounted expected reward. In other words, an agent tries to
maximize a reward function and simultaneously the opponent agent tries to minimize it. In [2]
and [87] authors realized that an agent must interact with other agents and the environment
during the learning phase without proposing any supporting mathematical model. In addition,
the theory of MDP [81], [45], which is an extension of game theory, also cannot handle the
multi-agent dynamics. Even sometime it is assumed that the environment is stationary.
Littman in [99] considered only two-player zero-sum Markov game. In zero-sum game, the
summation of the rewards of two agents is zero [41]. In every MDP, there is at least one
strategy that is stationary, deterministic, and optimal [99]. But most of the cases the optimal
strategies are probabilistic. For example in Fig. 1.23, (rock, paper, and scissor, Example 1.3)
selection of a deterministic policy by any one player leads to punishment and hence, the
player is defeated. The probabilistic strategy is required to represent the uncertainty about the
agents’ action choice. Suppose, the opponent agent has an action { }O O and Q-value is
denoted by (, ,)Q S A O as introduced in (1.50).

/
/ /(, ,) (, ,) (| (,)) (),

S
Q S A O r S A O P S S A V S   (1.50)

where /
{ }({ })

() max min . (, ,).A
O OP A

V S Q S A O





 (1.51)

(1.51) indicates the expected reward to the agent for playing strategy  against the opponent’s
choice { }.O O ({ })P A refers to the probability distribution over the action set { }.A The

56

algorithm for Minimax Q-learning is given in Algorithm 1.12 [99]. Algorithm 1.12 is tested in
a two-player Markov game and it is compared with Q-learning. The convergence of
Minimax-Q learning is guaranteed and the strategy offered by it is a safe choice against the
opponent even in the worst situation.

Algorithm 1.12: Minimax Q-learning
Input: Action { },A A opponent’s action { }O O at joint state ,S [0,1)  and [0,1); 

Output: Optimal Q-value *(, ,);Q S A O

Initialize:
1(, ,) 0, (,) ;

| |
Q S A O S A

A
 

Begin
 Repeat
 Choose an action to execute by (,);S A

 Receive immediate reward (, ,);r S A O

 Update: /(, ,) (1) (, ,) [(, ,) ()],Q S A O Q S A O r S A O V S      / ,S S

(,)

(,) arg max[(,) (, ,)]
O AS A

S A Min S A Q S A O


 


  and /
{ }({ })

() max min . (, ,);A
O OP A

V S Q S A O







 *(, ,) (, ,);Q S A O Q S A O
 Until (, ,)Q S A O converges;
 End.

1.3.5.2.2 Heuristically–accelerated multi-agent reinforcement learning

In [100], Bianchi et al. proposed Heuristically–accelerated multi-agent reinforcement
(HAMRL), which attempts to speed up in convergence of MARL, by balancing
exploration/exploitation employing a heuristic function for action selection. There exist a
series of literature [100]-[103], where heuristic functions are used to increase the convergence
speed of the MARL. The work of [100] is the extension of [103], whereas in [103], Littman’s
Minimax-Q is heuristically accelerated. Bianchi et al. defined a heuristic function

:{ } { } { } ,H S A O    which influences the action selection of the agents during the learning
phase, when an agent executes an action { }A A at state { }S S against the opponent’s action

{ }.O O In [100], authors employ the modified ε–greedy learning rule including the heuristic
function (, ,)H S A O given by (1.52).

() arg max min[(, ,) (, ,)]c
OA

S Q S A O H S A O    (1.52)

and ,    are the weightage on the confidence of the heuristic function. In (1.52), if
0,  then (1.52) becomes (1.53), which is the standard   greedy.

 (), if , [0,1]() ,
select an action randomly, otherwise

c S pS   
   


 (1.53)

where [0,1]p is a random number. Considering 1   the heuristic function is given by

57

max (, ,) (, ,) , if = ()

(, ,) ,
0, otherwise

H
i

Q S i O Q S A O A S
H S A O

    


 (1.54)

where , ()H S  is the heuristic policy. The superiority of the HAMRL (Algorithm 1.13)

is validated by conducting the experiments in two robots soccer game.

Algorithm 1.13: HAMRL for Zero sum game
Input: Action { },A A opponent’s action { }O O at joint state ,S [0,1),  [0,1)  and [0,1); 

Output: Optimal Q-value *(, ,);Q S A O

Initialize: (, ,) 0, (, ,), , ;HQ S A O H S A O  
Begin
 Repeat
 Choose an action { }A A using the modified  –greedy rule;

 Execute { },A A observe the opponent’s action { };O O

 Receive immediate reward (, ,);r S A O

 Update: /(, ,) (1) (, ,) [(, ,) ()],Q S A O Q S A O r S A O V S      /S S and (, ,),H S A O

 where /
{ }{ }

() max min (, ,);
O OA A

V S Q S A O




 *(, ,) (, ,);Q S A O Q S A O
 Until (, ,)Q S A O converges;
 End.

1.3.5.3 Mixed multi-agent reinforcement learning

Mixed MARL includes the following algorithms. The mixed MARL may be cooperative or
competitive. It can be categorized based on the number of joint states involved: static and
dynamic.

1.3.5.3.1 Static
The static MARL algorithms are further extended in Fig. 1.36.

1.3.5.3.1.1 Belief-based Learning rule

In belief based learning algorithm, an agent maintains a belief about the remaining agents’
strategy. This section illustrates the belief-based learning rule.
1.3.5.3.1.1.1 Fictitious play
Fictitious play (FP) [104] is a belief-based learning rule. Here belief indicates that a player
adapts with the strategy about opponent players’ and behaves as per the strategy learned. In
FP, a robot can resolve the problem of equilibrium selection [38] in a coordinated game by
repeatedly playing the game by the same robot. FP is an effective and efficient approach to
reach equilibrium in a coordinated game. As per FP, agent i learns the models of all the other
agents j i by the model given in (1.55).

58

,j
j

j
j

j
ai

a j
aa

C
P

C



 

 (1.55)

where
j

i
aP refers to the model of agent 'j s strategy evaluated by agent i or agent

'i s assumption of playing j ja A by agent j or i and
j

j
aC be the number of times agent

i observed agent j executing action .ja In cooperative games, the strategy offered by (1.55)

leads to an equilibrium, where in case of multiple equilibrium, agents randomly choose any
one. Also, in FP, a player does not need to learn about opponent players’ reward rather it
maintains a belief about the opponents’ feature strategy. If a FP converges to *, then * is a

NE.
1.3.5.3.1.1.2 Meta strategy
In [105], Powers and Shoham proposed a straight forward MARL algorithm for repeated
games, which have the following two requirements. The first requirement is to specify a class
of opponents and against them the algorithm yields a reward that approaches the reward
corresponding to the best response. Second requirement is that the reward offered by the
algorithm fulfills a threshold of security level reward. Constraining the above requirements
the algorithm achieves a close to optimal payoff in self-play. Based on the above conditions
an algorithm is proposed in [105], for stationary opponents only. However, to learn in a
repeated game a learning algorithm is required. In the learning algorithm, an agent plays its
best response with a prior probability of its opponent's strategy. GAMUT [59] is employed to
test the superiority of the proposed algorithm in [105].

In [106], two properties are presented related to the rationality and convergence. By
rationality in a stage game, if the other players' strategies converge to stationary strategy, then
the learning algorithm will converge to a stationary strategy and it is the best response to the
other players' strategies. Another property is related to the convergence. By this property the
learner will necessarily converge to a stationary strategy.

In [106], Bowling and Veloso proposed an algorithm for known repeated game having two
players and two actions. Conitzer and Sandholm in [107], extends the work in [106] for all
repeated games. It is investigated in [105] that the algorithms considering self-play proposed
in [106] and [107] are not convergent against all possible opponents. In Fig. 1.30, 1.31 and
1.34, by Tit-for-Tat algorithm for the Prisoner's Dilemma and game of Chicken offers higher
average reward in self-play than the rewards at NE. To avoid encounter the opponent outside
the target set, security value sV is defined in (1.56).

1 1 2 2
1 2

{ } { }
max max (,)s eV V

   
 

 
 (1.56)

59

In summary, Powers and Shoham synergistically fuse the FP [39], Bully [108] and
Minimax [99] strategy with an aim to create most powerful hybrid algorithm [105].

Algorithm 1.14: Bully Algorithm

Begin
 An agent i initiates an election;
 Agent i sends election message to all agents with higher IDs and waits for feedback;
 If feedback is not OK
 Then agent i becomes coordinator and sends coordination message to all agents with lower IDs;
 Else
 The agent i drops out and waits for a coordination message;
 End;
 If an agent receives an election message
 Then immediately sends coordination message subject to that the agent has highest ID;
 Else
 Return OK and starts an election;
 If an agent receives a coordination message
 Then the agent i treats the sender as the coordination;
 End.

By FP an agent plays best response against its stationary opponent utilizing the likelihood
of other agents to select an action from history. In [105], the best response

() arg max((,))r e
x X

B OV x 


 (1.57)

where,
1

1{ : (,) max((,)) }
z

X y EV y EV z


  


    (1.58)

Algorithm 1.15: Meta Strategy Algorithm

Begin
Set strategy = BullyMixed
 Play strategy at time step 1;t

 Play strategy at time step 2t ;

 If strategy=BullyMixed AND 1H BullyAVGValue V   with probability P

 Then set strategy= 2 0()t
rB d and play;

 End If

 If 1
1 3|| ||t t

o t td d  

 Set best Strategy 2 0();t
rB d

 Else if strategy=BullyMixed AND 1H BullyAVGValue V  
 Then set Best strategy=BullyMixed;
 Else
 Set best Strategy=Best Response;
 End If
 Until end of the game;
 If 0 ec 0t t s urityAVGValue V   

 Play Maximin strategy for 3t time steps
 Else
 Play best Strategy for 3t time steps;
 End If
End

60

In [105], Bully algorithm (Algorithm 1.14) is extended to handle multiple strategies with
equal reward by maximizing opponent's values. In Bully algorithm, a full set of mixed
strategies are

arg max((, ())),e r
x X

BullyMixed OV x B x


 (1.59)

1
1 0 0{ : (, ()) max ((, ()))}e r e r

z
X y V y B y V z B z


   (1.60)

Bully algorithm is one, which is employed to elect a coordinator dynamically among m

number of agents with unique identify (ID) in the field of distributed computing. In
distributed artificial intelligence, an algorithm needs to act as a leader (or coordinator). In
distributed algorithm, it is assumed that each agent has a unique ID and goal of the algorithm
is to find out the agent with highest ID. The Bully algorithm is given in Algorithm 1.14.
Finally, the Minimax strategy is defined as

21 1
1 2maximin arg max min (,)eV


 


 (1.61)

Initial portion of the Algorithm 1.15 is related to coordination/exploration to identify the class
of opponent and choose one strategy among three. If neither stationary strategy nor Bully
strategy holds, then best response strategy is applied. The algorithm plays with one of the
three strategies maintaining the average reward within the security level and improving the
maximum strategy when it is too low, where 2

1
t
td refers to the distribution of opponent actions

for the period from 1t to 2 .t nAvg represents the average value achieved by the agent during
the last n epoch. BullyV represents 0(, ()).e rV BullyMixed B BullyMixed

1.3.5.3.1.1.3 Adapt When Everybody is Stationary, Otherwise Move to Equilibrium
(AWESOME)

As per [109] the minimum requirements of multi-agent system are that agents learn optimally
against stationary opponents and converge to a NE when all the agents are playing the same
algorithm. WoLF-IGA [110] has been satisfied the above criteria in a two-agent two-action
repeated game assuming that the opponents' strategies are observable. In [109], Conitzer and
Sandholm proposed Adapt When Everybody is Stationary, Otherwise Move to Equilibrium
(AWESOME), which is guaranteed to have the above properties for more than two agents and
actions assuming that the opponents' actions (not strategies) are observable. In AWESOME,
either agents' aim at adapting with the present strategies of the opponent agents or they
converge to an already learned NE. Once, both of the above hypotheses are discarded, agents'
restart the learning by the AWESOME algorithm.

The basic idea of the AWESOME is straight forward. If other agents’ are following
stationary strategies, then AWESOME offers its best strategy to the other agents. On the other
hand, if other agents’ adapt their strategies, then AWESOME follows an already learned

61

equilibrium. In spite of the above basic idea, the following additional specifications are made
before proposing the AWESOME algorithm.

Algorithm 1.16: AWESOME Algorithm

For 1 to i m

 * ();i ComEquStrategy i  //compute equilibrium strategy for agent i
End For;
Repeat
 For 1 to i m

 2 ();prev
iIni Empty h 2 ();curr

iIni Empty h
 End For;

;APPE true // All players playing Equilibrium
;APS true // All players stationary

;false  //  is true if the equilibrium hypothesis is just rejected

0;t  // denotes the tht epoch and is initializes to zero in every restart.
* ;Me  // refers to the AWESOME player’s current strategy

While APPE

 For 1 to tj N

 ();Play  //Play the strategy 
 For 1 to i m

 ();curr
iUpdate h

 End For;
 End For;
 If APPE=false
 If  =false
 For 1 to i m

 If (|| ||)prevcur t
i sih h  

 Then ;APS false
 End If;
 End For;
 End If;

 Then ;false  arg max (,);curr
Me

a
a V a h

 If 1(,) (,) | | ;curr cur t
sMe MeV a h V h n A  

  

 Then ;a 
 End If;
 End If;
 If APPE=true
 For 1 to i m

 If (|| ||)pcur t
i eih   

 Then ;APS false ();RandAct  ;true 
 End If;
 End For; End If;
 For 1 to i m

 ;prevcur
i ih h 2 ();curr

iIni Empty h

 End For; 1;t t 
End While;

62

 From the beginning it is specified which equilibrium to repeat and restart learning by the
AWESOME to avoid confusion.

 After restarting the learning agents forget whatever it learned for simplicity.
 Following one equilibrium strategy among the already computed other equilibrium

strategies may lead to divergence from equilibrium. Although, a null hypothesis exists,
AWESOME does not reject the hypothesis without sufficient confirmations.

 If an agent selects its own action by its own mixed strategy, then AWESOME rejects the
equilibrium strategy to avoid the nonequilibrium strategy.

 After rejecting the equilibrium strategy by AWESOME, randomly an action is chosen
from a pool and changes its strategy.

 In AWESOME, except actions the strategies of the remaining agents are not observable.
Hence, one needs to specify how to reject an equilibrium strategy which is common to all
the agents.

The AWESOME algorithm is given in Algorithm 1.16 [109], and is developed based on the
above specifications. It is shown in [109], AWESOME learns best responses against the
stationary opponents, and AWESOME converges to NE in self-play.
1.3.5.3.1.1.4 Hyper-Q
Q-learning is a well-known technique to learn optimal strategies by an agent utilizing the
cumulative rewards earned by it in an infinite trial-and-error. Unfortunately, this is not
applicable for nonstationary environment with multiple adaptive agents. Most of the multi-
agent Q-learner [72], [89], [99] requires knowledge about other agents’ rewards and Q-
function at each learning epoch. These MAQL algorithms are convergent subject to the
following conditions which are not realizable in practice. Firstly, an agent can observe all
agents’ rewards. Second, all the learning agents follow the same learning algorithms. In [111],
Gerald proposed Hyper-Q learning. Hyper-Q learner learns only the mixed strategies and the
strategies of the remaining agents are estimated employing the Bayesian inference. Hyper-Q
learner aims at overcoming the above limitations of multi-agent system by modeling the
environment as repeated stochastic game, where only the remaining agents' actions are
observable but the rewards received due to the actions are not observable.

Assuming the Hyper-Q learner is playing in a stochastic Markov game and hence, the
reward functions of the agents become the function the available joint actions. Now, instead
of choosing the best joint action with probability one (pure strategy), in stochastic Markov
game, an agent chooses actions with the best probability (mixed strategy). The Hyper-Q
learning update rule is given in (1.62).

/
/ /(, ,) [(, ,) max (, ,) (, ,)],

i
i i i i i i i i

a
Q S p p r S p p Q S p p Q S p p        (1.62)

63

where ip and /
ip denote the mixed strategy to select action ia and /

ia at joint state S and joint

next state /S respectively. ip and /
ip refer to the joint mixed strategy of all the agents

except i to select joint action iA and /
iA at joint state S and joint next state /S respectively.

It is indicated in [111] that establishing the convergence for the function approximation based
Q-learning is more difficult than the same for the Q-learning. If all the agents do explore in a
similar exploration strategy, then like Q-learning in Hyper-Q learning, agents may fail to spot
the optimal mixed strategy in the strategy space after infinite visit of the joint states. In case
of stationary opponent strategy, the stochastic game becomes a MDP with stationary state
transitions and stationary rewards. Under the above circumstance Hyper-Q learning
converges. Remaining convergence conditions are given in [111]. To estimate opponent
strategy Bayesian strategy estimation is done in [111]. By Bayesian estimation one can write

/
/ /

(|) ()(|) ,
(|) ()

S

P H S P SP S H
P H S P S




 (1.63)

where H refers the history of observed actions, S and /S are the discrete state and next state

respectively. The outstanding performance of Hyper-Q learning in terms of convergence rate
and opponent agent’s strategy modeling is tested in the framework of two-player, three-action
matrix game Rock-Paper-Scissors game (Example 1.3).

1.3.5.3.1.2 Direct policy search based

Direct policy search based algorithms are further classified as fixed learning rate and variable
learning rate as shown in Fig. 1.36.

1.3.5.3.1.2.1 Fixed learning rate
The algorithms with fixed learning rates are given below

1.3.5.3.1.2.1.1 Infinitesimal Gradient Ascent (IGA)

In [112], Singh and Kearns proposed (Infinitesimal Gradient Ascent) IGA based on the
positive changes in expected reward of the agents. The IGA is tested in a two player, two-
action iterated general-sum-games. It is shown in [112], that agents converge to NE but once
they fail to converge to NE they can never reach the NE. Literature shows that agents
converge to NE but with restriction and limiting the applicability of the NE [113]. Following
the gradient ascent (positive change) is the most common trend in machine learning
algorithm. It is not guaranteed that the strategies computed by gradient ascent in two-player,
two-action iterated games will converge to NE. However, the average reward is guaranteed to
converge NE. For example let there is a two-player, two-action general-sum game. The
reward matrix of the row (R) and column (C) player is given in Fig. 1.44.

64

Fig. 1.44 reward matrix in a two-player two-agent game

Let row player choose action 1a stochastically with probability 0 1r  and column player
choose action 1a stochastically with probability 0 1.c  The expected payoff of the row and

column player is given by (1.64) and (1.65) respectively.
 11 22 12 21(,) () ((1)(1)) ((1)) ((1))RV r c r rc r r c r r c r r c        (1.64)

11 22 12 21(,) () ((1)(1)) ((1)) ((1))CV r c c rc c r c c r c c r c        (1.65)
Here, the strategy pair (,)r c is called NE if and only if, the following two conditions hold.

1) if for any mixed strategy /r (1.66) holds: i.e.,
/(,) (,)R RV r c V r c (1.66)

and 2) for any mixed strategy /c (1.67) holds: i.e.,
/(,) (,).C RV r c V r c (1.67)

Gradient for the row player and column player is given by (1.66) and (1.69) respectively
considering 11 22 21 12() ()u r r r r    and /

11 22 21 12() ().u c c c c   

22 12
(,)

()RV r c
cu r r

r



   (1.68)

/
22 12

(,)
()CV r c

ru c c
c




   (1.69)

The mixed strategy update rules are given by (1.70) and (1.71), where  refers to the step

size.
(,)RV r c

r r
r





  (1.70)

(,)CV r c
c c

c





  (1.71)

Assuming that the gradient ascent algorithm is a full information game and hence, both the
players know the game matrices and the mixed strategies played by the opponent players in
the previous step.

By game theory [43] the sequences of strategies over time may never converge to NE.
However, in [112], it is shown that the average rewards of both the players always converge.
The basic logic behind the analysis of two players acting according to IGA is a two
dimensional dynamic system. Considering the infinitesimal step size of  (0),  IGA is
proposed in [112]. By (1.66)-(1.71) and setting 0  the unconstraint dynamics of the

strategy pair can be expressed as a function of time in (1.72).

R

 C
 1a 2a

1a 11 11, r c 12 12, r c

2a 21 21, r c 22 22, r c

65

22 12
/ 22 21

0 ()
0 ()

r
r ru rt

c c c cu
t






 
       

                
  

 (1.72)

If the matrix U given in (1.73) is invertible, then trajectories of the unconstraint strategies of

the two-player two-action stochastic game are of having either limit cycle behavior or have
divergent nature. The direction and structure of these trajectories depend on the exact values
of u and / .u

/
0

0
u

U
u

 
  
  

 (1.73)

By solving (1.72) * *(,)r c is given in (1.74)
* * 22 21 22 12

/(,) [,]c c r rr c
uu

 
 (1.74)

The average expected reward of the IGA player converges to a NE following one of the
following conditions. First condition is that the trajectories of the strategy pair will
automatically converge to a NE. The other condition is that the trajectories due to the strategy
pair will not converge but the average reward of the two players reward will converge to the
NE. To prove these conditions following exclusive and exhaustive cases are considered [114].
1. U is non-invertible, if /0/ 0u u  or /0, 0.u u  Such cases can appear in team, zero-sum

and general-sum games.
2. U is invertible, if the Eigen values of (1.75) are imaginary with zero real part, i.e., when

/ 0.uu 

/
0

0
u x x

y yu


     
     

     
 (1.75)

3. U is invertible, if its Eigen values are real with zero imaginary part. This condition may
appear in team and general-sum games but not is zero-sum games, i.e., when / 0.uu 

If U has imaginary Eigen values with zero real part, then based on the location of the center
(i.e., * *(,)r c) in the two-dimensional plane there are three possibilities.

1. The center * *(,)r c is in the interior of the unit square, 2. Center * *(,)r c is on the boundary

of the unit square and 3. Center * *(,)r c is outside of the unit square.

1.3.5.3.1.2.1.2 Generalized Infinitesimal Gradient Ascent (GIGA)

Convex programming is the generalization of the linear programming having several
applications in machine learning domain [115]-[117]. The convex programming aims at
searching a point F which maximizes the cost function.

: R.c F  (1.76)
A convex programming comprises a feasible set nF R and a convex cost function given in

(1.76). In applications like industrial optimization, nonlinear facility location problems [115],
network routing problems [118] and consumer optimization problems [119], the value of the

66

end product is unknown until end product is created. In [120], an online convex optimization
programming is undertaken with identical feasible set but having dissimilar cost functions. An
algorithm is proposed in [120], namely generalized IGA (GIGA), which is generally reliable
to solve former problems. GIGA is the extension of IGA [112] applicable for more than two
agents. Following the definitions of convex, convex programming problem, online convex
programming problem and the assumptions made in [110], make clear idea about the online
convex optimization. Interestingly, it is shown in [110] that the repeated games are online
linear programming. Finally, GIGA tries to minimize regret [120].
1.3.5.3.1.2.2 Variable learning rate
The algorithms with variable learning rates are given below.

1.3.5.3.1.2.2.1 Win or Learn Fast-IGA (WoLF-IGA)

Referring from section 1.3.5.3.1.2.1.1 if the center * *(,)r c is inside the unit square with

imaginary Eigen values, then the performance of IGA and WoLF-IGA differs in terms of
convergence. It is shown in [110], that IGA does not converge if * *(,)r c lies inside the unit

square. But WoLF-IGA converges in such situation. The strategy-space where the player wins
and loses is also indicated in the proof. In addition, it is shown in [110], that the trajectories
due to Eigen values are pricewise elliptical in nature and take a spiral shapes towards the
center. In [110], lemmas are proposed assuming that there are only imaginary Eigen values.

By Lemma 6 in [110], if the learning rate for the row player ()r and the learning rate for
the column player ()c remain constant, then the trajectory due to strategy pair forms an

ellipse considering * *(,)r c as the center and
/

 0
1

| | ,
0

| |
c

r

u

u





 
   
   

  
 

 are as the axes of the ellipse. In

[110], Lemma 7 concludes that a player is winning if the strategy of the player is moving
away from the center. It is also mentioned in [110], that in a two-person, two-action iterated
general-sum game both the players follow the WoLF-IGA algorithm with learning rates

max and min , then their strategies will converge to a NE subject to

min min

max max
1.

r c

r c
 

 
 (1.77)

1.3.5.3.1.2.2.2 GIGA-Win or Learn Fast (GIGA-WoLF)

The most common problem in MARL, regret and convergence are addressed in gradient-
based GIGA-WoLF [121]. GIGA-WoLF is the synergism of GIGA’s no-regret property and
WoLF-IGA’s convergence property [121]. A bound is assigned to test the GIGA-WoLF’s
regret against the unknown strategy of an opponent agent. For a two-agent, two-action
normal-form game, if one agent follows the GIGA-WoLF algorithm and another agent

67

follows the GIGA algorithm, then their strategies does converge to NE. Both the properties
are validated theoretically and experimentally in [121]. In GIGA-WoLF agents must know
about the game and should have the model of opponent agent. In almost all the games (except
“problematic” Shapley’s game) unlike GIGA’s strategies GIGA-WoLF’s strategies does
converge in self-play to equilibrium.

1.3.5.3.2 Dynamic

The dynamic algorithms are categorized as equilibrium dependent and independent. The
algorithms based on the equilibrium solution concept are listed below.

1.3.5.3.2.1 Equilibrium dependent

The equilibrium dependent MARL algorithms are given below.
1.3.5.3.2.1.1 Nash-Q Learning
Nash Q-learning (NQL) is the extension of Littman's Minimax-Q learning [99]. In other
words, it’s the extension of zero-sum stochastic game to the general sum stochastic game.
NQL is a MAQL algorithm, which converges under specific conditions. It looks for optimal
joint action (NE) in a game. For multiple NEs in the game, the NQL algorithm is fused with
other learning techniques to obtain optimal strategies for the entire team. The adopted
framework in [89] is stochastic/Markov games. Markov game is the generalization of the
MDP with more than two agents. Unlike, zero-sum-game, here in general sum stochastic
game, an agent's gain is no longer its opponent agent's loss. In general-sum-game, an agent's
reward depends on other agent's choices and hence, the NE is employed. In NE, an agent
cannot deviate unilaterally and it is assumed that there is no communication among the
agents. Only agents can observe other agents' strategies and rewards. In addition, the state
transition probabilities and reward functions are unknown. The NQL algorithm is designed in
such a way so that all the agents converge to the NE with restrictions. NQL is guaranteed that
all the agents converge to the NE. But for multiple NE solutions it is not guaranteed that all
the agents converge the same NE. In [77], Filar and Vrieze proposed that every general-sum
discounted stochastic game posses at least one equilibrium point in stationary strategy. Unlike
single agent Q-learning [81] and Minimax Q-learning [99], in NQL the Q-learning update
rule for agent i is given in (1.78).

/(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A NashQ S i       (1.78)

where / / / /
1() ().... (). ().i m iNashQ S S S Q S  (1.79)

An online version of NQL and simulation results on Grid game 1 and 2 are given in [71]. The
NQL for general sum stochastic game is given in Algorithm 1.17. The convergence proof of
Algorithm 1.17 is given [71].

68

Algorithm 1.17: NQL in general-sum game

Input: Action i ia A at , ,i is S i  learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *
1 1(,), ; / / { } , { } ;m m

i i ii iQ S A i S s A a   

Initialize: (,) 0, ;iQ A A i 
Begin
 Repeat
 Choose an action , ;i ia A i 

 Receive immediate reward (,), ;ir S A i

 Update: /(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A NashQ S i       and / ;S S

 *(,) (,), ;i iQ S A Q S A i  // / / / /
1() ().... (). ()i m iNashQ S S S Q S 

 Until (,),iQ S A i converge;
 End.

1.3.5.3.2.1.2 Correlated-Q Learning (CQL)
In [72], Greenwald and Hall introduced a MAQL algorithm namely Correlated-Q Learning
(CQL). In CQL, Q-value of an agent updates at Correlated equilibrium (CE). CQL
generalizes both NQL and FFQ (discussed in section 0) in general-sum stochastic games. If
NE and CE do not intersect, then the agent receives less reward at NE compared to the same
at CE. Four variant of CE are defined in [72] and the definition of CE is given in Definition
1.18. The algorithm for CQL is given in Algorithm 1.18. Convergence analysis of the above
equilibria in the framework of Markov games are done in [72].

Algorithm 1.18: Correlated-Q Learning
Input: Action i ia A at state i is S for all the agents learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *(,), ;iQ S A i

Initialize: (,) 0, ;iQ S A i 
Begin
 Repeat
 Choose an action , ;ia A i 

 Receive immediate reward (,), ;ir S A i

 Update: /(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A V S i       and / ;S S

 / / / /
1 2() ((), (),..., ()), ;i mV S CE Q S Q S Q S i 

 *(,) (,), ;i iQ S A Q S A i 
 Until (,), ;iQ S A i converge;
 End.

1.3.5.3.2.1.3 Asymmetric-Q Learning (AQL)
In [122], Ville proposed Asymmetric-Q Learning (AQL) algorithm, where an agent leads the
follower agents by providing the information about the follower agents’ strategy to the
follower agents. AQL offers the following benefits:

69

Algorithm 1.19: Asymmetric-Q learning for the leader
Input: Action i ia A at state i is S for all the agents learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *(,), ;iQ S A i

Initialize: (,) 0, ;iQ S A i 
Begin
 Repeat
 Choose an action , ;ia A i 

 Receive immediate reward (,), ;ir S A i

 Update: /(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A V S i       and / ;S S

 / / / /
1 2() ((), (),..., ()), ;i mV S SE Q S Q S Q S i 

 *(,) (,), ;i iQ S A Q S A i 
 Until (,), ;iQ S A i converge;
 End.

 In each state the leader has unique equilibrium point.
 Asymmetric Q-learner always achieves the pure strategy NE very fast. Though mixed

strategy NE exists.
 The AQL algorithm enjoys the lower space and computational requirements than

conventional algorithms.

Algorithm 1.20: Asymmetric-Q learning for the follower
Input: Action i ia A at state i is S for all the agents learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *(,), ;iQ S A i

Initialize: (,) 0, ;iQ S A i 
Begin
 Repeat
 Choose an action , ;ia A i 

 Receive immediate reward (,), ;ir S A i

 Update:
/

/ /(,) (1) (,) [(,) max (,)]i i i i
A

Q S A Q S A r S A Q S A      and / ;S S

 *(,) (,), ;i iQ S A Q S A i 
 Until (,), ;iQ S A i converge;
 End.

In [122], the existing MAQL algorithms are divided in three clusters. One is the methods

utilizing the direct gradients of agents’ value function. Second one is the methods that
estimate the value functions and then use this estimate to compute equilibrium of the process.
Last one is the use of direct policy gradients. The AQL algorithm is developed by Stackelberg
equilibrium (SE) [44]. The algorithm for the leader and the follower are given in Algorithm
1.19 and 1.20. The leader agents are capable to maintain all the agents Q-tables. However, the
follower agents are not able to maintain all the agents’ Q-values and hence, they just

70

maximize their reward. Experiments are performed in the grid world environment to
demonstrate the superiority of the AQL algorithm.
1.3.5.3.2.1.4 Friend-or-Foe Q-learning
In [123], Littman proposed one variant of MAQL algorithm namely Friend-or-Foe Q-learning
(FFQ) algorithm with a strong convergence guarantee compared to NE in the framework of
general-sum stochastic game, where agents are instructed to consider other agents’ either as a
friend or foe. Though, FFQ learning is an improvement over the Nash-Q. In FFQ, two
variants’ of NE are employed. One is adversarial equilibrium and another is coordination
equilibrium. In Minimax-Q (zero-sum-game) [99] all the equilibria are adversarial
equilibrium. However, in general-sum game all the equilibria are not coordination
equilibrium. Coordination equilibrium provides the highest possible reward of agent
, [1,]i i m is given in (1.80) [123].

1 1

1 1
,...,

(,...,) max (,...,)
m m

i m i m
a A a A

R R a a 
 

 (1.80)

Except fully cooperative game, coordination equilibrium need not always exist. The
adversarial and coordination equilibria are explained in Fig. 1.25. The difference between the
Nash operation and the maximization or minimax operations is that the latter two have unique
solutions. However, the Nash operation offers two variant of solutions: adversarial and
coordination equilibrium depending on the problem type.

Two Propositions are proposed and proved in [123]. As per the Propositions if a one–stage
game has a coordination/adversarial equilibrium, then all of the coordination/adversarial
equilibrium have same value. There exist two conditions for convergence [123]. In summary,
the conditions statement is that for a game there exists either adversarial/coordination
equilibrium. Later two stronger conditions of convergence are proposed in [89], [123]. These
conditions can be summarized as follow. There exists an adversarial/coordination equilibrium
in a game and every game is defined by the Q-functions adapted during the learning phase.
The later conditions are also not sufficient to guarantee convergence. Hu and Wellman in
[89], states two theorems that by the later two conditions Nash-Q converges to Nash-Q
equilibrium until all the equilibria are adapted during the learning phase are unique. Also by
the later two conditions Nash-Q converges to NE, until the required equilibria is employed in
(1.82).

Now, in FFQ algorithm / ()iNash Q S are given in (1.81) and (1.82) for Friend-Q

(coordination equilibrium) and Foe-Q (adversarial equilibrium) respectively.

/ /
/ / / / () max (). (,)i i

A A
Nash Q S P A Q S A  (1.81)

11 //

/ / / / / /
,...,,...,

 () max min () (,).
yx A

i i
a aa a

Nash Q S P A Q S A



  (1.82)

71

where, /
1,..., ,mA a a  //

1 1,..., , ,...,x yA a a a a  and y refers to the number of foes

(opponent agents). The convergence of FFQ learning is subject to that the Nash operator is
max or minimax operator [123]. Like NQL, for simulation purpose two grid games are
employed [89], [123] in FFQ. Six different variants’ of opponents are described in [123].
Though, Nash-Q and FFQ cannot fix the problem of finding equilibria, if neither coordination
nor adversarial equilibrium exists. The algorithm for FFQ learning is given in Algorithm 1.21.

Algorithm 1.21: Friend-or Foe-Q Learning

Input: Action i ia A at state i is S for all the agents learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *(,), ;iQ S A i

Initialize: (,) 0, ;iQ S A i 
Begin
 Repeat
 Choose an action , ;ia A i 

 Receive immediate reward (,), ;ir S A i

 Evaluate / (),iNash Q S i by (1.81) and (1.82) respectively for Friend-Q and Foe-Q

 Update: /(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A Nash Q S i       and / ;S S

 *(,) (,), ;i iQ S A Q S A i 

 Until (,), ;iQ S A i converge;
 End.

1.3.5.3.2.1.5 Negotiation-based Q-learning
In [124], Hu et al. proposed a MARL without mutually sharing their value functions. Authors
in [124] mentioned that mutual exchange of value function is impractical because of the local
restriction of the system and privacy of the agents in case of distributed agents. Doing so
appears impossible to evaluate equilibrium in a one short game. In the above circumstances,
authors propose a multi-step negotiation process to evaluate three types of pure strategies:
PSNE, equilibrium-dominating strategy profile (EDNP) and nonstrict EDNP, instead of
computing the computationally expensive MSNE. It is also shown that above mentioned three
strategies are symmetric Meta strategies. Fusing the above techniques Hu et al. proposed
negotiation-based Q-learning (NegoQ) in [124].
 NegoQ deals with pure strategy equilibrium. However, in some game (e.g., rock-paper-
scissor game, Example 1.3) PSNE does not exist. Another hindrance is that a strategy may be
Pareto dominated and so not a PSNE. In Prisoners’ Dilemma, only one PSNE (C, C) exist as
shown in Fig. 1.34. Though (D, D) is the better choice, but (D, D) is the Pareto optimal and
not a PSNE. In this regard, a strategy profile Pareto dominates NE, i.e., EDNP is defined in
Definition 1.19.
Definition 1.19: In an m  agent (2)m  normal-form game, a joint action { }A A is an
EDNP if there is a PSNE { }NA A such that

72

() (), [1,].i i NQ A Q A i m  (1.83)

By Definition 1.19 one can conclude that each agent following EDNP receives more reward
than the same of by following PNSE.

Algorithm 1.22: Negotiation to evaluate the PSNE for agent i in a Normal-form game

Input: Action i ia A only for the agent [1,]i m and ();iQ A // 1{ } m
iiA A A  

Output: PSNE set { };NA

Initialize: { } ;NA 

Evaluate maximal reward set for agent i ;iMS

For all { }i iA A 

/

/arg max (,);
i

i i i
a

a Q a A

 { } { } { , };N N i iA A a A 
End For
For all joint action { }NA A

 Ask remaining agents that is { }NA includes ;A a

 If { }NA does not include A then

 { } { } \{ };N NA A A

 Inform other agents to exclude A from their { }NA sets
 End If
End For

For all joint action /A received from remaining agents

 If /A belongs to iMS then
 Response as yes to the remaining agents;
 else
 Response as no to the remaining agents;
 End If
End For

Before defining the nonstrict EDSP a normal-form game with the same is given in Fig.

1.45. In Fig. 1.45, there are two PSNE: (a1, b1) and (a2, b2). It is apparent that the strategy
profile (a1, b3) and (a3, b3) provide a greater reward to A than (a1, b1) and a greater reward to
B than (a2, b2) respectively. So, the priority of (a1, b3) and (a3, b3) are more than (a1, b1) for A
and (a2, b2) for B respectively. Hence, for A and B the nonequilibrium strategy profile (a1, b3)
and (a3, b3) partially dominate the existing PSNE. In [124], Hu et al. defined them as nonstrict
EDSP as given in Definition 1.20.
Definition 1.20: In an m  agent (2)m  normal-form game, a joint action { }A A is an

EDNP if there is a PSNE { }i
NA A such that

() (), [1,].i
i i NQ A Q A i m  (1.84)

73

Fig. 1.45 Nonstrict EDNP in Normal-form game

Algorithm 1.23: Negotiation to evaluate the nonstrict EDSP for agent i in a Normal-form game

Input: Action i ia A only for the agent [1,],i m { }NA from Algorithm 1.13 and ();iQ A

// 1{ } m
iiA A A  

Output: nonstrict EDSP set { };nPA

Initialize: { } ;nPA 

{ } \{ };NX A A

For each PSNE { }N NA A

 For each joint action { };A X

 If () ()i i NQ A Q A then

 { } { } \{ };X X A

 { } { } { };nP nPA A A 
 End If
 End For
End For
For all joint action { }nPA A

 Ask remaining agents that is nPA includes ;A
 If answer is no then
 { } { } \{ };nP nPA A A
 End If
End For

For all joint action /A received from remaining agents

 If /A belongs to nPA then
 Response as yes to the remaining agents;
 else
 Response as no to the remaining agents;
 End If
End For

In the multistep negotiation process of computing the above mentioned three pure strategy

profiles, agents exchange their preferences of joint actions among themselves in terms of
binary answers. An illustration of the multistep negotiation process is given in Fig. 1.46. In
Fig. 1.46, ‘Y’ and ‘N’ represent as yes and no respectively. A joint action is pure strategy
profile if and only if both the agents’ responses are yes. The negotiation process comprises of
three types: 1) negotiation for finding the set of PSNE, 2) negotiation for finding the set of
nonstrict EDSP and 3) negotiation for choosing equilibrium (joint action) from the sets
obtained by the above two steps. Evaluation of EDSP follows from the evaluation of the

A

 B
 b1 b2 b3

a1 (20,40) (4,22) (29,30)
a2 (18,9) (36,19) (7,4)
a3 (17,26) (15,38) (27,38)

74

nonstrict EDSP, as EDSP is a special case of nonstrict EDSP. The negotiation to evaluate the
PSNE for agent i is given in Algorithm 1.22. The negotiation to evaluate the nonstrict EDSP
for agent i is given in Algorithm 1.23. Based on the Negotiation algorithms (Algorithm 1.22
and 1.23) to evaluate the pure strategy profiles the NegoQ algorithm for a Markov game is
given in Algorithm 1.24. The superiority of the Algorithm 1.24 is tested in grid-world maps
over the state-of-the-art reference algorithms.

Fig. 1.46 multistep negotiation process between agent A and B

Algorithm 1.24: Negotiation-Q learning for agent i in a Markov game

Input: Joint action space{ },A number of agents' ,m stste space { },S learning rate , discounting factor 
and exploration rate ;

Output: Optimal joint Q-value *(,);iQ S A

Initialize: (,) 0;iQ S A 
Begin
 Repeat
 Negotiate with remaining agents employing Algorithm 1.13 and 1.14;

 Select the pure strategy equilibrium /A using   greedy;

 Receive experience tuple /, , (,), ;iS A r S A S  // (,)ir S A and /S are the immediate reward and next
joint state

 Update: / /(,) (1) (,) [(,) (,)],i i i iQ S A Q S A r S A Q S A      and / ;S S

 *(,) (,);i iQ S A Q S A
 Until (,);iQ S A converges;
 End.

1.3.5.3.2.1.6 MAQL with equilibrium transfer
Hu et al. in [125] identified, that agents’ evaluate the same equilibrium (NE or CE) at a joint
state for different one-shot games. Here, two equilibria are declared as same if and only if the
Euclidian distance between the probability distribution of the strategies is less than a
predefined threshold. Reuse of the previously computed equilibrium (or equilibrium transfer)
decreases the convergence time of the equilibrium-based MAQL decreases with negligible
transfer loss. Suppose G and G/ are two one-short games visits the same joint state S. Now, the
Euclidian distance between the equilibrium strategy p of G and p/ of G/ are given in (1.85) and
(1.86) respectively for NE and CE.

/ / 2

1
(,) (() ())

i i

nNE
i i i i

i a A
d p p p a p a

 
   (1.85)

A

B

 C D
C Y, Y Y, N

D N, Y Y, Y

75

/ / 2

{ }
(,) (() ())CE

A A
d p p q A q A


  (1.86)

If the /(,)NEd p p or /(,)CEd p p is smaller than a threshold, then p and /p are considered as
identical in G and G/. Hence, by equilibrium transfer one can directly use p in G/. As

computation of equilibrium is more expensive than checking, hence, there is a significant
saving in computational cost. Hu et al. in [125], measures the equilibrium transfer loss and
based on that loss the equilibrium transfer condition is defined. Let *p and *q denote the NE

and CE of G and G/ respectively. Now, loss because of transferring the equilibrium *p and
*q from G to G/ is given by (1.87) and (1.88) respectively.

Algorithm 1.25: Equilibrium transfer-based MAQL

Input: Action i ia A at state i is S for all the agents learning rate [0,1),  discount factor

[0,1),  exploration factor , threshold of transfer loss , Gc be the one-short game at joint state S and
*p previously computed equilibrium at S;

Output: Optimal joint Q-value (,), ;iQ S A i // 1{ } m
iiS S S   and 1{ } m

iiA A A  

Initialize: (,) 0, ;iQ S A i 
Repeat
 If joint state S has been visited

 then evaluate maximum utility loss , { , }NE CE  for transferring to Gc;
 Else

 ;  
 End if

 If   

 Then evaluate *p for Gc ;
 Else

 Reuse *p in Gc;
 End if

Select joint action, A sampled from *;p

Receive experience /(, , ,), ;iS A r S i

Evaluate equilibrium /p for the next joint state / ;S

Evaluate /()iV S  expected value of /p in / ,S /(,) (1) (,) (())i i i iQ S A Q S A r V S      and
/ ;S S

Until (,),iQ S A i converge;

/ /* *max max ((,) ())

i i

NE G G
i i i i

i N a A
Q a p Q p 

 
  (1.87)

/ /

/
* / /max max max (,) [(,) (,)]

i i ii i

CE G G
i i i i i i i i

i N a A Aa A
q a A Q a A Q a A


  

  
   (1.88)

Here,
/G

iQ refers to the Q-value of agent i in G/.

76

Now the transfer loss condition for NE, *p for an agent i is given by
/ / / /* * * *() () max ((,) ())

i i

G NE G G G
i i i i i i

a A
Q p Q p Q a p Q p 


   

/ / /* * *() max (,) ()

i i

G G G
i i i i i

a A
Q p Q a p Q p


  

/ *max (,).

i i

G
i i i

a A
Q a p


 (1.89)

Similarly, for CE following condition can be derived
/ /* * /(,) (,) (,) (,).

i i

G CE G
i i i i i i i i i i

A A
q a A Q a A q a A Q a A

 
        (1.90)

The algorithm for equilibrium transfer-based MAQL is given in Algorithm 1.25. Superiority
of Algorithm 1.25 is tested in Grid World game, Wall game and Soccer game.

1.3.5.3.2.2 Equilibrium independent

Equilibrium independent MARL algorithms again categorized based on the learning rate
selection given below.
1.3.5.3.2.2.1 Variable learning rate
RL Algorithms with variable learning rate are given below.

1.3.5.3.2.2.1.1 Win or Learn Fast Policy hill-climbing (WoLF-PHC)

In [126], Bowling and Veloso proposed WoLF policy hill climbing algorithm for stochastic
game in presence of other adaptive agents, satisfying rationality and convergence. Rationality
indicates that all agents' policies converge to stationary policies and then the learning
algorithm will converge to a stationary policy, which is best response to their policies [126].
The convergence property states that agents necessarily converge to a stationary policy. Also,
if all agents are rational and convergent, then it is guaranteed to converge NE. The learning
algorithms in [32] and [127], either converges to a sub-optimal policy or does not converge.
Proposed WoLF is based on the principle of "learn quickly while losing and learn slowly
while wining".

Policy hill-climbing (PHC) is a straight forward extension of Q-learning to handle mixed
strategies. The PHC algorithm is given in Algorithm 1.26. PHC learns the most recent mixed
strategy. The updating of the mixed strategy in PHC is done by selecting the highest valued
action as per the learning rate (0,1].  For 1  the algorithm behaves as single agent Q-

learning. Both Q-values and the strategy is convergent following single agent Q-learning.
The main contribution of the proposed algorithm in [126] is the extension of PHC algorithm

by employing a variable learning rate and the WoLF principle. In variable learning rate, the
learning rate is used by the learning algorithm and is tuned in such a way so that the
rationality is maintained. The WoLF principle motivates to learn quickly while losing and

77

Algorithm 1.26: Policy hill-climbing (PHC)
Input: Action i ia A at state i is S for all the agents learning rate [0,1)  and discount

factor [0,1); 

Output: Optimal policy *(,);i S A

Initialize: (,) 0iQ S A  and
1(,) ;

| |i
i

S A
A

 

Begin
 Repeat
 Choose an action ia A with probability (,);i S A

 Receive immediate reward (,);ir S A

 Update:
/

/ /(,) (1) (,) [(,) max (,),i i i i
A

Q S A Q S A r S A Q S A      /S S and

/, If arg max (,)

(,) (,)
, otherwise

| | 1

A
i i

i

A Q S A

S A S A

A



 


 
   
 

 *(,) (,);i iS A S A 

 Until *(,)i S A converges;
 End.

Algorithm 1.27: Win or Learn Fast-PHC (WoLF-PHC)

Input: Action i ia A at state i is S for all the agents learning rate , l w   and discount factor [0,1); 

Output: Optimal policy *(,);i S A

Initialize: () 0, (,) 0iC S Q S A  and
1(,) ;

| |i
i

S A
A

 

Begin
 Repeat
 Choose an action ia A with probability (,);i S A

 Receive immediate reward (,);ir S A

 Update: average policy , () () 1,C S C S   / ,S S

/ / / /1(,) (,) [(,) (,)]
() iS A S A S A S A

C S
     

 and

/, If arg max (,);

(,) (,)
, otherwise;

| | 1

A
i i

i

A Q S A

S A S A

A



 


 
   
 

, If (,) (,) (,) (,)

;
, otherwise

w i i i
A A

l

S A Q S A S A Q S A  




  


 *(,) (,);i iS A S A 

 Until *(,)i S A converges;
 End.

78

slowly while wining [126]. The WoLF-PHC algorithm employs two learning rate losing
learning rate l and wining learning rate w where .l w  The winning/losing situation of

the agent is determined by contrasting the current reward and the average reward taken over
the time. If agent is losing, then larger learning rate l is employed. The WoLF-PHC [126]

algorithm is given in Algorithm 1.27. The convergence and rationality of the WoLF-PHC
algorithm is tested in Matrix games, Grid world game, and Soccer game. In all frameworks,
WoLF-PHC outperforms reference algorithms.

1.3.5.3.2.2.1.2 Policy Dynamic based Win or Learn Fast (PD-WoLF)

IGA [112] learner converges to NE rationally but they are not convergent to NE for all the
general-sum games. Later IGA was extended to WoLF-IGA in [110] and its convergence
proof is shown in [110] for a 2×2 game assuming agents know the equilibrium policies of
other agents. In [128], Banerjee and Peng did experimental based comparisons of the WoLF
and PD-WoLF to establish the superiority of the PD-WoLF both in the bimatrix and the
general-sum games.

From section 1.3.5.3.1.2.1.1 considering the sub case of purely imaginary Eigen values, U
and the center * *(,)r c is within the unit square. The solution ()r t of (1.72) for unconstraint
dynamics [129] is given in (1.91), where the value of B and  depends on the initial values of

, . 
*() cos()r t B u uu t r   (1.91)

PD-WoLF criteria for a row player (agent) are given by (1.92).
2

min

max, otherwise

, if 0() t t
r t 




    


 (1.92)

where 1t t tr r    and 2
1.t t t    It is apparent that (1.92) is independent of other agents'

policies.
1.3.5.3.2.2.2 Fixed learning rate
MARL Algorithms with fixed learning rate are given below.

1.3.5.3.2.2.2.1 Non-Stationary Converging Policies (NSCP)

One major shortcoming of MAQL is the assumption that the environment is stationary. In
[130], Michael and Jeffrey proposed the Non-Stationary Converging Policies (NSCP), where
agents are not interested in converging to an equilibrium rather they search for the best
response policy for the non-stationary opponents. NSCP predicts the opponents’ non-
stationary strategy with precision and act by its best-response strategy with respect to the
opponents in the well-known test bench of general-sum stochastic games (game with multiple
joint states) or matrix games (game with one joint state). The MAQL algorithms [71], [72],
[78], [89], [99] and [123] either converge to NE or CE. By [131], the equilibrium-based
MAQL algorithms are problematic, as the learning stops at the equilibrium point and the

79

equilibrium point is necessarily not a goal point. Also an additional problem arises in
presence of multiple equilibria. The NSCP algorithm aims at adapting an optimal reward
considering the presence of other agents. In [132], an agent converges to best response
strategy subject to stationary opponents in two-player general-sum stochastic games. The
NSCP algorithm is given in Algorithm 1.28. Simulation results validate the superior
performance of the NSCP with respect to reference algorithms.

Algorithm 1.28: Non-Stationary Converging Policies

Input: Action i ia A at state , , [1,],i is S i i m   learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *(,), ;iQ S A i

Initialize: (,) 0,iQ S A i  and
1(,) ;

| |
i S A

A
 

Begin
 Repeat
 Observe the actions taken by all the agents { };A A

 Receive immediate reward (,), ;ir S A i

 Update: other agents’ strategy
1(,) , ;

| |i S A i
A

  

 Select best-response strategy (,)br
i S A

 that maximizes
1 2

/ / / /ˆ() (,). (,). (,);
m

br
i i i i i

a a a i
BR S S a S a Q S A 


    

 Update: Q-values using the following rules

 /(,) (1) (,) [(,) ()]i i iQ S A Q S A r S A BR S      and / ;S S
 Until (,), ;iQ S A i converges;

 Obtain *(,) (,), ;i iQ S A Q S A i 
 End.

1.3.5.3.2.2.2.2 Extended Optimal Response Learning (EXORL)

The zero-sum stochastic game proposed by Littman in [99] was extended to general sum-
stochastic game by Hu and Wellman in [89] and agents converge to NE in stochastic games
by these algorithms. On the contrary, in [89] and [99], agents always try to converge to NE
ignoring strategies of other agents. Further, all the agents must agree upon to select a NE in
presence of multiple NEs. Thus the algorithms proposed in [89] and [99] are not adaptable in
the above sense. In [133], Nobuo and Akira extended optimal response to Extended Optimal
Response Learning (EXORL), where agents converge to NE subject to adaptability of other
agents. Similar to NQL [89], in EXORL, an agent maintains all agents' Q-tables assuming that
it can observe other agents' state-action and reward. EXORL aims at realizing a policy which
is optimal response to other agents' policies, where remaining agents are adaptable and attain
NE. The EXORL algorithm is given in Algorithm 1.29. JAL [78] learns Q-value due to its

80

own action and estimates teammates’ strategy. Let i be the strategy of agent i at state S

which maximizes (1.93).
(,) () () ()T

i i i i iQ S Q S S   (1.93)
where, ()i S refers to estimate of all agents' joint policy except agent i. Now, if a policy

diverges from NE, then the policy may not be suitable to estimate the remaining agents'
strategy. This problem is addressed in [133] and the update rule is given by (1.94) and (1.95)
tuning the value of .

(,) () () () (,),T
i i i i i iQ S Q S S S      (1.94)

where (,) max[() ()] () () (),
i

T T
i i i i i i iS Q S Q S S


     


     (1.95)

here (,)iS  refers to the possible increase in expected discounted reward of agent .i Hence,

to maximize left part of (1.95) agent i has to maximize the first component of right part and
also minimizes the second component of the right part. Also (1.95) is a piece-wise linear
concave function and it has a sole maximal point. It is shown in [133] that by EXORL an
agent plays well subject to that the opponent agents play fixed policy considering small value
of . The EXORL is verified in Matching Pennies, Presidency Game [77] and Battle of sexes

game in [133].

Algorithm 1.29: EXORL for agent i

Input: Action i ia A at , ,i is S i  learning rate [0,1)  and discount factor [0,1); 

Output: Optimal Q-value *
1 1(,), ; / / { } , { } ;m m

i i ii iQ S A i S s A a   

Initialize:
1,

1 1(,) 0, (,) , (,) ;
| | | |

i i i i i mi jj j i
Q A A S a i S A

A A
  

 

   


Begin
 Repeat
 Choose an action , ;i ia A i 

 Receive immediate reward (,), ;ir S A i

 Update: /(,) (1) (,) [(,) (,)], ,i i i iQ S A Q S A r S A Q S A i       /S S

 and /() (1) () . ();i i iS S S        
// 1 if / / ()

0 otherwise
i ii

A AS  


  


 Until (,),iQ S A i converge;

 Obtain *(,) (,), ;i iQ S A Q S A i 
 End.

1.3.6 Coordination and planning by MAQL
In the present thesis, for multi-robot coordination and planning without any communication
among the agents we focus on the equilibrium-based MAQL as explained in section
1.3.5.3.2.1. Because of the absence of communication among the agents, each agent needs to

81

Joint state

Joint state

          

Action of R
1

Fig. 1.47 Multi-robot coordination for the well-known stick-carrying problem

maintain all the agents’ Q-tables at joint state-action space. Fig. 1.47 explains the multi-robot
coordination and planning mechanism for the well-known stick-carrying problem. Stick-
carrying problem refers to the transportation of a stick from current positions to the desired
destination. Presently twin robots are at a joint state <4, 7> with a stick as shown in Fig.
1.47(c). As each robot have both robots Q-tables at joint state-action space, a robot looks for
the optimal joint action, i.e., pure startegy NE (PSNE) at <4, 7> by evaluating equilibrium. To
evaluate equilibrium a robot extracts the information from the joint state <4, 7> (Fig. 1.47(a)
and 1.47(b)) and PSNE, “FL” is evaluated following the definition of NE as shown in Fig.
1.47. Here both the robots evaluate identical PSNE. Hence, without any communication
between the robots coordination occurred and the stick is shifted to the next joint state <5, 4>
because of the joint action “FL” by the robots.

1.3.7 Performance analysis of MAQL and MAQL-based coordination
The MAQL algorithms illustrated above have addressed several challenges of the MAQL.
The main challenges of MAQL are suitable action selection for balancing

82

exploration/exploitation, update policy selection for adaptation of the Q-table in joint state-
action space, equilibrium selection among multiple equilibria and the exponential increase in
the space and time complexity, with the increase in number of agents. In this regards, to
measure the performance of a MAQL over contender MAQL algorithms following metrics
are summaried for the above mentioned MAQL.

In JAL [78], the Boltzmann strategy is extended to the optimistic Boltzmann (OB), Weight
OB (WOB) and their combination. The superiority of the JAL with the combined method is
tested considering the average accumulated reward as the performance metric. The superiority
of the FMQ heuristic is measured considering convergence to the optimal joint action as the
performance metric. In Team-Q learning [88], the average reward of agents is maximized
over the learning epoch. The Distributed Q learner [92] converges to the optimal joint action
with less storage and computational cost. Therefore, in Distributed Q-learning computational
cost and storage requirement are the performance metrics. In OAL [95] algorithm agents
select the optimal NE among multiple NE with probability one. Hence, in OAL, optimal
equilibrium selection is the metric. In SCQL [96], the Q-tables are sparsely maintained and
performance of the SCQL is measured over reference algorithms in terms of the
computational cost and storage requirement. In SQL [97], the metric is the steps required to
reach the goal state from the starting state, i.e., selection of the right joint action without any
behavior conflict among the agents. In FMRQ [98], agents achieve the coordination type
optimal NE to maximize the system performance in terms of average steps per episode for
box-pushing problem and average rewards per episode for distributed sensor network
problem. In Minimax-Q learning algorithm [99], both the agents learn optimal policies and
efficiency of the algorithm is tested in the framework of a two player grid game by measuring
the winning percentage of the game by the agent in an episode. Performance of the HAMRL
algorithm [100] is measured in terms of the convergence speed. FP [104] addressed the
equilibrium selection problem in coordination game. The performance of the Meta strategy
[105] is measured in terms of the average reward achieved by the agents. AWESOME [109]
learns the best response (NE) considering a stationary opponent and its performance is
measured against FP in terms of the distance to equilibrium and distance to the best response.
In Hyper-Q learning [111], online Bellman error and average reward variation wih respect to
the learning epoch are considered as the performance metrics. In [112], IGA proposed a
scheme by which agents conditionally converges to the NE. Performance of the GIGA [120],
WoLF-IGA [110] and GIGA-WoLF [121] algorithms are measured in terms of the
convergence rate. In NQL [89], percentage of NE achieved in a game is considered as the
performance metric. In CQL [72], mean Q-value difference is the performance metric. In
AQL [122], change in Q-values of the agents with the learning epoch is considered as the

83

performance metric. The FFQ [123] always converges to a NE and converging to a NE is a
metric. Average reward with the episode and number of learning epoch required per episode
are the metrics in Negotiation-based Q-learning. In the equilibrium transfer-based MAQL
[125], three metrics are considered. First one is the learning speed, second one is the
improved average reward, and finally the last one is the reduction in the space complexity. In
WoLF-PHC [126] the policy either converges to NE or to a sub-optimal NE and percentage of
winning a game by an agent is considered as the performance metric. In PD-WoLF [112],
average reward is the performance metric during the learning phase. Average time required to
complete a task is considered the performance metric during learning in case of NSCP [130].
In EXORL [99], policy and Q-value learned with the learning epoch are considered as the
performance metric.

In MAQL-based coordination, agents re-evaluate the NE/CE as explained in section 1.3.6.
As the computational cost of evaluating the NE/CE is very high, run-time complexity is one
performance metric in the MAQL-based coordination. On the other hand, space-complexity,
successful completion of the task, system resource utilization, and the like are considered as
the performance metric during the MAQL-based coordination [97].

1.4 Coordination by Optimization Algorithm
One common bottleneck of the search-based coordination and MARL-based algorithms is the
memory requirement and suboptimal solution. Such, bottlenecks are addressed by the Swarm
Intelligence (SI) [60], [61] and Evolutionary algorithm (EA) [61]. The advantages of the SI
algorithms are Scalability, Adaptability, Collective Robustness, and Individual Simplicity.
The scalability of the SI algorithms are remarkable, as the control mechanism adopted by the
SI algorithms does not depend upon the swarm size, until the swarm size is not too small [84].
The SI algorithm has very fast response to the rapidly changing environment by employing
the auto-configuration and self-organization capabilities, which allow the swarms to adapt
online with the dynamic environment [66]. Collective robustness indicates that the SI
algorithms are distributed and hence, there is no possibility of single point failure [67]. In
spite of very simple behavior of every swarm in any SI algorithm, the group of a swarm can
achieve sophisticated group behavior [67]. Particle Swarm Optimization (PSO) algorithm and
Firefly algorithm (FA) are two examples of SI algorithms. In PSO, the fitness function is not
differentiable and is employed to obtain quality solution for high dimensional problems faster
than other alternatives. However, there is a high probability to be trapped in local optima in
high-dimensional problems. On the other hand, the FA has a very high probability of
exploring the global optima. The advantages of EAs are that they can cope with
discontinuities, non-linear constraints, multi-modalities and multi-objective optimization
problems.

84

However, the EAs do not provide any guarantee to provide optimal solutions within finite
amount of time. Differential evolution is an example of EA. Stability is a very good attribute
of DE over the GA. Another is Imperialist Competitive Algorithm (ICA) [67], which is a
socio-political based algorithm. ICA has neighborhood movements both in continuous and
discrete search-space. However, the solutions provided by the ICA does not guarantee for
optimal solution. In addition, the ICA requires tuning more number of parameters as
compared to the PSO, FA, and DE. In the above circumstance, hybridization is a good
approach. By hybridization the efficient attributes of two or more algorithms are fused to
produce a powerful algorithm. One approach for multi-robot stick-carrying problem is shown
in [92], where the hybridization of the motion dynamics of fireflies of the Firefly Algorithm
(FA) [62] into a socio-political evolution-based meta-heuristic search algorithm is done and is
named as Imperialist Competitive Firefly Algorithm (ICFA). The above mentioned
algorithms are implemented for multi-robot coordination following scheme as shown in Fig.
1.48. Brief description of the above mentioned algorithms are given below.

Current states
of robots

Local planning by
determining next optimal
states employing swarm/

evolutionary algorithm

Next state
transition

Goal states
reached?

Next state becomes
Current state

Stop

No

Yes

Fig. 1.48 Multi-robot local planning by swarm/evolutionary algorithm

1.4.1 Particle Swarm Optimization (PSO) Algorithm
In [60], Kennedy and Eberhart proposed a nonlinear function optimization technique
following the behavior of flocking birds namely Particle Swarm Optimization (PSO). Let an
n-dimensional nonlinear function given by (1.96) to be optimized. The PSO aims at finding
such a X


 so that (1.96) is either maximized or minimized depending upon the problem

requirement. So, one can say that the solution of (1.96) is an n-dimensional hyperspace.

1() (,...,)nf X f x x


 (1.96)

 Let us consider a two dimensional problem as given in (1.97) [62]. In (1.97), [10,10]x 
and [10,10]y  and the plot of (1.97) is given in Fig. 1.49. It is apparent from the Fig. 1.49

85

that (0,0) is the only solution in the xy plane for which the (,)f x y attains a minimum value

of zero. It is quiet easy to identify the minima for the function (1.96) compared to the same
for (1.98) [62]. The plot of (1.98) is shown in Fig. 1.50. Unlike Fig. 1.49, in Fig. 1.50, there
are multiple optimal points. It is difficult to identify the global optima among them. PSO
employs the multi-agent parallel search technique and each agent starts from different initial
positions and explores the landscape until a global optima is reached. It is assumed that in
PSO, agents can communicate among themselves and share the values of fitness function
explored by them.

2 2(,)f x y x y  (1.97)
(,) sin(4) sin(4) 1f x y x y y x      (1.98)

In PSO, each agent flies through the multi-dimensional landscape with a unique position and
velocity at each landscape. The population is initialized with random positions denoted
by 1{ }S

i iX x 


each having a random velocity 1{ } .S
i iV v 


 The position and velocity of the d-

th dimension's i-th particle is given by (1.99) and (1.100) respectively.
(1) () (1)id id idx t x t v t    (1.99)

1 1 2 2(1) . () . .(() ()) . .(() ())id id id id id idv t v t C P t x t C g t x t        (1.100)

In (1.100), the first component is the initial velocity of the i-th particle.  refers to the
inertial weight factor. 1C and 2C are the constant multiplier termed as self-confidence and
swarm confidence respectively. Two random numbers 1 [0,1]  and 2 [0,1]  introduced in
(1.100), which determine the influence of ()p t and ()g t on (1.100). (),p t ()g t and ()x t are
initialized to zero at 0,t  i.e., and (0) (0) (0).p g x 

   After that the velocity and position of

each particle updates following (1.99) and (1.100). The algorithm for PSO is given in
Algorithm 1.30 [62].

Algorithm 1.30: Particle Swarm Optimization (PSO)

Input: Enter the Swarm size (S), values of 1,C 2 ,C 1 [0,1],  2 [0,1],  and max;V

Output: Approximate global optimal position *;X


Initialize: Initialized the position and velocity vectors: (0)iX


 and (0);iV



Begin
 While termination condition is not reached do
 For 1i  to S

 Evaluate the fitness ();if X


 Update ip and ;ig

 Adapt position and velocity of the partial by (1.99) and (1.100) respectively.
 End For;
 End While.
End.

86

-10
-5

0
5

10

-10
-5

0
5

10
0

50

100

150

200

x

f(x,y)=x2 + y2

y

f(x
,y

)

Fig. 1.49 Surface plot of (1.97)

In [69], Pugh et al. proposed the noise-resistance PSO for obstacle avoidance in multi-robot
systems. In [70], Pugh modified the noise-resistance PSO [69] by setting

*' *'' ,i ix x if *'' *'() (),i ifitness x fitness x (1.101)

where *'
ix refers to the neighborhood best for particle (here robot) i and *''

ix denotes the new

neighborhood best particle.

-10
-5

0
5

10

-10
-5

0
5

10
-10

-5

0

5

10

15

x

f(x,y)=x sin(4  y) + y sin(4  x) + 1

y

f(x
,y

)

Fig. 1.50 Surface plot of (1.98)

87

1.4.2 Firefly Algorithm (FA)
In Firefly Algorithm (FA) [90], a potential solution to an optimization problem is encoded by
the position of a firefly in the search space and the light intensity at the position of the firefly
corresponds to the fitness of the associated solution. Each firefly changes its position
iteratively by flying towards brighter fireflies at more attractive location in the fitness
landscape to obtain optimal solutions.

1.4.2.1 Initialization

FA commences with a population Pt of NP, D-dimensional firefly positions,

)}(),...,(),(),({)(,3,2,1, txtxtxtxtX Diiiii 


 for i = [1, NP] by randomly initializing in the search

range min max[,]X X
 

 where min min min min
1 2= { , ,..., }DX x x x


 and max max max max

1 2= { , ,..., }DX x x x


 at

the current generation t = 0. Thus the d-th component of the i-th firefly at t=0 is given by
(1.102).

min max min
, (0) (0,1) ()i d d d dx x rand x x    (1.102)

where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1,
D]. The objective function value))0((iXf


 (which is inversely proportional to the light

intensity for minimization problem) of the i-th firefly is evaluated for i = [1, NP].

1.4.2.2 Attraction to Brighter Fireflies
Now the firefly)(tX i


is attracted towards the positions of the brighter fireflies)(tX j


 for i, j=

[1, NP] but i≠j such that))(())((tXftXf ij


 for minimization problem. Now the attractiveness

βi,j of)(tX i


 towards)(tX j


is proportional to the light intensity seen by adjacent fireflies.

However attractiveness βi,j decreases exponentially with the distance between the firflies,
denoted by ri,j as given in (1.103).

, ,exp(), 1m
i j o i jr m      (1.103)

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its own position
(i.e. at ri,j = ri,i= 0) and γ is the light absorption coefficient, which controls the variation of βi,j
with ri,j. This parameter is responsible for the convergence speed of FA. A setting of γ=0 leads
to constant attractiveness while γ approaching infinity is equivalent to the complete random
search [62]. In (1.103) m is a positive constant representing a non-linear modulation index. The
distance between)(tX i


 and)(tX j


is computed using the Euclidean norm as follows.

, || () () ||i j i jr X t X t 
 

 (1.104)

This step is repeated for i, j = [1, N].

88

1.4.2.3 Movement of Fireflies
The firefly at position)(tX i


 moves towards a more attractive position)(tX j


occupied by a

brighter firefly (i.e.,))(())((tXftXf ij


) for j= [1, N] but i≠j following the dynamic given in

(1.105).

 ,(1) () (() ()) ((0,1) 0.5)i i i j j iX t X t X t X t rand        
   

 (1.105)

The first term in the position updating formula (1.105) represents the i-th firefly’s current
position. The second term in (1.105) denotes the change in the position of the firefly at)(tX i



due to the attraction towards the brighter firefly at)(tX j


. Hence it is apparent that the

brightest firefly with no more attractive firefly in the current sorted population Pt will have no
motion due to the second term and may get stuck at the local optima. To circumvent the
problem, the last term is introduced in (1.105) for the random movement of the fireflies with a
step-size of α (0, 1). Here rand(0,1) is a random number generator uniformly distributed in
the range (0, 1). This step is repeated for i = [1, NP]. After completion of its journey mediated
by the brighter ones, the updated position of the i-th firefly is represented by)1(tX i


 for i=

[1, NP].

Algorithm 1.31: Traditional Firefly Algorithm (FA)

Input: 1 2(, ,...,),DX x x x


fitness function ();f X // D dimension of the firefly
Output: , [1,];iX i n



Initialize: Generate population , [1,],iX i n


 (0,1),  0 1  and [0.1,10];  
While (t <MaxGeneration)
 For k=1 to D
 For i=1 to n
 For j=1 to n

 If (()) (())i jf X t f X t
 

 then Move ()iX t


towards ()jX t


in all D dimensions;

 End If;
 Update (1) () [() ()] (0.5);ik ik ij jk ikx t x t r x t x t rand       

 End For;
 End For;
 End For;
 Rank the fireflies based on current fitness and find the current best one;
End While.

After each evolution, the steps 1.4.2.2 and 1.4.2.3 are repeated until one of the following

conditions for convergence is satisfied. These conditions include restraining the number of
iterations, maintaining error limits, or the both, whichever occurs earlier. In Algorithm 1.31,
the number of iterations is considered as the condition of convergence.

89

1.4.3 Imperialist Competitive Algorithm (ICA)
Imperialist Competitive Algorithm (ICA) is a population-based stochastic algorithm, which is
inspired by the socio-political evolution and the imperialistic competitive policy of a
government to extend its power beyond its boundaries. It has earned wide popularity because
of its noticeable performance in computational optimization with respect to the quality of
solutions [134]. Like any other evolutionary algorithms, ICA starts with an initial population
of solutions, called countries. The countries are classified into two groups—imperialists and
colonies, based on their ruling power (which is inversely proportional to their objective
function values). The colonies (weaker countries) with their relevant imperialist (stronger
country) form some empires. In each empire, the imperialist pursues an assimilation policy to
improve the economy, culture, and political situation of its colonies, thus winning their
loyalty. Moreover, the empires take part in the imperialistic competition in an attempt to gain
more colonies. In ICA, the assimilation of colonies towards their respective imperialists along
with the competition among empires eventually results in just one empire in the world with all
the other countries as colonies of that unique empire. An overview of the main steps of the
ICA is presented next.

1.4.3.1 Initialization

ICA starts with a population Pt of NP, D-dimensional countries,

)}(),...,(),(),({)(,3,2,1, txtxtxtxtX Diiiii 


 for i= [1, NP] representing the candidate solutions, at

the current generation 0t 

by randomly initializing in the range min max[,]X X
 

 where
min min min min

1 2= { , ,..., }DX x x x


 and max max max max
1 2= { , ,..., }DX x x x


. Thus the d-th component

(socio-political feature) of the i-th country at t=0 is given by

)()1,0()0(minmaxmin
, ddddi xxrandxx  (1.106)

where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1,
D]. The objective function value))0((iXf


of the country)0(iX


 is evaluated for i= [1, NP].

1.4.3.2 Selection of Imperialists and Colonies
The population P0 is sorted in ascending order of))0((iXf


 for minimization problem with i=

[1, NP]. The first N countries with less cost function values are selected as imperialists while
the remaining M = NP–N countries are declared as colonies. Hence the population individuals
are categorized into two groups of countries — imperialists and colonies.

1.4.3.3 Formation of Empires

The empire under the j-th imperialist is constructed based on its ruling power. To accomplish
this, first the normalized power of the j-th imperialist country, pj, is evaluated by (1.107) with

90

))0((NPXf


 representing the objective function value of the weakest country in the current

sorted population P0.

1

((0)) ((0))

((0)) ((0))

NP j
j N

NP l
l

f X f X
p

f X f X







 

  (1.107)

It is evident from (1.107) that better the j-th imperialist (i.e., less objective function
value))0((jXf


 for minimization problem), higher is the difference))0(())0((jNP XfXf




leading to the enhancement of its corresponding ruling power, pj. Now the initial number of
colonies under in the j-th empire, denoted by nj is computed by (1.108).

j jn M p    (1.108)

such that
1

N
j

j
n M


 (1.109)

Here   represents the floor function. According to (1.108) the stronger imperialists with

higher ruling power now possess larger empires. Hence pj symbolizes the fraction of the
colonies occupied by the j-th imperialist. Subsequently the j-th empire is formed by randomly
selecting nj countries from M colonies provided that there will be no common colony between
two different empires. Hence the number of countries within the j-th empire including its
imperialist is nj+1. Let the k-th country belonging to the j-th empire be denoted by)(tX j

k


(at

generation t=0) for k= [1, nj+1]. The countries within the j-th empire are now sorted in
ascending order of their objective function values such that the imperialist)(1 tX j in the j-th

empire attains the first rank. This step is repeated for j= [1, N].

1.4.3.4 Assimilation of Colonies

Each imperialist country now attempts to improve its empire by enhancing the socio-political
influences of its colonies. To accomplish this, each country)(tX j

k


in the j-th empire now

moves towards its corresponding imperialist)(1 tX j by changing its characteristic features

following (1.110) for k= [2, nj+1].

1(1) () (0,1) (() ())j j j j
k k kX t X t rand X t X t     
   

 (1.110)

Here (0,1)rand is a uniformly distributed random number lying between 0 and 1 and β is

the assimilation coefficient. The objective function value of the modified colony
))1((tXf j

k


is evaluated for k= [2, nj+1]. After assimilation, all the countries in the j-th

empire are sorted in ascending order of the objective function values and the first ranked
country is declared as the imperialist)1(1 tX j of the same empire for the next generation (i.e.,

t = t+1). The step is repeated for j = [1, N].

91

1.4.3.5 Revolution

Revolution creates sudden fluctuation in the economic, cultural, and political aspects of
countries in an empire. The colonies in an empire are now equipped with the power of
randomly changing their socio-political attributes instead of being assimilated by their
corresponding imperialist. It resembles the mutation of trial solutions in the traditional EA.
The revolution rate η in the algorithm indicates the percentage of colonies in each empire
which will undergo the revolution process. A high value of revolution rate therefore fortifies
the explorative power at a cost of poor exploitation capability. Hence a moderate value of
revolution rate is favored. Revolution is implemented by randomly selecting η×nj countries
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are replaced by
randomly initialized countries characterized by new socio-political nature. After revolution,
as in case of assimilation, all the countries in each empire are sorted in ascending order of the
objective function values so that its imperialist is at the first position. The step is repeated for
all empires.

1.4.3.6 Imperialistic Competition

All the N empires now participate in an imperialistic competition to take possession of
colonies of other weaker empires based on their ruling power. The colonies of the weaker
empires will be gradually eluded from the ruling power of their corresponding imperialists
and will be thereafter controlled by some other stronger empires. Consequently, the weaker
empires will be losing their power and ultimately may be eradicated from the competition.
The imperialistic competition along with the collapse mechanism will progressively result in
an increment in the power of more dominant empires and diminish the power of weaker ones.
The imperialistic competition encompasses the following steps.

1.4.3.6.1 Total Empire Power Evaluation

Once an empire is constructed under the dominance of the j-th imperialist)1(1 tX j , the power

of the respective empire is compositely influenced by the objective function value of
)1(1 tX j as well as the constituent colonies)1(tX j

k


(after assimilation) under the respective

j-th empire for k= [2, nj+1]. The total objective function value of the j-th empire is evaluated
as follows.

1

1
2

1((1)) . (1)
jn

j j
j k

j k
tc f X t X t

n





   

 
 (1.111)

Here ξ<1 is a positive number which regulates the influence of the constituent colonies to
control the ruling power of the empire. A tiny value of ξ causes the total power of the j-th
empire to be determined by its imperialist)1(1 tX j only, while increasing the value of ξ

accentuates the importance of the colonies in deciding the total power of the respective

92

empire. The N empires now are sorted in ascending order of tcj for j = [1, N]. Then the
normalized possession power of the j-th empire, ppj, is evaluated by (1.112) with tcN
representing the total objective function value of the weakest empire in the current population
Pt.

1

N j
j N

N l
l

tc tc
pp

tc tc







 (1.112)

It is evident from (1.112) that stronger the j-th empire (i.e., less the total objective function
value tcj for minimization problem), higher is the possession power, ppj, which consecutively
increases its probability of seizing colonies from weaker empires. This step is repeated for j =
[1, N].

1.4.3.6.2 Reassignment of Colonies and Removal of Empire

The empire with least possession power is interpreted as being defeated in the competition.
Let the weakest colony of this weakest empire be denoted as worstX


, which is now removed

from the dominance of its currently ruling imperialist and reassigned as a new colony to one
of the stronger empires based on their possession probabilities. It is noteworthy that

worstX


will not be possessed by the most powerful empires, but stronger the empire, more
likely to possess worstX


. To accomplish this, the possession probability of the j-th empire is

computed as follows for j= [1, N].

(0,1)j jprob pp rand  (1.113)

Now worstX


is assigned as a new colony to the j-th empire for which the possession

probability probj is maximum. However, if the worst colony consists of only its imperial
before exclusion operation, (i.e., worstX


is the imperialist of the weakest empire), the removal

of worstX


will result in the collapse of the weakest empire.

1.4.3.6.3 Union of Empires

The disagreement between two empires may be assessed by the difference in their respective
socio-political features. This dissimilarity between any two empires, j and l is evaluated by
taking the Euclidean distance between the respective imperialists)1(1 tX j and)1(1 tX l as

in (1.114) for j, l= [1, N].

, 1 1(1) (1)j l
j lDist X t X t   

 
 (1.114)

If Distj, l is less than a predefined threshold, Th, the two empires are merged into one empire.
The stronger country among)1(1 tX j and)1(1 tX l is declared as the imperialist of the newly

formed empire.

93

After each evolution, we repeat from step 1.4.3.4 until one of the following conditions for
convergence is satisfied. Stop criteria include a bound by the number of iterations, achieving
a sufficiently low error or aggregations thereof.

1.4.4 Differential evolutionary (DE) algorithm
Differential evolutionary (DE) algorithm is a stochastic, population-based global optimization
algorithm, introduced by Storn and Price in 1996, to optimize real parameter, real valued
functions [62].

Initialization Mutation Recombination Selection

Fig. 1.51 Steps of Differential evolutionary (DE) algorithm

1.4.4.1 Initialization

Range of each parameter i.e., the upper and lower boundaries for each parameter are defined,
and then randomly these parameters are initialized.

1.4.4.2 Mutation
The step mutation expands the search-space. Mutation is done by (1.115), where [0,2]F  is
the mutation factor. 1, 2, 3,, and G G Gr r rx x x are the randomly selected variables with

1 2 3, , , and i r r r G are index. , 1i Gv  refers to the donor vector.

1, 2, 3,, 1 ().G G Gi G r r rv x F x x    (1.115)

1.4.4.3 Recombination
Employing the target vector ,i Gx and the elements of the donor vector , 1i Gv  the trial

solution vector , 1i Gu


is evaluated by following (1.116).

, , 1

, , 1 if rand() CR or

, , if rand()>CR or
,rand

i j G
rand

i j G j I

i j G j I

v
u

x

  



 


 (1.116)

where [1,],i N [1,]j D and , 1 ,i G i Gv x  is checked by .randI

1.4.4.4 Selection
The target solution ,i Gx is compared with the trial solution vector , 1i Gu  and the next

generation is selected by (1.117).

94

, 1 ,
, 1

, 1 if () ()

, otherwise
,i G i G

i G

i G f u f x

i G

u
x

x




  


 (1.117)

where [1,].i N

Step 1.4.4.2. to 1.4.4.4 continue until the termination criterion as explained earlier is reached.

1.4.5 Offline optimization
By SI and EO algorithms only the offline optimization is possible due to their huge run-time
complexity. In case of multi-robot coordination, robots evaluate the optimal trajectory
(collection of coordinates) offline in the sense of system recourse (time and/or energy)
utilization. After offline optimization of the trajectory it is executed in the real-robot.

1.4.6 Performance analysis of optimization algorithms
The performance of SI, EA and their hybridization can be analyzed by the following
performance metrics. Quality of solution within a fixed epoch and the convergence time are
two performances matrices of the SI and EA. In addition, mean best objective function versus
function evaluation, accuracy versus function evaluation, and function evaluation versus
search space dimensionality can be considered as the performance metrics. In spite of the
above mentioned performance metrics, statistical test is conducted over the algorithms for
performance measurement.

1.4.6.1 Friedman test

Friedman test [64], which is a non parametrical statistical test, may be carried out on the
average objective function values of each of the algorithms for a fixed independent runs,
assuming a fixed dimension. To carry out the Friedman test firstly the average ranking (Ri) for
each of the considered algorithms is calculated as the mean of the individual ranks obtained
by them over all the considered N number of benchmark functions, as shown in (1.118),

1

1 N
j

i i
j

R r
N 

  (1.118)

Here, j
ir refers to the individual rank attained by the i-th algorithm for the j-th benchmark

function and the results have been computed considering N benchmark functions. In the next
step, a term formally defining the Friedman statistic, that follows a 2

F distribution with (k-1)

degrees of freedom, has been evaluated using (1.119),
2

2 2

1

12 (1)[]
(1) 4

k

F i
i

N k kR
k k





 

  (1.119)

95

1.4.6.2 Iman–Davenport test

Moreover, Iman–Davenport test [65] can also been conducted in order to substantiate the
findings of the former statistical analysis. It is basically a deviation from the Friedman test
producing more precise results and the Iman-Davenport statistics is calculated as follows,

2

2

(1)
.

(1)
F

F
F

N
F

N k



 


  
 (1.120)

Tabular analysis can be shown in case of Friedman test, which demonstrates that the null
hypothesis has been rejected if the computed value of 2

F is greater than the critical value of
the 2

F distribution with degrees of freedom (k-1) at probability of α (2
3,). For, Iman-

Davenport test the statistic is distributed with (k-1) and (k-1)×(N-1) degrees of freedom.
Likewise, the null hypothesis has been rejected as the calculated value of FF is greater than
the critical value of the FF distribution with degrees of freedom (k-1) and (k-1)×(N-1) at
probability of α ((1),(1),k NF  ). It is obvious, that the proposed algorithm is the most efficient

one, hence, in the post-hoc analysis, proposed algorithm is assumed to be the control method.
For multi-robot trajectory (path) planning Average total path deviation, Average Uncovered

Target Distance, Average total path traversed, and numbers of steps required are considered
as the performance metrics.

1.5 Scope of the Thesis
A plan refers to the sequence of actions to achieve a predefined goal. On the other hand,
coordination indicates the skilful interaction among the agents to generate a feasible planning
step. Therefore, coordination is an important issue in modern mobile robotics to address
complex real-world problems. The thesis offers novel multi-robot coordination techniques
(algorithms) with or without communication among the robots. Here, coordination among
multiple robots is achived by means of two distinct approaches.The first approach attempts to
optimize individual robot’s parameters with respect to coordination of the entire team of
robots. Any traditional meta-heuristic optimization algorithm would serve the purpose. We,
however, employ a hybridization of two algorithms to develope a potential algorithm to
overcome the individual limitations. Since parameter sharing of two robots is needed for
fruitful coordination, the optimization algorithm used requires communication among agents
for such parameter sharing. However, communication among robots has several negative
consequences. The most important among these is possibility of network failure, which might
affect the robustness of the system.
 The second alternative approach for multi-robot coordination is learning-induced planning
and coordination. Here, each agent learns the group performance and the knowledge formed
thereby is used subsequently for planning and coordination. The learning-induced
coordination is free from communication. Although there exists a vast literature on learning

96

based planning and coordination, there is a dearth of literature on reinforcement learning
induced planning. We here propose a game theoretic learning algorithm, which has an
excellent team-performance in comparison to the existing works. The said algorithm utilizes
an “equilibrium strategy” to optimize the performance of the all the agents. The “equilibrium
strategy” is so named as a deviation in action by any one agent from the equilibrium may
incur degradation in the performance of the agents. The contibutations claimed in the present
thesis are framed into seven chapters and are briefly outlined below.

Chapter 1 provides an introduction to the multi-robot coordination algorithms for complex
real-world problems, including transportation of a box/stick, formation control for defense
applications and soccer playing by multiple robots utilizing the principles of reinforcement
learning, theory of games, dynamic programming, and/or evolutionary algorithm. Naturally,
this chapter provides a thorough survey of the exiting literature of reinforcement learning with
a brief overview of the evolutionary optimization to examine the role of the algorithms in the
context of multi-agent coordination. Chapter 1 includes multi-robot coordination employing
evolutionary optimization, and specially reinforcement learning for cooperative, competitive,
and their composition for application to static and dynamic games. The later part of the
chapter deals with an overview of the metrics used to compare the performance of the
algorithms while coordinating. Fundamental metrics for performance analysis are defined to
study the learning and planning algorithms.

Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-
agent Q-learning algorithms (Nash Q-Learning and Corelated Q-Learning) for multi-robot
coordination and planning. This extension is achived by employing two interesting properties.
The first property deals with the exploration of the team-goal (simultaneous success of all the
robots) and the other property is related to the selection of joint action at a given joint state.
The exploration of team-goal is realized by allowing the agents, capable of reaching their
goals, to wait at their individual goal states, until remaining agents explore their individual
goals synchronously or asynchronously. Selection of joint action, which is a crucial problem
in traditional multi-agent Q-learning, is performed here by taking the intersection of
individual preferred joint actions of all the agents. In case the resulting intersection is a null
set, the individual actions are selected randomly or otherwise following classical techniques.
The superiority of the proposed learning and learning-based planning algrorithms are
validated over contestant algorithms in terms of the speed of convergence and run-time
complexity respectively.

In chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above
perspective, robots need to adapt with such a strategy, which can select the optimal

97

equilibrium in each step of the learning and the planning. To address the bottleneck of the
optimal equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-
learning for multi-robot cordination, by extending the equilibrium-based multi-agent Q-
learning algorithms. It is also shown that a consensus (joint action) jointly satisfies the
conditions of the coordination type pure strategy Nash equilibrium and the pure strategy
correlated equilibrium. The superiority of the proposed consensus Q-learning algorithm over
traditional reference algorithms in terms of the average reward collection are shown in the
experimental section. In addition, the proposed consensus-based planning algorithm is also
verified considering multi-robot stick-carrying problem as the test bed.

Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite
rewards of all the agents in one Q-table in joint state-action space during learning, and
subsequently these rewards are employed to compute correlated equilibrium in the planning
phase. Two seperate models of multi-agent Q-learning have been proposed. If success of only
one agent is enough to make the team successful, then model-I is employed. However, if an
agent’s success is contingent upon other agents and simultaneous success of the agents is
required then model-II is employed. It is also shown that the correlated equilibrium obtained
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order
to restrict the exploration within the feasible joint states, constraint versions of the said
algorithms are also proposed. Complexity analysis and experiments have been undertaken to
validate the performance of the proposed algorithms in multi-robot planning on both
simulated and real platforms.

Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which
is employed to determine the time-optimal trajectory of a stick, being carried by two robots,
from a given starting position to a predefined goal position amidst static obstacles in a robot
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also the
trade-off between the exploration and exploitation is balanced by modifying the random walk
strategy based on the position of the candidate solutions in the search space. The superiority
of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and
accureacy as the performance metrics. Finally, the proposed algorithm has been verified in
real-time multi-robot stick-carrying problem.

Chapter 6 concludes the thesis based on the analysis made, experimental and simulation
results obtained from chapter 1-6. The chapter also examines the prospects of the present
thesis in view of the future research trends.

98

1.6 Summary
Chapter 1 introduces multi-robot coordination algorithms for complex real-world problems
employing the principles of reinforcement learning, theory of games, dynamic programming,
and/or evolutionary algorithm. As expected, chapter 1 includes a thorough survey of the
exiting literature of reinforcement learning with a brief overview of the evolutionary
optimization to examine the role of the algorithms in view of the multi-agent coordination.
Here multi-robot coordination is achived by employing the evolutionary optimization, and
specially reinforcement learning for cooperative, competitive, and their composition for
application to static and dynamic games. The remainder of the chapter provides an overview
of the metrics used to compare the performance of the algorithms while coordinating.

References
[1] R. C. Arkin, Behavior-based robotics, MIT press, 1998.

[2] S. Sen, M. Sekaran and J. Hale, “Learning to coordinate without sharing information,” In

Proceedings of the American Association for Artificial Intelligence, pp. 426-431, 1994.

[3] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordination in cooperative multi-

agent systems,” In Proceedings of the American Association for Artificial Intelligence, pp. 326-331,

2002.

[4] A. Konar, I.G. Chakraborty, S. J. Singh, L. C. Jain and A. K. Nagar, "A deterministic improved Q-

learning for path planning of a mobile robot," IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 43, no. 5, pp. 1141-1153, 2013.

[5] A. K. Sadhu, P. Rakshit and A. Konar, “A modified Imperialist Competitive Algorithm for multi-

robot stick-carrying application,” Robotics and Autonomous Systems, vol. 76, no. 15-35, 2016.

[6] A. Stentz, "Optimal and efficient path planning for partially-known environments," IEEE

Proceedings International Conference on Robotics and Automation, pp. 3310-3317, 1994.

[7] X. Xu, L. Zuo, Z. Huang, “Reinforcement learning algorithms with function approximation: Recent

advances and applications,” Information Sciences, vol. 261, pp.1-31, 2014.

[8] L. Buşoniu, A. Lazaric, M. Ghavamzadeh, R. Munos, R. Babuška and B. De Schutter, “Least-

squares methods for policy iteration,” In Reinforcement Learning, Springer, pp. 75-109, Berlin

Heidelberg. 2012.

[9] X. Xu, D. Hu and X. Lu, “Kernel-based least squares policy iteration for reinforcement learning,”

IEEE Transactions on Neural Networks, vol. 18, no. 4, pp. 973-992, 2007.

[10] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,”

Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis, vol. 2,

no. 2, pp. 205-224, 1965.

[11] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The Journal of Machine Learning

99

Research, vol. 4, pp. 1107-1149, 2003.

[12] X. Xu, L. Zuo and Z. Huang. "Reinforcement Learning algorithms with function approximation:

recent advances and applications," Information Sciences, vol. 261, pp. 1-31, 2014.

[13] M. F. Martins and Y. Demiris, “Learning multirobot joint action plans from simultaneous task

execution demonstrations,” In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems, vol. 1, pp. 931-938, 2010.

[14] Y. U. Cao, A. S. Fukunaga and A. B. Kahng, “Cooperative mobile robotics: Antecedents and

directions,” Autonomous Robots, vol. 4, no. 1, pp. 7-27, 1997.

[15] A. Farinelli, L. Iocchi, and D. Nardi, “Multi-robot systems: A classification focused on

coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34,

no. 5, pp. 2015-2028, 2004.

[16] D. Szer, F. Charpillet and S. Zilberstein, “MAA*: A heuristic search algorithm for solving

decentralized POMDPs,” 21st Conference on Uncertainty in Artificial Intelligence-UAI, 2005.

[17] M. B. Dias, R. Zlot, N. Kalra and A. Stentz, "Market-based multirobot coordination: A survey and

analysis," Proceedings of the IEEE, vol. 94, no. 7, pp. 1257-1270, 2006.

[18] A. Stentz and M. B. Dias, "A Free Market Architecture for Coordinating Multiple Robots.

Technical Report," CMU-RI-TR-99-42, Robotics Institute, Carnegie Mellon University, 1999.

[19] M. B. Dias and A. Stentz, "Opportunistic Optimization for Market-based Multirobot Control,"

IEEE/RSJ International Conference on Intelligent Robots and Systems," Vol. 3, pp. 2714-2720,

2002.

[20] M. B. Dias, "Traderbots: A new paradigm for robust and efficient multirobot coordination in

dynamic environments," Doctoral dissertation, Carnegie Mellon University Pittsburgh, 2004.

[21] T. Sandholm, "Algorithm for optimal winner determination in combinatorial auctions," Artificial

intelligence, vol. 135, no. 1, pp. 1-54, 2002.

[22] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin and A. Kleywegt,

"Robot exploration with combinatorial auctions," Proceedings IEEE/RSJ International Conference

on Intelligent Robots and Systems,(IROS 2003), Vol. 2, pp. 1957-1962, 2003.

[23] M. B. Dias, R. Zlot, M. Zinck, J. P. Gonzalez and A. Stentz, “A Versatile Implementation of the

TraderBots Approach for Multirobot Coordination”, Proceedings of the 8th Conference on

Intelligent Autonomous Systems (IAS-8), 2004.

[24] M. Badreldin, A. Hussein and A. Khamis, "A comparative study between optimization and

market-based approaches to multi-robot task allocation," Advances in Artificial Intelligence, 2013.

[25] A. Stentz, "Optimal and Efficient Path Planning for Partially-Known Environments," Proceedings

of the International Conference on Robotics and Automation, pp. 3310–3317, 1994.

[26] A. Konar, I .G. Chakraborty, S. J. Singh, L. C. Jain and A. K. Nagar, “A Deterministic Improved

Q-Learning for Path Planning of a Mobile Robot,” IEEE Trans. on Systems, Man, And

100

Cybernetics: Systems, vol. 43, no. 5, pp. 1-13, 2013.

[27] J. R. Marden, G. Arslan and J. S. Shamma, "Cooperative control and potential games," IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, no. 6, pp. 1393-

1407, 2009.

[28] A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,”

IEEE Trans. Automation Control, vol. 49, pp. 1465-1476, 2004.

[29] A. Kashyap, T. Başar and R. Srikant. "Consensus with quantized information updates," 45th IEEE

Conference on Decision and Control, 2006.

[30] R. Olfati-Saber, A. Fax and R. M. Murray, "Consensus and cooperation in networked multi-agent

systems," Proceedings of the IEEE, vol. 95no. 1, 215-233, 2007.

[31] S. M. LaValle, Planning Algorithms, Cambridge university press, 2006.

[32] N. J. Nilsson, Principles of artificial intelligence, Morgan Kaufmann, 2014.

[33] A. Konar, “Artificial intelligence and soft computing: behavioral and cognitive modeling of the

human brain,” CRC press, 1999.

[34] P. Bhattacharya and M. L. Gavrilova, "Roadmap-based path planning-Using the Voronoi
diagram for a clearance-based shortest path," Robotics & Automation Magazine, IEEE,
vol. 15, no. 2, pp. 58-66, 2008.

[35] R. Gayle, W. Moss, M. C. Lin and D. Manocha, "Multi-robot coordination using generalized

social potential fields," IEEE International Conference on Robotics and Automation, pp. 106-

113, 2009.
[36] R. S. Sutton, and A. G. Barto, Reinforcement learning: An introduction, Cambridge,

Massachuetts: The MIT Press, 1998.

[37] A. Farinelli, L. Iocchi and D. Nardi, “Multirobot systems: a classification focused on

coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.

34, no. 5, pp. 2015-2028, 2004.

[38] R. B. Myerson, Game theory: analysis of conflict, Harvard University Press Cambridge, 1991.

[39] G.W. Brown, “Iterative solution of games by fictitious play. Activity analysis of production and

allocation,” vol. 13, no. 1, pp. 374-376, 1951.

[40] M. Kandori G. J. Mailath and R. Rob ”Learning, mutation, and long run equilibria in games,”

Econometrica: Journal of the Econometric Society, pp. 29-56, 1993.

[41] L. J. Neumann and O. Morgenstern, "Theory of games and economic behavior," Princeton:

Princeton university press, Vol. 60, 1947.

[42] J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286-295, 1951.

[43] G. Owen, Game Theory, Academic Press, UK, 1995.

[44] T. Basar and G. J. Olsder, “Dynamic noncooperative game theory,” vol. 23, Siam, 1999.

[45] R. A. Howard, Dynamic Programming and Markov Processes, 1960.

101

[46] R. E. Bellman, “Dynamic programming,” Proceedings of the National Academy of Science of the

United States of America, vol.42, no. 10, 1957.

[47] X. S. Yang, "Firefly algorithms for multimodal optimization, Stochastic Algorithms: Foundations

and Applications," SAGA, Lecture Notes in Computer Sciences 5792, pp. 169-178, 2009.

[48] R. Narimani and A. Narimani, "A New Hybrid Optimization Model Based on Imperialistic

Competition and Differential Evolution Meta- Heuristic and clustering Algorithms," Applied

Mathematics in Engineering, Management and Technology, vol. 1, no. 2, pp. 1–9, 2013.

[49] B. Subudhi and D. Jena, “A differential evolution based neural network approach to nonlinear

system identification,” Applied Soft Computing, vol. 11 no. 1, pp. 861-871, 2011.

 [50] F. Ramezani, S. Lotfi and M. A. Soltani-Sarvestani, "A hybrid evolutionary imperialist

competitive algorithm (HEICA)," Intelligent Information and Database Systems, Springer Berlin

Heidelberg, Part I, LNAI 7196, pp. 359-368, 2012.

 [51] V. Khorani, F. Razavi and A. Ghoncheh, "A New Hybrid Evolutionary Algorithm Based on ICA

and GA: Recursive-ICA-GA,". IC-AI, pp. 131-140, 2010.

 [52] S. Nozarian and M. V. Jahan, "A Novel Memetic Algorithm with Imperialist Competition as

Local Search," International Proceedings of Computer Science & Information Technology, 30,

2012.

 [53] J. L. Lin, Y. H. Tsai, C. Y. Yu and M. S. Li, "Interaction Enhanced Imperialist Competitive

Algorithms," Algorithms, vol. 5, no. 4, pp. 433-448, 2012.

 [54] L. D. S. Coelho, L.D. Afonso and P. Alotto, "A modified imperialist competitive algorithm for

optimization in electromagnetic," IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 579-582,

2012.

[55] M. Bidar and H. K. Rashidy, "Modified firefly algorithm using fuzzy tuned parameters," 13th

Iranian Conference on Fuzzy Systems (IFSC), IEEE, pp. 1-4, 2013.

[56] S. Seuken and S. Zilberstein, “Memory-Bounded Dynamic Programming for DEC-POMDPs,”

IJCAI, pp. 2009-2015, 2007.

[57] S. Seuken and S. Zilberstein, “Improved memory-bounded dynamic programming for

decentralized POMDPs,” arXiv preprint arXiv:, pp. 1206.5295, 2012.

[58] K. Alton and I. M. Mitchell, “Efficient dynamic programming for optimal multi-location robot

rendezvous,” 47th IEEE Conference on Decision and Control, pp. 2794-2799, 2008.

[59] E. Nudelman, J. Wortman, Y. Shoham and K. Leyton-Brown, "Run the GAMUT: A

comprehensive approach to evaluating game-theoretic algorithms," In Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems, Vol. 2, pp. 880-

887, 2004.

[60] J. Kennedy, R. Eberhart and Y. Shi, “Swarm Intelligence,” Morgan Kaufmann, Los Altos, CA,

2001.

102

[61] S. Das, A. Abraham and A. Konar, “Particle swarm optimization and differential evolution

algorithms: technical analysis, applications and hybridization perspectives,” In Advances of

Computational Intelligence in Industrial Systems, Springer Berlin Heidelberg, pp. 1-38, 2008.

[62] X. S. Yang, "Firefly algorithms for multimodal optimization, Stochastic Algorithms: Foundations

and Applications," SAGA, Lecture Notes in Computer Sciences 5792, pp. 169-178, 2009.

[63] E. A. –Gargari and C. Lucas, "Imperialist competitive algorithm: an algorithm for optimization

inspired by imperialistic competition," IEEE Congress in Evolutionary Computation, CEC, pp.

4661-4667, 2007.

[64] M. H. Horng, T. W. Jiang, "The codebook design of image vector quantization based on the firefly

algorithm," in: ICCCI, Part III, in: LNAI, vol. 6423, pp. 438–447, 2010.

[65] Z. Z. Abidin, M. R. Arshad, U. K. Ngah, "A simulation based fly optimization algorithm for

swarms of mini-autonomous surface vehicles application," Indian J. Geo-Mar. Sci. vol. 40, no. 2,

pp. 250–266, 2011.

[66] M. Belal, J. Gaber, H. El-Sayed, and A. Almojel, “Swarm Intelligence, In Handbook of

Bioinspired Algorithms and Applications,” Series: CRC Computer & Information Science, vol. 7.

Chapman & Hall Eds, ISBN 1-58488-477-5, 2006.

[67] M. Dorigo, “In The Editorial of the First Issue of: Swarm Intelligence Journal,” Springer Science

+ Business Media, LLC, Vol.1, No. 1, pp. 1–2, 2007.

[68] S. Hosseini, A. Al Khaled, “A survey on the Imperialist Competitive Algorithm metaheuristic:

Implementation in engineering domain and directions for future research,” Applied Soft Computing

vol. 24, vol. 1078–1094, 2014.

[69] J. Pugh, Y. Zhang and A. Martinoli, “Particle swarm optimization for unsupervised robotic

learning,” Swarm Intelligence Symposium, Pasadena, CA, pp. 92-99, June, 2005.

[70] J. Pugh and A. Martinoli, “Multi-robot Learning with Particle Swarm Optimization,” Autonomous

agents and multi-agent systems, Japan, pp. 441-448, May, 2006.

[71] J. Hu and M. P. Wellman, "Nash Q-learning for general-sum stochastic games," The Journal of

Machine Learning Research, vol. 4, pp. 1039-1069, 2003.

[72] A. Greenwald, K. Hall and R. Serrano, “Correlated Q-learning,” In Proceedings of the

international conference on machine learning, vol. 3, pp. 242-249, 2003.

[73] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement learning: A survey," Journal of

artificial intelligence research, pp. 237-285, 1996.

[74] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik vol.

1, pp. 269–271, 1959.

[75] H. M. Schawartz, Multi-Agent Machine Learning A Reinforcement Approach, Wiley, 2014.

[76] D. Berry and B. Fristedt, "Bandit problems," Chapman and Hall, 1985.

103

[77] J. Filar and K. Vrieze, Competitive Markov decision processes, Springer Science & Business

Media, 2012.

[78] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent

systems,” AAAI/IAAI, pp. 746-752, 1998.

[79] R. Jain and P. Varaiya, "Simulation-based optimization of Markov decision processes: An

empirical process theory approach," Automatica, vol. 46, no. 8, pp. 1297-1304, 2010.

[80] J.G. Kemeny and J. Laurie Snell, Finite Markov Chains, Springer-Verlag, New York Berlin

Tokyo 1960.

[81] A. G. Barto, R. S. Sutton and C. J. Watkins, Learning and sequential decision making, 1989.

[82] L. Busoniu, R. Babuska and B. De Schutter, “A comprehensive survey of multiagent

reinforcement learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 38, no. 2, pp. 156-172, 2008.

[83] H. P. Young, “The evolution of conventions,” Econometrica: Journal of the Econometric Society,

pp. 57-84, 1993.

[84] D. Fudenberg and D. M. Kreps, Lectures on Learning and Equilibrium in Strategic Form Games,

Core Foundation, Louvain-La-Neuve, Belgium, 1992.

[85] D Fudenberg and D. K. Levine, “Steady state learning and Nash equilibrium,” Econometrica:

Journal of the Econometric Society, pp. 547-573, 1993.

[86] E. Kalai and E. Lehrer, “Rational learning leads to Nash equilibrium,” Econometrica: Journal of

the Econometric Society, pp. 1019-1045, 1993.

[87] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” In Proceedings

of the tenth international conference on machine learning, pp. 330-337, 1993.

[88] M. L. Littman, “Value-function reinforcement learning in Markov games,” Cognitive Systems

Research, vol. 2, no. 1, pp. 55-66, 2001.

[89] J. Hu and M. P. Wellman “Multiagent reinforcement learning: theoretical framework and an

algorithm,” In Proceedings of the international conference on machine learning Vol. 98, pp. 242-

250, 1998.

[90] M. L Littman and C. Szepesvári, “A generalized reinforcement-learning model: Convergence and

applications,” Proc. of the International Conference on Machine Learning, pp. 310-318, 1996.

[91] C. Szepesvári and M. L. Littman, “A unified analysis of value-function-based reinforcement-

learning algorithms,” Neural computation, vol. 11, no. 8, pp, 2017-2060, 1999.

 [92] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in cooperative

multi-agent systems,” In Proceedings of the Seventeenth International Conference on Machine

Learning, 2000.

[93] X. Wang and T. Sandholm, Reinforcement learning to play an optimal Nash equilibrium in team

Markov games, NIPS, vol. 2, pp. 1571-1578, 2002.

104

[94] H. P. Young, “The evolution of conventions,” Econometrica: Journal of the Econometric Society,

pp. 57-84, 1993.

[95] X. Wang and T. Sandholm, “Reinforcement learning to play an optimal Nash equilibrium in team

Markov games,” In Advances in neural information processing systems, pp. 1571-1578, 2002.

[96] J. R. Kok and N. Vlassis, “Sparse Cooperative Q-learning,” International conference on machine

learning, Canada, 2004.

[97] Y. Wang and C. W. de Silva, “A machine learning approach to multi-robot coordination,”

Engineering application of Artificial Intelligence, pp. 470-484, 2008.

[98] Z. Zhang, D. Zhao, J. Gao, D. Wang and Y. Dai, “FMRQ – A Multiagent Reinforcement

Learning Algorithm for Fully Cooperative Tasks,” IEEE Trans. on Cybernetics, pp. 2168-2267,

2016. DOI: 10.1109/TCYB.2016.2544866

[99] M. L. Littman, "Markov games as a framework for multi-agent reinforcement learning," In

Proceedings of the eleventh international conference on machine learning, Vol. 157, pp. 157-163,

1994.

[100] R. A. C. Bianch, M. F. Martins, C. H. C. Ribeiro and A. H. R. Costa, “Heuristically –

Accelerated Multiagent Reinforcement Learning,” IEEE Trans. on Cybernetics, vol. 44, no. 2, pp.

252-265, 2014.

[101] R. A. C. Bianchi, C. H. C. Ribeiro and A. H. R. Costa, “Accelerating autonomous learning by

using heuristic selection of actions,” Journal Heuristics, vol. 14, no. 2, pp. 135–168, 2008.

[102] R. A. C. Bianchi, “Heuristically accelerated reinforcement learning: Theoretical and

experimental results,” in Proc. 20th Eur. Conf. Artif. Intell. Frontiers in Artificial Intelligence and

Applications, vol. 242, pp. 169–174, 2012.

[103] R. A. C. Bianchi, “Heuristic selection of actions in multiagent reinforcement learning,” in Proc.

20th Int. Joint Conf. Artif. Intell., Hyderabad, India, , pp. 690–695, 2007.

[104] V. Conitzer, “Approximation guarantees for fictitious play,” 47th Annual Allerton
Conference on Communication, Control, and Computing, IEEE, pp. 636-643, 2009.

[105] R. Powers and Y. Shoham, "New criteria and a new algorithm for learning in multi-agent

systems," In Advances in neural information processing systems, pp. 1089-1096, 2004.

[106] M. Bowling and M. Veloso, "Multiagent learning using a variable learning rate," Artificial

Intelligence, vol. 136, no. 2, pp. 215-250, 2002.

[107] V. Conitzer and T. Sandholm, "AWESOME: A general multiagent learning algorithm that

converges in self-play and learns a best response against stationary opponents," Machine Learning,

vol. 67, no. 1-2, pp. 23-43, 2007.

[108] P. Stone and M. Veloso, "Multiagent systems: A survey from a machine learning perspective,"

Autonomous Robots, vol. 8, no. 3, pp. 345-383, 2000.

105

[109] V. Conitzer and T. Sandholm, "AWESOME: A general multiagent learning algorithm that

converges in self-play and learns a best response against stationary opponents," Machine Learning,

vol. 67, no. 1-2, pp. 23-43, 2007.

[110] M. Bowling and M. Veloso, "Multiagent learning using a variable learning rate," Artificial

Intelligence, vol. 136, no. 2, pp. 215-250, 2002.

[111] G. Tesauro, “Extending Q-learning to general adaptive multi-agent systems,” In Advances in

neural information processing systems, 2003.

[112] S. Singh, M. Kearns and Y. Mansour, “Nash convergence of gradient dynamics in general-sum

games” In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pp. 541-

548, Morgan Kaufmann Publishers Inc., 2000.

[113] E. Kalai and E. Lehrer, “Rational learning leads to Nash equilibrium,” Econometrica: Journal of

the Econometric Society, pp. 1019-1045, 1993.

[114] H. Reinhard, Differential equations: Foundations and applications, North Oxford Academic,

1986.

[115] S. Boyd and L. Vandenberghe, "Convex optimization," Cambridge university press, 2004.

[116] J. Friedman, T. Hastie and R. Tibshirani, "The elements of statistical learning," Vol. 1, Springer,

Berlin: Springer series in statistics, 2001.

[117] B. E. Boser, I. M. Guyon and V. N. Vapnik, "A training algorithm for optimal margin

classifiers," In Proceedings of the fifth annual workshop on Computational learning theory, pp.

144-152, ACM, 1992.

[118] N. Bansal, A. Blum, S. Chawla and A. Meyerson, “Online oblivious routing,” In Proceedings of

the fifteenth annual ACM symposium on Parallel algorithms and architectures, pp. 44-49, ACM,

2003.

[119] J. C. Boot, “Quadratic programming: algorithms, anomalies, applications,” Rand McNally, 1964.

[120] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," In

Proceedings of the international conference on machine learning, 2003.

[121] M. Bowling, “Convergence and no-regret in multiagent learning,” Advances in neural

information processing systems, vol. 17, pp. 209-216, 2005.

[122] V. Könönen, “Asymmetric multiagent reinforcement learning,” Web Intelligence and Agent

Systems: An international journal, vol. 2, no. 2, pp. 105-121, 2004.

[123] M. L. Littman, "Friend-or-foe Q-learning in general-sum games," In Proceedings of the

international conference on machine learning, vol. 1, pp. 322-328, 2001.

[124] Y. Hu, Y. Gao and B. An, “Multiagent Reinforcement Learning With Unshared Value

Functions,” IEEE Trans. on Cybernetics, vol. 45, no. 4, pp. 647-661, 2015.

[125] Y. Hu, Y. Gao and A. An, “Accelerating multiagent reinforcement learning by equilibrium

transfer,” IEEE Trans. on cybernetics, vol. 45, no. 7, pp. 1289-1302, 2015.

106

[126] M. Bowling and M. Veloso, "Rational and convergent learning in stochastic games," In

International joint conference on artificial intelligence, vol. 17, No. 1, pp. 1021-1026, Lawrence

Erlbaum Associates Ltd, 2001.

[127] G. Weiß, Adaptation and learning in multi-agent systems, Some remarks and a bibliography, pp.

1-21, Springer Berlin Heidelberg, 1995.

[128] B. Banerjee and J. Peng, "Adaptive policy gradient in multiagent learning," In Proceedings of the

second international joint conference on Autonomous agents and multiagent systems, pp. 686-692,

ACM, 2003.

[129] B. Banerjee and J. Peng, "Convergent gradient ascent in general-sum games," In Machine

Learning: ECML, pp. 1-9, Springer Berlin Heidelberg, 2002.

[130] M. Weinberg and J. S. Rosenschein, “Best-response multiagent learning in non-stationary

environments,” In Proceedings of the Third International Joint Conference on Autonomous Agents

and Multiagent Systems, vol. 2, pp. 506-513, 2004.

[131] Y. Shoham, R. Powers and T. Grenager, "Multi-agent reinforcement learning: a critical survey,"

Technical report, Computer Science Department, Stanford University, Stanford, 2003.

[132] J. Hu, “Best-response algorithm for multiagent reinforcement learning,” In Proceedings of the

international conference on machine learning, 2003.

[133] N. Suematsu and A. Hayashi, "A multiagent reinforcement learning algorithm using extended

optimal response," In Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 1, pp. 370-377, ACM, 2002.

[134] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvari, “Convergence results for single-step on-

policy reinforcement learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 287-308, 1998.

Chapter 2
Improving Speed of Convergence of Multi-
Agent Q-learning for Cooperative Task-
Planning by a Robot-Team

Learning-based planning algorithms are currently gaining popularity for their increasing
applications in real-time planning and cooperation of robots. The chapter aims at extending
traditional multi-agent Q-learning algorithms to improve their speed of convergence by
incorporating two interesting properties, concerning i) exploration of the team-goal and ii)
selection of joint action at a given joint state. The exploration of team-goal is realized by
allowing the agents, capable of reaching their goals, to wait at their individual goal states,
until remaining agents explore their individual goals synchronously or asynchronously. To
avoid unwanted never-ending wait-loops, an upper bound to wait-interval, obtained
empirically for the waiting team members, is introduced. Selection of joint action, which is a
crucial problem in traditional multi-agent Q-learning, is performed here by taking the
intersection of individual preferred joint actions of all the agents. In case the resulting
intersection is a null set, the individual actions are selected randomly or otherwise following
classical multi-agent Q-learning. It is shown both theoretically and experimentally that the
extended algorithms outperform its traditional counterpart with respect to speed of
convergence. To ensure selection of right joint action at each step of planning, we offer high
rewards to exploration of the team-goal and zero rewards to exploration of individual goals
during the learning phase. The introduction of the above strategy results in an enriched joint
Q-table, the consultation of which during the multi-agent planning yields significant
improvement in the performance of cooperative planning of robots. Hardwired realization of
the proposed learning based planning algorithm, designed for object-transportation
application, confirms the relative merits of the proposed technique over contestant algorithms.

108

Table 2.1 List of acronyms

Full form Acronyms
Multi-agent Q-learning : MAQL
Traditional MAQL : TMAQL
Nash equilibrium : NE
Nash Q-Learning : NQL
NQL with equilibrium transfer : NQLET
NQL with Property 1: NQLP1
NQL with Property 2 : NQLP2
NQL with Property 1 and 2 : NQLP12
Correlated equilibrium : CE
Correlated Q-learning : CQL
Utilitarian Q-Learning : UQL
UQL with equilibrium transfer : UQLET
UQL with Property 1 : UQLP1
UQL with Property 2 : UQLP2
UQL with Property 1 and 2 : UQLP12
Egalitarian Q-Learning : EQL
EQL with equilibrium transfer : EQLET
EQL with Property 1 : EQLP1
EQL with Property 2 : EQLP2
EQL with Property 1 and 2 : EQLP12
Republican Q-Learning : RQL
RQL with equilibrium transfer : RQLET
RQL with Property 1 : RQLP1
RQL with Property 2 : RQLP2
RQL with Property 1 and 2 : RQLP12
Libertarian Q-Learning : LQL
LQL with equilibrium transfer : LQLET
LQL with Property 1 : LQL1
LQL with Property 2 : LQL2
LQL with Property 1 and 2 : LQLP12
Frequency of the maximum reward Q-learning : FMRQ
FMRQ with Property 1 : FMRQP1
FMRQ with Property 2 : FMRQP2
FMRQ with Property 1 and 2 : FMRQP12
Fast cooperative multi-agent Q-learning : FCMQL
Nash Q Induced multi-agent planning : NQIMP
Correlated Q induced multi-agent planning : CQIMP
Contributed reward by agent i for the team : iCR
Imperialist Competitive Firefly Algorithm : ICFA
modified noise-resistant Particle Swarm Optimization : MNPSO
Differential Evolutionary : DE
multi-robot joint action learning by demonstration : MLbD

2.1 Introduction
Reinforcement learning (RL) [1-10] refers to a real-time learning paradigm, where an agent
learns its environment with respect to a fixed goal by receiving reward/penalty [6] for its
actions on the environment. The reward/penalty obtained by the agent for its sequence of
actions is used to adapt its effective reward in a given state-action space [11-14], [15]. The
motivation of RL is to derive the optimal action at a given environmental state for which the

109

agent would be able to derive the maximum reward. Such formulation of deriving optimal
action at a given state based on the learned experience of interaction with the environment has
plenty of interesting applications, including generating moves in a game [16-17], complex
task-planning and motion-planning of a mobile robot in a constrained environment [18]. In
RL, the environment is typically represented by a Markov Decision Process (MDP) with
unknown state-transition probabilities and an unknown reward model [6]. MDP provides the
basic mathematical model of a discrete-event system [19].

Among the RL algorithms, Q-learning is most popular. Q-learning does not require any
background knowledge of the agents’ environment and thus is called model-free. This
characteristic of Q-learning is advantageous [20] as learning can be performed without the
knowledge of the environment. In Q-learning, optimal policy for each state-action pair is
estimated through an iterative process using Dynamic Programming (DP) [21], realized with
the well-known Bellman Equation (BE) [21]. In single agent Q-learning, the state-transitions
are controlled by the agent itself. However, in a multi-agent environment, all the agents
participate to select their individual actions and form a joint action in a joint state-space.
Because of joint actions by the agents on the environment, the environment in multi-agent Q-
learning (MAQL) [2], [12], [18], [22-40], [42-52], [59] appears as dynamic to an individual
agent. Like single agent Q-learning, a MAQL too is described by a MDP, called Multi-agent
MDP (MMDP) [23]. [33].

Several extensions of the single agent Q-learning for multi-agent applications is available.
The fundamental problems in MAQL, by which it significantly differs from its single-agent
counterpart, include [2], [18], [22-40], [42-52], [59] i) joint action selection, ii) update policy
selection for adaptation of the Q-table in joint state-action space and iii) exploration of the
team-goal. Although the first two problems have been addressed in the literature, the last one
remains unattended. In this paper, we provide a solution to MAQL with a motivation to deal
with exploration of the team-goal and demonstrate its scope of applications in tight
cooperative multi-agent planning.

Several approaches to action selection in a single agent are available. A few of these that
deserve special mention includes   greedy exploration [6], Boltzmann strategy [15], [53]
the extended Boltzmann strategy for Frequency Maximum Q-value (FMQ) heuristic [45] and
also random selection. Selection of a joint action traditionally is done in two phases. First,
individual actions are selected by any one of the above techniques. Next, the individual
actions are combined to form a joint action. However, there are situations when the joint
actions thus obtained are infeasible for a given environment. In Traditional MAQL
(TMAQL), the researchers do not check the possibility of infeasible actions, as infeasible
actions are penalized and thus automatically get forbidden in subsequent learning epochs.

110

Wang et al. introduced a novel technique for joint action selection in their proposed
Sequential Q-Learning (SQL) using a two step procedure [18]. In the first step, they
employed the Boltzmann strategy for the individual action selection, and in the second step
they designed a specialized selection operation to avoid the same actions repeatedly. Besides
joint action selection, there exists extensive literature on update policy in the Q-table. A few
of these include Nash Q-learning (NQL) [27-28], correlated Q-learning (CQL) [26], SQL
[18], sparse Q-learning [50], heuristically accelerated MAQL [51], MAQL with equilibrium
transfer (MAQLET) [48], and Frequency of the maximum reward Q-learning (FMRQ) [52].
These techniques have their individual merits depending on the nature of the problem
selected.

Of the three problems in MAQL, we discussed above the major works on the first two.
Unfortunately, there is hardly any work on the last problem on exploration of the team-goal.
In many real world problems, particularly where tight cooperation of the members is required,
such as carrying a stick [63] /pushing a box [52] by two (or more) robots in an environment
with plenty of obstacles. Here, the moves that ensure reaching of one or more (but not all)
agents to their individual goals are no longer useful. Such moves, if executed during planning,
may not allow the agents, who have reached their goals, to perform any further actions. Thus
there is an apparent deadlock as no team effort can keep the agents continue changing their
states.

In this paper, we overcome the above problem by realization of the following strategy in the
learning phase. The strategy includes allowing one or more agents, who could manage to
reach their individual goals, to wait in their individual goal states for a significantly large time
to give the remaining agents a chance to move to their respective (individual) goals
synchronously or asynchronously. Such multi-phase state-transition to the team-goal offers
one way to overcome the limitation of single-phase goal transition. Here, the goal transition in
the last phase only accumulates high (immediate) reward contributed by an agent for the
team, thereby improving the entries in the Q-table for state-transitions for the team-goal. The
Q-table thus obtained offers the team the additional benefit to identify the joint action leading
to transition to the team-goal.

One question that may be raised is how long the agents, who could manage to reach their
goals, wait for the other agents to reach their subsequent goals. A small waiting interval may
not be enough to allow all agents to reach their goals. On the other hand, a large interval may
keep the entire team waiting at their team-goal. Thus selection of the right time–interval for
the agents waiting at their individual goals is a crucial parameter, which in turn determines
both the speed and planning performance of the agents.

111

The other important issue addressed in the chapter is the joint action selection. Here, the
agents identify their preferred individual actions in combination with all possible actions by
the other agents with an aim to determine the preferred joint action(s) of the team by taking
the meet operation of such combinations. The joint action selection introduced above is useful
for agents acting synchronously. As agents act synchronously, they do not require setting any
priority to them like in [18]. In case no feasible joint action by the above method is available,
the agents select individual actions randomly or by standard techniques (Boltzmann strategy
and ε-greedy) used in traditional Q-learning [6], [15], [37], [45] to construct the joint action.

The incorporation of the above two strategies in the MAQL enhances the planning
performance of multi-agent systems as the Q-tables, defined in joint state-action space, is
enriched with high reward values for state-transitions concerning exploration of the team-goal
in the next joint state. The reward values stored in the joint Q-table are also adapted with
greater rewards for next joint states geographically closer to the team-goal. The resulting joint
Q-table would offer the right selection of next joint state, helping the agents reach the team-
goal by an optimal/near-optimal path for transition from the starting joint state to the goal
state.

A fast cooperative multi-agent Q-learning (FCMQL) and its associated multi-agent
planning algorithm have been developed using the above two strategies in both deterministic
and stochastic environment. Experiments undertaken confirm that the proposed algorithms
outperform their existing competitors with respect to convergence time in learning and
successful team-task in planning. In addition, the joint action selection employing Imperialist
Competitive Firefly Algorithm (ICFA) [63], modified noise-resistant Particle Swarm
Optimization (MNPSO) [54-55], Differential Evolutionary (DE) [56-57], and multi-robot
joint action learning by demonstration (MLbD) [58] algorithms are compared separately with
the FCMQL based multi-robot planning algorithms. The merits of the present work are now
outlined below.

1) Two useful properties have been developed to speed-up the convergence of MAQL
algorithms. Property 2.1 establishes the principles used to overcome the exploration of the
team-goal. Property 2.2 directs an alternative approach to speed-up the convergence of
MAQL by identifying the preferred joint action for the team.

2) Incorporation of the above two properties in TMAQL (including NQL, variants of CQL,
MAQLET and FMRQ) results in significant improvement in speed of convergence.

3) In addition, because of an enriched Q-table to handle transitions to goal states, the
proposed FCMQL induced planning algorithm can successfully complete the plan to reach the
team-goal, where TMAQL based planning stops inadvertently.

112

 4) Experiments have been developed to validate the performance of the proposed FCMQL
with the contender algorithms in terms of the convergence speed and the run-time complexity
as the performance metrics.
 The rest of the chapter is structured as follows. Preliminaries of RL are reviewed in Section
2.3. Section 2.4 and 2.5 introduces the proposed FCMQL algorithms and Section 2.6 deals
with multi-agent cooperative planning algorithms. Section 2.7 includes experiments and
results. The conclusions are listed in Section 2.8.

2.2 Literature review
Quite a few interesting works on the MAQL have been reported in the literature [18], [22-40],
[42-52], [59]. Among the state-of-the-art MAQL algorithms, the following need special
mentions. In [24], Claus and Boutilier, aimed at solving the coordination problem using two
types of reinforcement learners. The first one, called independent learner (IL) [24], takes care
of the learning behavior of individual agents by ignoring the presence of other agents. The
second one, called joint action learner (JAL) [24], considers all agents including the self to
learn at joint action-space. Unlike JAL, in Team Q-learning [59] proposed by Littman, an
agent updates its Q-value at a joint state-action pair without utilizing associated agents'
reward; rather the value function of the agent at the next joint state is evaluated by obtaining
the maximum Q-value among the joint actions at the next joint state. In [37], Ville proposed
Asymmetric-Q learning (AQL) algorithm, where the leader agents are capable of maintaining
all the agents Q-tables. However, the follower agents are not allowed to maintain all the
agents’ Q-tables and hence, they just maximize their own rewards. In AQL, agents always
achieve the pure strategy Nash equilibrium (NE), although there does exist mixed strategy NE
[27-28]. In [27], Hu and Wellman extended the Littman’s Minimax Q-learning [40] to
general-sum stochastic game (where summation of all agents’ payoff is neither zero nor
constant) [16], [41] by taking into account of other agents’ dynamics using NE [27], [28],
[60]. They also offered a proof of convergence of their algorithm [42]. In [43] and [44], the
authors selected one NE optimally in case of its multiple occurrences. In [30], Littman
proposed, Friend-or-Foe Q-learning algorithm for general-sum games. In this algorithm, the
learner is instructed to treat each other agent either as a friend in Friend Q-learning (FQL), or
as a foe in Foe Q-learning. Friend-or-Foe Q-learning provides a stronger convergence
guarantee in comparison to that of the existing NE based learning rule [27-28]. In [26],
Greenwald and Hall proposed CQL employing correlated equilibrium (CE) [26] to generalize
both NQL [27] and Friend-or-Foe Q-learning [30]. The bottlenecks of the above MAQL
algorithms are update policy selection for adaptation of the Q-tables in joint state-action space
and the curse of dimensionality with the increase in number of learning agents. Several
attempts have been made to handle the curse of dimensionality in MAQL. Jelle and Nikos

113

proposed Sparse Cooperative Q-learning in [50], where a sparse representation of the joint
state-action space of the agents is done by identifying the need of coordination among the
agents at a joint state. In [50], agents undertake coordination by their actions only in a few
joint states. Hence, each agent maintains two Q-tables: one is the individual-action Q-table for
un-coordinated joint states and other one is the joint action Q-table to represent the
coordinated joint states. In case of uncoordinated states, a global Q-value is evaluated by
adding the individual Q-values. In [49], authors offer a neural network based approach for
generalized representation of the state-space for multi-agent coordination. By such
generalization, agents (here robots) can avoid collision with an obstacle or other robots by
collecting minimum information from the sensors. In [51], Reinaldo et al. proposed a novel
algorithm to heuristically accelerate the TMAQL algorithms. In the literature of MAQL [18],
[22-40], [42-52], [59] agents either converge to NE or CE. The equilibrium-based MAQL
algorithms [26], [27] are most popular for their inherent ability to determine optimal strategy
(equilibrium) at a given joint state. In [48], Hu et al. identified the phenomenon of similar
equilibria in different joint states and introduced the concept of equilibrium transfer to
accelerate the state-of-the-art equilibrium-based MAQL (NQL and CQL). In equilibrium
transfer, agents recycle the previously computed equilibria having very small transfer-loss.
Recently in [52], Zhang et al. attempted to reduce the dimension of the Q-tables in NQL. The
reduction is done by allowing the agents to store the Q-values in joint state-individual action
space, instead of joint state-action space. However, with the best of our knowledge there is no
work in the literature, which considers simultaneous exploration of the individual goals (i.e.,
team-goal) of the agents.

In the state-of-the-art MAQL (NQL [27], [28] and CQL [26]), balancing
exploration/exploitation during the learning phase is an important issue. Traditional
approaches used to balance exploration/exploitation in MAQL are summarized here. The
  greedy exploration [6], although has wide publicity, needs to tune the value of , which

is time-costly. In the Boltzmann strategy [15], the action selection probability is controlled by
tuning a control parameter (temperature) [15] and by utilizing the Q-values due to all actions
at a given state. Here, the setting of temperature to infinity (zero) implies pure exploration
(exploitation). Unfortunately, the Boltzmann strategy antagonistically affects the speed of
learning [45]. Evolution of the Boltzmann strategy towards better performance is observed in
[38] and [45]. However, the above selection mechanisms are not suitable for selecting a joint
action preferred for the team (all the agents) because of the dissimilar joint Q-values offered
by the agents at a common joint state-action pair. There are traces of literature concerning
joint action selection at a joint state during learning. In [54], Jim and Alcherio employ a
MNPSO, where each agent is considered as a swarm and they can communicate with each

114

other. In [58], the joint action for multi-robot cooperation is selected by learning simultaneous
demonstration [58].

2.3 Preliminaries
The section presents preliminaries of RL, single agent Q-learning and MAQL concisely. In
RL [6], [8], an agent interacts with the environment, by means of a 3-tuple <state (),s action
(),a reward ()r >. A state refers to the current position of an agent (here robot) within an

environment. By executing an action in the current state, the agent receives a scalar reward
from the environment and moves to the next state. The scalar reward acts as a feedback for
the agent on its immediate performance. Fig. 2.1 provides a schematic overview of RL.

Fig. 2.1 Block diagram of reinforcement leaning (RL)

2.3.1 Single agent Q-learning
Single agent Q-learning, proposed by Watkins and Dayan, is one of the most widely used
RL techniques [20]. In single agent Q-learning, the environment is divided into a finite
number of states. At any state, an agent has a finite set of actions, from which it can choose
one according to a given policy. The agent learns optimal state-action value (Q-value) for
each state-action pair using the principle of DP and BE [21]. In single agent Q-learning, the
agent attempts to determine the optimal policy in order to maximize the sum of discounted
expected rewards [11]. The single agent Q-learning update rule is given by (2.1) [20]:

//

/ / /(,) (1) (,) [(,) [| (,)] (,)].
as

Q s a Q s a r s a P s s a MaxQ s a       (2.1)

where, (,)Q s a and (,)r s a are the Q-value and immediate reward respectively at state s due

to action ,a / { }a a is the action in the next state / { },s s / (,)s s a is the state-
transition function, [0,1)  denotes the discounting factor and [0,1)  refers to the

learning rate. However, in the deterministic situation, the state-transition probability
/[| (,)]P s s a to reach the next state / { }s s from the state s because of action a is unity.

After infinite revisit of (,),s a Q-value (,)Q s a turns to the optimal Q-value *(,).Q s a

115

2.3.2 Multi-agent Q-learning
Unlike single agent Q-learning presented above, in MAQL, the joint Q-value depends on the
other agents’ actions too. In MAQL, MDP is extended to MMDP [23], [32]. The definition of
MMDP is given below.
Definition 2.1: A multi-agent MDP (MMDP) for m number of agents can be defined as a 5-
tuple { }, ,{ }, , ,i iS m A P R

 where,

1

{ } { }
m

i
i

S s


  is the joint state space, { }S S and { }i is s is the state of agent ,i 

 denotes the Cartesian product,

1

{ } { }
m

i
i

A a


  is the joint action space, { }A A and { }i ia a is the action of agent ,i

 :{ } { } { } [0,1]iP S A S   is the joint state-transition probability of agent ,i
and :{ } { } RiR S A  is the reward function at a joint state-action pair of agent ,i

 where R is the set of real numbers.
MAQL algorithms [18], [22-40], [42-52], [59] usually are of three types: cooperative,
competitive and mixed [47]. In this paper, we deal with cooperative MAQL algorithms,
where all the agents adapt Q-tables in a common environment. Because of the adaption in a
common environment, the environment becomes dynamic, and an agreement is needed
among the agents to attain optimal performance of the team. Such agreement is attained by
adapting the joint Q-values in equilibrium, e.g., NE [60] and CE [26]. Both NE and CE
employ a) pure strategy and b) mixed strategy. The definitions of NE [60] and CE [26] are
given below.
Definition 2.2: Nash equilibrium is a stable joint action (or strategy) at a given joint state ()S

of a system that involves m interacting agents, such that no unilateral deviation (deviation of
an agent independently) can occur as long as all the agents follow the same optimal joint
action *

1
m

N i iA a   at a joint state { }S S for pure strategy NE. Further, for a mixed

strategy NE, agents perform the joint action 1
m

i iA a   with a probability

* *
1

() (),
m

i i
i

p A p a


 where * :{ } [0,1],i ip a  * :{ } [0,1]p A  .

Let * { }i ia a be the optimal action of agent i at is and *
iA A  be the optimal joint action

profile of all agents except agent i at joint state 1,
m

j j j iS s    and (,)iQ S A be the joint

Q-value of agent i at S because of joint action { }.A A Then the condition of pure strategy

NE at S is [60]
 * * *(, ,) (, ,), i i i i i iQ S a A Q S a A i  

116

/(,) (,), i N iQ S A Q S A i   * * / *[where , and ,]N i i i iA a A A a A     (2.2)

and condition of mixed strategy NE at S is [60]
* * *(, ,) (, ,), ,i i i i i iQ S p p Q S p p i   (2.3)

where, (,) () (,)i i
A

Q S p p A Q S A


 and * *
1,

() ()
m

i i j j
j j i

p A p a 
 

 be the joint probability of

selecting joint action profile of all agents except agent i denoted by iA A  .

Agents follow (2.2) to evaluate pure strategy NE * *,N i iA a A  and (2.3) for mixed

strategy NE * *(), ()i i i ip a p A   respectively at joint state .S Evaluation of NE employing

Lemke-Howson method [65] is quiet efficient but limited to two agents problem only. In this
chapter, to evaluate NE a simple search method following [66] has been employed.

In NE, agents are allowed to maximize its own reward. However, in CE, the composite
benefits of the agents are considered by selecting the individual actions jointly. In [26],
authors outline four variants of CE: Utilitarian equilibrium (UE) (representing sum of all the
agents’ rewards), Egalitarian equilibrium (EE) (computed by taking minimum of all the
agents’ rewards), Republican equilibrium (RE) (obtained by taking maximum of all the
agents’ rewards) and Libertarian equilibrium (LE) (which multiplies all the agents’ rewards)
to evaluate a joint strategy (action).
Definition 2.3: Correlated equilibrium (CE) at a joint state, 1

m
i iS s   with m

interacting agents is the pure strategy CE, CA and mixed strategy CE, *()Cp A if agents

follow (2.4) and (2.5) respectively [26].
arg max[((,))]C i

A
A Q S A  (2.4)

*
()

() arg max[[()((,))]]C i
Ap A

p A p A Q S A   (2.5)

where,
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

   (2.6)

In [27], Hu and Wellman proposed NQL with the help of NE to update the reward of the
agent at joint state-action space. Similarly, in [26], Greenwald and Hall proposed CQL with
the help of CE to update the reward of the agent at joint state-action space. Later in [48], Hu
et al. attempted to accelerate the NQL and CQL by equilibrium transfer. Recently in [52],
Zhang et al. attempted to reduce the dimension of the Q-tables in NQL. The reduction is done
by allowing the agents to store the Q-values in joint state-individual action space, instead of
storing them in joint state-action space. The above mentioned NE/CE-based algorithms are
summarized in Algorithm 2.1. In Algorithm 2.1, (,)ir S A refers to the immediate reward of
agent i given by (2.7), where maxr and minr are the maximum and minimum immediate

rewards respectively.

117

max

min
+

(,) , if agent reaches its individual goal,
 , if agent does not reach its individual goal,

 , if agent violates constraint, R .

ir S A r i
r i

r i r





  

 (2.7)

Algorithm 2.1: NE/CE-based Multi-agent-Q Learning

Input: Current state , ,is i action set{ },ia  is a small positive threshold to stop the algorithm,

[0,1)  and [0,1); 

Output: Joint Q-value of agent i *(,), , , ;iQ S A S A i  

Initialize: (,) 0, , , ;iQ S A S A i   
Repeat
 Observe the current state , ;is i

 Randomly select an action { }i ia a at is and execute it ;i

 Receive (,), ,ir S A i evaluate next state / (,),i i i is s a i  to obtain next joint state / /
1;m

i iS s  

 / (,) (,), ;i iQ S A Q S A i 
 Update:

/

/ /(,) (1) (,) [(,) [| (,)] ()],i i i i i
S

Q S A Q S A r S A P S S A Q S i        // for stochastic

/(,) (1) (,) [(,) ()],i i i iQ S A Q S A r S A Q S i        //for deterministic, { , }NE CE

 and / ;S S // /()iQ S is the Q-value of agent i due to { , }NE CE at joint state /S

Until /| (,) (,) | , , , ;i iQ S A Q S A S A i    

Obtain *(,) (,), , , .i iQ S A Q S A S A i   

Complexity analysis: To analyze complexities of the Algorithm 2.1 [27], [52] let for m
number of agents { }S be the set of joint states and { }A be the set of joint actions from each
joint state { }.S S In NQL, CQL and MAQLET, an agent maintains Q-table at joint state-

action space. In the absence of communication [27], an agent has to maintain all the agents'
Q-tables at joint state-action space. So, the space complexity of the NQL, CQL, and
MAQLET algorithms is |{ } ||{ } | .m S A However, in FMRQ, an agents adapts Q-values at a

joint state for each individual actions. Therefore, the space complexity of the FMRQ
algorithms is |{ }||{ }|,m S a where 1 2{ } { } ... { } { }.ma a a a    Also in the TMAQL, an

agent updates all the agents’ Q-values at the current joint state-action pair by selecting the Q-
values in the next joint state at NE/CE in each learning epoch. So, the time complexity to
evaluate NE (considering pure strategy NE) is

1(|{ }| 1). |{ }| (|{ }|)m mA A O A  and time complexity
to evaluate the pure strategy CE is (1)(|{ }| 1) (|{ }|).m A O m A  

118

2.4 Proposed multi-agent Q-learning
The Algorithm 2.1 presented above, suffers from two limitations: i) exploration of the team-
goal and ii) joint action selection. In addition, overcoming these limitations derive additional
benefit in subsequent planning stage to optimally select the team-goal. We here briefly outline
the possible ways to overcome the limitations stated above.

In this section, we propose two important properties to overcome the above limitations and
subsequently increase the speed of convergence of MAQL algorithms. In the first property,
when one agent reaches its goal, it would remain idle, while its teammates continue
exploration for their respective goals. The second property ascertains selection of a joint
action at a joint state corresponding to the least reward of all the agents. It is shown that such
selection accelerates the learning of the Q-table in MAQL algorithms. It is shown that the
convergence speed of the proposed FCMQL algorithms is more than the same of the TMAQL
(NQL, CQL, MAQLET, and FMRQ) algorithms. We now define a new term, called
contributed reward by agent i for the team denoted by .iCR

Definition 2.4: The contributed reward by agent i to achieve the team-goal is a scalar
quantity: (,),iCR S A defined at joint state S due to joint action ,A is given by

max

min

(,) , if all agents reach their goals simultaniously,
 , if atleast one agent is left to reach its goal,

 , if atleast one agent violates constraint,

iCR S A r
r

r r





  +R .

 (2.8)

where, maxr and minr are the maximum and minimum immediate rewards respectively.

Violation of constraints generally indicates collision among the team-mates.

/

/ /(,) (1) (,) [(,) [| (,)] ()]i i i i i
S

Q S A Q S A CR S A P S S A Q S       (2.9)

where, [0,1)  and [0,1)  refer to the discounting factor and learning rate respectively.

The joint state-transition function designed following TMAQL is given below:
 1(,) (,) m

i i i iS A s a    (2.10)

 /
1

m
i is  

 /S
 { }S

and /[| (,)]iP S S A denotes the joint state-transition probability of agent i to reach the next

joint state / { }S S from the joint state S because of joint action .A / ()iQ S is the Q-value

of agent i because of { , }NE CE at next joint state /S and is evaluated by a simple search

method [66].

119

2.4.1 Two useful properties
The properties based on which the FCMQL algorithms are being developed are discussed
below. The properties are valid both in deterministic and stochastic situations. Property 2.1 is
derived using Statute 2.1 given below.
Statute 2.1: Unlike the TMAQL in the proposed FCMQL, when an agent moves to its goal
state, it will not restart the learning process by randomly selecting a state (excluding its goal
state); rather it waits in its goal state, and will restart learning along with all other agents,
when the last agent moves to its individual goal state.
Property 2.1: In MAQL, if all the agents follow Statute 2.1, then the probability of exploring
the team-goal monotonically increases with k in a learning episode, where k refers to the

number of agents explore their individual goals.
Proof: See Appendix 2.1 (Section 2.10).

Besides exploration of the team-goal, to speed-up learning further, Property 2.2 is proposed.
For the sake of convenience of the readers, the definition of preferred joint action is given
below.
Definition 2.5: If (,)iQ S A refers to the Q-value of agent i at joint state S because of joint

action ,A then the set of preferred joint actions { }p
iA of agent ,i is obtained by (2.11).

{ } arg max[(,)].p
ii

A
A Q S A (2.11)

We also define the common preferred set of joint actions of m agents as

1
{ } { }.

m pp
ii

A A


  (2.12)

In case { } ,pA  the agents would select their individual preferred actions randomly or by

traditional selection techniques [6], [15], [53], [45].
In Property 2.2 introduced below, if at a joint state S only one joint action A remains non-

utilized, then the probability to execute A at S becomes one, i.e., the joint action A is

selected certainly for execution. This, in other words, indicates that the joint actions already
taken in a joint state should not be repeated, until all the joint actions at that joint state have
been explored.
Property 2.2: In MAQL, if { }pA is the set of equally preferred joint action for the team at
the joint state S where { } { } {arg min[(,)]} ,pp

iii i A
A A Q S A 

 
     then /(,) (,)p pP S A P S A

where /pA refers to the preferred joint action in the next iteration
Proof: See Appendix 2.1 (Section 2.10).

In Property 2.2, if an agent i receives a penalty (reward of r by (2.8)) at a joint state S
because of a joint action A before improving its joint Q-value (,)iQ S A from the initialized

value (generally zero), then the agent is trapped at the former joint state .S To overcome such

120

problem (,)iQ S A is re-initialized to zero. Such re-initialization improves the speed of

convergence of the proposed FCMQL by avoiding the trapping at local minima.

2.5 Proposed FCMQL algorithms and their convergence
analysis
In this Section, we propose FCMQL algorithms with their convergence analysis, where
FCMQL refer to a set of algorithms given by {NQLP12, EQLP12, UQLP12, RQLP12,
LQLP12, FMRQP12}.

2.5.1 Proposed FCMQL algorithms
In Algorithm 2.2, the proposed FCMQL algorithms enjoy the benefits of the proposed
Property 2.1 and Property 2.2, which are responsible for exploring the team-goal rapidly and
speeding-up learning process respectively. In Algorithm 2.2, we compute pure strategy NE, if
it exists; otherwise mixed strategy NE is evaluated. However, it may please be noted that in
the proposed FMRQP12 and its associated variants, agents maintain Q-tables at joint state-
individual action space denoted by (,), , ,i i iQ S a S a i   [52].

Complexity analysis: To analyze the complexity of the proposed Algorithm 2.2, let there be
m number of agents. Let { }S and { }A be the set of joint states and joint actions respectively.

The space complexity of the proposed FCMQL algorithms, except FMRQP12, is given by
| { } | . | { } |,m S A where for the latter the complexity is | { } | . |{ } |,m S a where

1 2{ } { } { } { }.ma a a a    Now, referring to Property 2.1, the best- and worst- case time

complexities in one learning epoch for an agent in the proposed FCMQL algorithms, in the
absence of communication [28] are given by (| { } | 1) (| { } |)a O a  and

1(| { } | 1) | { } | (|{ } |)m mA A O A  respectively.

121

Algorithm 2.2: Fast Cooperative Multi-agent Q-learning (FCMQL)
A. Input: Current state , ,is i joint action set { },A  is a small positive threshold to stop the

algorithm, [0,1)  and [0,1); 

B. Output: Joint Q-value of agent i *(,), , , ;iQ S A S A i  

C. Initialize: (,) 0, , , ;iQ S A S A i   
Repeat
 1. Observe the current state , ;is i
 2. If {arg min[(,)]}i

i A
Q S A 


 

 Then select a joint action { }A A employing Property 2.2;

 Else Randomly select an action { }, ;i ia a i 
 End If;
 3. Receive immediate reward (,),i i ir s a i and evaluate iCR by Definition 2.4;

 4. Evaluate next state / (,),i i i is s a i  and joint next state / /
1;m

i iS s  

 5. If i is g holds for i m // ig is the goal state of agent i

 Then the agent i waits at ,ig until i iS G  //where i indicates all except agent i

 or up to a finite time fT obtained empirically;

 Else select a joint action { }A A by step 2;
 End If;
 6. If ,i is g i 
 Then restart learning by randomly selecting a joint state (except team-goal state);
 End If;

 7. / (,) (,), ;i iQ S A Q S A i 

 8. Update: /(,) (1) (,) [(,) ()];i i i iQ S A Q S A CR S A Q S       //for deterministic

/

/ /(,) (1) (,) [(,) [| (,))] ()];i i i i i
S

Q S A Q S A CR S A P S S A Q S        //for stochastic

 and /S S // / ()iQ S be the Q-value of agent i due to { , }NE CE at joint state /S

Until /| (,) (,) | , , , ;i iQ S A Q S A S A i    

Obtain *(,) (,), , , .i iQ S A Q S A S A i   

2.5.2 Convergence analysis of the proposed FCMQL algorithms
The convergence of the proposed FCMQL is compared with the TMAQL in Theorem 2.1 and
is given below.
Theorem 2.1: The expected time of convergence of the proposed FCMQL is less than the
same of the TMAQL.
Proof: See Appendix 2.1 (Section 2.10).

// by Property 2.1

// by Property 2.2

122

2.6 FCMQL-based cooperative multi-agent planning
In this section, the proposed FCMQL based cooperative multi-agent planning algorithms are
discussed. In the proposed FCMQL based multi-agent planning, agents move from the current
joint state to the next joint state following the principle of pure strategy NE/CE, which is
evaluated by utilizing the joint Q-tables adapted by the FCMQL and satisfying the task-
constraint. Here, task-constraint refers to the constraint which agents have to satisfy during
the planning phase in the deterministic and/or the stochastic environment. Consider the
problem of object-carrying, where an object (stick, triangle or square) needs to be transported
to a desired location with the help of multiple robotic agents that hold the stick at its two
extremities [63], triangle at its vertexes and rectangle at its corners. Robots maintain a fixed
distance between them to avoid falling off of the object carried by them. Holding the object
without a fall is considered as a task-constraint. This is a problem, where cooperation of two
(or more) robots is needed for the required transportation problem.

In TMAQL, the immediate reward is given in (2.7), and is designed to measure the
individual agent’s performance. However, in the proposed FCMQL, the immediate reward is
given by (2.8) and is designed to measure the team performance. The benefit of such
proposed reward function during the planning phase is realized and analyzed in the proposed
FCMQL based planning (Algorithm 2.3) and Theorem 2.2 respectively, in terms of optimal
team performance, measured by the number of joint state-transitions required to reach the
team-goal. The Definition of the optimal team performance is given in Definition 2.6. The
FCMQL based cooperative multi-agent planning is given in Algorithm 2.3.
Definition 2.6: If the planning algorithm evaluates joint state-transitions following NE/CE,
and the terminal state-transition ends at the team-goal, then the agents are called to have the
optimal team performance considering the number of joint state-transitions required to reach
the terminal (team-goal) joint state as the performance metric.

Theorem 2.2 shows that the non-team goal state transitions cannot be a NE in the proposed
NPQLP12 based multi-agent planning. However, it does a NE in the TMAQL based multi-
agent planning.
Theorem 2.2: If all excluding at least one agent explores its individual goal state employing
the proposed NPQLP12 or TMAQL due to joint action NA at joint state ,S then in the
NQLP12 induced planning, NA is not a NE, but in TMAQL induced planning, NA is a NE at

.S

Proof: See Appendix 2.1 (Section 2.10).
By Theorem 2.2 one can confirm that in NQLP12 based cooperative multi-agent planning

(Algorithm 2.3), an agent never executes a joint action, which results in a goal state-transition
of at least one agent. However, in the TMAQL induced planning, agents do prefer such joint

123

actions. The agent which reaches its individual goal in the planning phase cannot move any
more, resulting in low probability to reach the team-goal. Trivially it can also be shown that
in the other variants of the proposed FCMQL induced multi-agent planning, agents do not
prefer a joint action which leads to a non team-goal state transition, except in the proposed
RQLP12.

Algorithm 2.3 FCMQL based cooperative multi-agent planning

Input: , ,iQ i feasible joint state ;FS

Output: NE (or CE) (or)N CA A at ;FS
Repeat
 Observe current state , ;is i

 Evaluate NE (or CE), (or)N CA A following (2.2) (or (2.4)) and satisfying task constraint;

 Execute (or)N CA A at FS and go to next feasible joint state /
FS and / ;F FS S

 For multiple (or)N CA A solutions at FS select the first one;
Until the task is complete.

2.7 Experiments and results
This section includes four experiments. The first experiment is designed to examine the
relative performance of the proposed FCMQL algorithms over the reference algorithms in
view of the team-goal exploration, considering convergence speed as the performance metric.
The second experiment is designed to compare the performance of the proposed Algorithm
2.3 over the reference algorithms. The third experiment examines the merits of the proposed

Fig. 2.2 Experimental workspace for two agents during the learning phase

124

Algorithm 2.3 over the existing ones, including joint action selection by MLbD [58], MNPSO
[54], [55] DE [56], [57] and ICFA [63] algorithms using run-time complexity as the metric.
The computer simulations undertaken for the experiments are coded and tested with an
Intel(R) Core(TM) i7-3770 CPU with a clock speed of 3.40GHz. Finally, in the last
experiment we examine the performance of the proposed Algorithm 2.3 in real environment
with twin Khepera-II mobile robots [64].

Table 2.2 Details of 10×10 grid maps

Number

of

agents si
tu

at
io

n

map team-goal

Joint starting

state

number of

obstacles

obstacle state number

2

D
et

er
m

in
ist

ic

1 81, 91 10, 20 12 9, 27, 40, 46, 52, 54, 58,

61, 63, 67, 82, 84

2 2 55, 65 45, 55 6 25, 48, 53, 57, 68, 75

2 3 55, 65 45, 55 8 25, 46, 48, 53, 57, 66, 68,

75

3 7 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86

4 8 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47, 64, 83

2

St
oc

ha
st

ic

4 81, 91 10, 20 12 9, 27, 40, 46, 52, 54, 58,

61, 63, 67, 82, 84

2 5 55, 65 45, 55 6 25, 48, 53, 57, 68, 75

2 6 55, 65 45, 55 8 25, 46, 48, 53, 57, 66, 68,

75

3 9 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86

4 10 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47, 64, 83

All the experiments are studied in ten different 10×10 grid world maps given in Table 2.2.

Fig. 2.2 indicates map 1 (for deterministic) or 4 (for stochastic) in a two agent system during
the learning phase with twelve obstacles (marked as a black rectangle) and a team-goal < G1,
G2 >. Each agent can perform four actions: such as moving Left (L), Forward (F), Right (R)
and Back (B). In case of stochastic environment, the state-transition probabilities are assigned
as randomly generated constant values, satisfying the property of a Markovian matrix, where
the sum of state-transition probabilities at each state is unity. Like the TMAQL algorithms,
the starting positions can be selected randomly for a fixed team-goal state, which is
predefined during the learning. To maintain uniformity, all the algorithms are initialized with

125

identical joint starting states. Each grid in the multi-robots’ workspace is assigned a positive
integer to indicate its identity in the workspace with the help of mapping functions defined in
Appendix 2.2 (Section 2.11) [64].

The discounting factor  is chosen as 0.9 and learning rate  is set to 0.1. On exploration

of the team-goal, agents are awarded by (2.8), where maximum immediate reward

max 100,r  minimum immediate reward min 0.r  In addition, the violation of constraint is

penalized by a reward of 1.r  
Experiment 2.1 (Study of convergence speed): This experiment aims at examining the
relative superiority in convergence speed of the proposed FCMQL over the existing
algorithms. The study includes: a) convergence of state-action pairs with learning epochs, b)
determining the number of times a given team-goal is explored within a fixed number of
learning epochs, c) average reward of m agents, where the reward of an agent is the average
of the entries in the Q-table, d) convergence in state-action pairs with learning epochs, where
joint action selection is done by Property 2.2.

The results of the first study are given in Fig. 2.3, developed for NQL and in Fig. A2. 2.1-
A2. 2.3 in Appendix 2.2 (Section 2.11) [64]. It is apparent from Fig. 2.3 and Fig. A2. 2.1-A2.
2.3 that the FCMQL outperforms reference algorithms with respect to number of joint state-
action pairs converged ().cN Here, the FMRQP12 is not compared with reference algorithms.

As in FMRQ, an agent does not adapt its Q-value in joint state-action space; instead the Q-
values are adapted in joint state-individual action space. However, FMRQP12 is compared in
the later part of the same experiment.

It is interesting that in the second to seventh columns of the Table A2. 2.1 and A2. 2.2 [64],
the proposed FCMQL algorithms designed with Property 2.1 outperform the realization of
FCMQL with Property 2.2 in the measure of cN . But gradually at higher learning epochs

(eighth, ninth and tenth columns of Table A2. 2.1 and A2. 2.2 [64]), the superiority of the
proposed FCMQL algorithms realized with Property 2.2 is observed over the FCMQL
designed with Property 2.1.

The result of the second study emphasizes that the proposed FCMQL, when developed with
Property 2.1, yields a high count in the team-goal exploration in comparison to its traditional
counterpart, including those developed with Property 2.2 (see Fig. A2. 2.4, Table A2. 2.3-A2.
2.4 [64]).

The third study reveals that the average reward of m agents, denoted by average of average
reward (AAR) (where reward of an agent being measured by it average Q-table value)
evaluated for the proposed FCMQL exceeds that of the TMAQL. The high value in AAR of
the agents indicates that early convergence in FCMQL in comparison to TMAQL (see Fig.
2.4 and Fig. A2. 2.5-A2. 2.7 [64]).

126

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

NQL
NQLET
NQLP1
NQLP2
NQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

NQL
NQLET
NQLP1
NQLP2
NQLP12

Fig. 2.3 Convergence plot of NQLP12 and reference algorithms for two agents

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

NQL
NQLET
NQLP1
NQLP2
NQLP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R Stochastic

NQL
NQLET
NQLP1
NQLP2
NQLP12

Fig. 2.4 Average of average reward (AAR) plot of NQLP12 and reference algorithms for two agents

The last study dealing with convergence of joint state-action pairs with learning epochs,
while embedding Property 2.2 in designing FCMQL, yields larger value in convergence of
joint state-action pairs than same obtained by the TMAQL (see Fig. 2.5 and Fig. A2. 2.8-A2.
2.9 [64]).

127

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

Random
Boltzmann
SQL
EQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

Random
Boltzmann
SQL
EQLP12

Fig. 2.5 Joint action selection strategy in EQLP12 and reference algorithms for two agents

Experiment 2.2 (Planning performance): The motivation of the present study is to examine
the completion of a task in planning and is tested with the well-known object-carrying
problem on a10 × 10 grid-map by 2, 3 and 4 agents. Fig. 2.6 and Fig. A2. 2.10-A2. 2.14 in
[64] offer the planed paths for robot team toward the predefined team-goal. It is worthwhile to

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent planning

Fig. 2.6 Cooperative path planning to carry a triangle by three robots in deterministic situation

note that the TMAQL induced multi-agent planning fails to reach their team-goal, while the
FCMQL included multi-agent planning is successful to complete the task. The reason behind
the success of FCMQL lies in the enrichment of the Q-table because of incorporation of

128

Property 2.1 in the learning phase. In Fig. 2.6.b, the arrows outside the environment indicate
rotation of the triangle by robots for successful the team-goal state-transition.
Experiment 2.3 (Run-time complexity): This study includes run-time analysis of the
proposed FCMQL induced multi-agent planning along with a set of well-known algorithms
from different domains. The algorithms used for comparison include: 1) ICFA [63], 2)
MNPSO [54], [55], 3) DE [56], [57], and 4) MLbD [58]. The run-time analysis reveals, that
the proposed FCMQL has the least run-time complexity in comparison to its contenders (see
Table 2.3 and 2.4).

Table 2.3 Run-time complexity of Algorithm 2.3 over reference algorithms in deterministic situation

Algorithms
map 1 (stick-

carrying)
map 7 (triangle-carrying) map 8 (square-carrying)

Run-time (minute)
for Agent

Run-time (minute) for Agent Run-time (minute) for Agent

1 2 1 2 3 1 2 3 4
Algorithm 2.3 0.195 0.191 0.244 0.246 0.242 0.309 0.313 0.310 0.304

MRLbD 14.24 14.54 20.57 21.05 20.56 27.56 28.06 27.39 28.10
ICFA 51.16 51.01 60.56 61.10 60.51 64.56 64.10 64.51 64.56

MNPSO 70.43 70.58 50.54 50.38 51.01 40.26 40.45 40.42 40.56
DE 90.45 90.56 86.54 86.34 86.38 79.45 79.34 79.34 79.04

Table 2.4 Run-time complexity of Algorithm 2.3 over reference algorithms in stochastic situation

Algorithms
map 4 (stick-

carrying)
map 9 (triangle-carrying) map 10 (square-carrying)

Run-time (minute)
for Agent

Run-time (minute) for
Agent

Run-time (minute) for Agent

 1 2 1 2 3 1 2 3 4
Algorithm 2.3 0.184 0.182 0.218 0.220 0.221 0.293 0.302 0.301 0.302

MRLbD 18.34 18.27 25.28 24.58 25.49 33.56 33.59 33.34 33.09
ICFA 52.27 53.10 60.76 60.25 60.17 63.59 63.55 63.45 63.57

MNPSO 71.54 71.52 51.34 51.65 52.04 39.45 39.34 39.32 39.12
DE 91.04 89.52 83.34 84.58 83.32 80.34 78.26 79.28 80.12

For ICFA and DE the objective functions used for the object-transportation task are as

given in [63] and [57] respectively. In MNPSO, population size is equal to the number of
agents. Here, agents learn in a parallel and distributed fashion, so as to reduce the run-time
requirement by the MNPSO with an increase in the number of agents. By varying the number
of robots in MNPSO algorithm, different objects are transported. On the other hand, little
progress is attained in the field of learning joint action by simultaneous demonstrations.
MLbD is a novel technique to learn multi-robot joint action from simultaneous
demonstrations as given in [58]. Here also agents learn sequence of individual actions
obtained from demonstration with the help of HAMMER architecture [58]. The joint action
plan is then identified by spatio-temporal clustering algorithm. Here we compare the MLbD

129

from [58] with the proposed Algorithm 2.3. In MLbD, agents need to communicate among
themselves, which require an extra cost in terms of time and energy.
Experiment 2.4 (Real-time planning): This experiment is concerned with examining
planning performance of the proposed FCMQL algorithms in the stick-carrying problem
realized with twin Khepera-II robots [64]. The stick-carrying problem refers to determining
the pathways to transfer stick from a given starting position to a fixed destination, where the
robots hold the stick at its two ends. We consider a grid-world map for the robots with 6 × 6
square grids.

Fig. 2.7 Cooperative path planning to carry a stick by two Khepera-II mobile robots using NQIMP

algorithm (bigger dimension in Fig. A2. 2.15 [64])

Fig. 2.8 Cooperative path planning to carry a stick by two Khepera-II mobile robots using Algorithm 3

(bigger dimension in A2.15 [64])

130

Fig. 2.8 provides a snapshot of the experimental instance, when the robots reach the goal
positions using the proposed FCMQL induced planning. The path followed by the robots
employing the reference algorithms also is shown in Fig. 2.7. The experiments presented
indicate that the simulated results presented earlier are realized in hardware.

Table 2.5 Time taken by Khepera-II mobile robots to reach a team-goal with different speeds in

Algorithm 2.3

Run-time
obtained

Speed
(unit) Run-time (sec)

Agent 1 Agent 2

Theoretically
2 8.75 9.14
3 5.83 6.09
5 3.50 3.66

Experimentally

2 11.71 12.43
3 9.45 10.23
5 8.28 9.36

2.8 Conclusions
The chapter aims at extending the TMAQL with two useful characteristic properties:
exploration of the team goal and the joint action selection. The incorporation of the first
property ensures exploration of the team-goal by multi-phased transitions of the agents
asynchronously or synchronously to finally reach the team-goal, and thereby offer high
reward values to such pre-goal state to the goal state transitions. The second property helps in
identifying common preferred joint actions for the team, thus avoiding same joint actions at
the same joint states and thereby enhancing the learning speed of the agents. The Q-table
obtained in joint state-action space using the proposed FCMQL algorithms have been
employed in the multi-agent planning algorithm to autonomously select goal state-transitions
from the pre-goal states based on their high reward values stored in the Q-table. TMAQL-
induced planners occasionally fail to reach the team-goal as such state-transitions which
might result in due to follow-up actions of Property 2.1 in FCMQL are missing from the Q-
table obtained by TMAQL.

The convergence of the proposed FCMQL is shown in Theorem 2.1, that the expected
convergence time of the proposed FCMQL algorithms is less than the same of TMAQL
algorithms. The complexity analysis reveals the superiority of the proposed FCMQL
algorithms over the TMAQL algorithms.

Four different experiments have been conducted to validate the performance of FCMQL
and the FCMQL based planning algorithms over the contender algorithms. In Experiment 2.1,
the FCMQL algorithms outperform reference algorithms in terms of convergence rate,
exploration of the team-goal and the Average of average reward (AAR) parameter. In

131

Experiment 2.2, Algorithm 2.3 outperforms reference algorithms considering successfully
completion of a task as the performance metric. In Experiment 2.3, the merit of the Algorithm
2.3 is verified considering the run-time requirement as the performance metric over the
reference algorithms: ICFA [63], MNPSO [58], [59], DE [56], [57], and MLbD [52]
algorithms with respect to the well-known object-transportation problems. In Experiment 2.4,
the superiority of Algorithm 2.3 is verified over contender algorithms utilizing in a real-time
planning problem using twin Khepera-II mobile robots.

2.9 Summary
Chapter 2 offers learning-based planning algorithms, by extending the traditional multi-agent
Q-learning algorithms (Nash Q-Learning and Corelated Q-Learning) for multi-robot
coordination and planning. This extension is achived by employing two interesting properties.
The first property deals with the exploration of the team-goal (simultaneous success of all the
robots) and the other property is related to the selection of joint action at a given joint state.
The exploration of team-goal is realized by allowing the agents, capable of reaching their
goals, to wait at their individual goal states, until remaining agents explore their individual
goals synchronously or asynchronously. Selection of joint action, which is a crucial problem
in traditional multi-agent Q-learning, is performed here by taking the intersection of
individual preferred joint actions of all the agents. In case the resulting intersection is a null
set, the individual actions are selected randomly or otherwise following classical techniques.
The superiority of the proposed learning and learning-based planning algrorithms are
validated over contestant algorithms in terms of the speed of convergence and run-time
complexity respectively.

2.10 Appendix 2.1
Proof of Property 2.1

Let,
 l be the number of states in a given environment,
 m be the number of agents learning cooperatively in a given environment,
 j be the feasible actions for each agent.

The proof is segregated into the following three components.
1. Here, agent 1 can occupy any one of l states in the next iteration. Consequently, agent 2
would occupy any one of (1)l  possible next states. In the similar manner, it can be shown
that agent m can occupy any one of ()l m possible next states. Thus there would be as many
as (1)...(1) l

ml l l m P    possible next joint states, where P denotes the permutation

operator.

132

2. Thus probability that the next joint state /()S is equal to the team-goal ()G due to a joint
action ()A at joint state ()S is given by (A1 2.1).

/ 1Pr(() | (,)) l
m

S G S A
P

  (A1 2.1)

3. Now, each agent can have j feasible actions. So, two agents would have 2j j j  joint
actions. Proceeding similarly, m agents would have mj possible joint actions. Thus the
probability of randomly selecting a joint action ()A at a joint state ()S from the joint action
set ({ })A is given by (A1 2.2).

1Pr(,) mS A
j

 (A1 2.2)

Now, probability that the next joint state /()S is the team-goal ()G after executing a joint
action ()A randomly from the joint action set ({ })A at a joint state ()S given in (A1 2.3) by

conditional probability.
/ /

1 1 1Pr((,) () : { }; , { };)m m m
i i ii i iS A S G A a S S s G g        [ig is the goal of agent]i

 /Pr(,) Pr(() | (,))S A S G S A   [since Pr() Pr().Pr(|)C D C D C ]

 1 1
m l

mj P
  [by (A1 2.1) and (A1 2.2)] (A1 2.3)

In general, suppose k agents have already reached their individual goals. Then by Statute
2.1, the number of active learning agents become ().m k So, one can rewrite (A1 2.3) as in

(A1 2.4). In (A1 2.4), k in suffix indicates that all except the k number of agents and
{ } { } { },k m kS S S   etc., where ()m k in the suffix indicates the joint state for ()m k

agents.
/ /

1 1 1Pr((,) () : { }; , { }; ; [1,])m m m
k k k k n k n k nn n nk kS A S G A a S S s G g n k              

 /Pr(,) Pr(() | (,))k k k k kkS A S G S A       [since Pr() Pr(). (|)C D C P D C ]

 1 1
m k l

m kj P


  [since m m k ] (A1 2.4)

Since the result obtained in (A1 2.4) is a monotonically increasing function of ,k
with increase in ,k the probability of exploring the team-goal monotonically increases.

Proof of Property 2.2

Let at each state there exist j number of feasible actions for each of the m agents. Therefore,

at a joint state ()S there are mj number of feasible joint actions. Let joint action set for all

the agents at joint state S are
 { } { },iA A i  (A1 2.5)

and |{ } | , .mA j i 

133

In MAQL, the initial joint Q-values usually are assumed to be zero, i.e., (,) 0, , ,iQ S A S A i   

at iteration 0.t  So, by Definition 2.5, preferred joint action set of agent [1,]i m at joint state

S is

{ } arg min[(,)],
p

i i
A

A Q S A i 

 { }, .iA i 
 [since (,) 0, , , ,iQ S A S A i    arg min[(,)]i

A
Q S A returns all A for agent i at S]

 { }, .A i  [by (A1 2.5)] (A1 2.6)

Now, by the given statement of Property 2.2, preferred joint action set of the team (m agents)
at joint state S is

1

{ } { }
m pp

ii
A A


 

1
{ }

m

i
A


  [by (A1 2.6)]

 { }A (A1 2.7)

Therefore, probability to execute joint action pA at the joint state S is
 1Pr(,)

|{ } |
p

pS A
A



 1 .
|{ } |A

 [by (A1 2.7)] (A1 2.8)

Let after first iteration the joint Q-value of agent [1,]x m has been improved because of

preferred joint action { } ,p p
x x x xA A a A   at the joint state { }.S S So, joint Q-value of

agent x at joint state S is
(; ,) (;), , , ,x x x x x xQ S a A Q S A A A a A     (A1 2.9)

where, xA be the joint action except the action of agent ,x { }.x xa a Therefore, updated

preferred joint action set of agent [1,]x m at joint state S by Definition 2.5 is
 /{ } arg min[(,)]p

x x
A

A Q S A

 { } { }p j
x xA A  [where, { }j

xA be the joint action set of agent x containing action xa]

 { }.p
xA (A1 2.10)

Therefore, by (A1 2.5), (A1 2.10) and the given statement of the Property 2.2, updated
preferred joint action set /{ }pA of the team (m agents) at joint state S is

 / /
1,

{ } { } { }
m p pp

xii
i x

A A A



  

 /
1,

{ } { }
m p

x
i
i x

A A



   [by (A1 2.7)]

 /{ } { }p
xA A 

134

/

{ }.
p
xA [since

/
{ } { }, [1,]

p
xA A x m ] (A1 2.11)

Therefore, probability to execute joint action
/p

xA at joint state S is

 /
/

1Pr(,)
|{ }|

p
pS A

A


/

1

|{ }|
p
xA

 [by (A1 2.11)]

 1

|{ }|
p
xA

 [since
/

|{ } | |{ } |
p p
x xA A by (A1 2.10)]

 1
|{ }|A

 [by (A1 2.5)]

 (,).pP S A [(by (A1 2.8)] (A1 2.12)

Hence, the Property is proved.

Proof of Theorem 2.1

The expected time of convergence of FCMQL, ,F
eT decreases with an increase in the

probability of exploring the team-goal, given by /Pr(,) Pr(() | (,))S A S G S A  and also the
joint action selection probability Pr(,).S A Thus, F

eT can be modeled by an exponentially

decreasing function of the joint probability of exploration of the team-goal and probability of
joint action selection, i.e.,

2 /exp{ (Pr(,)) Pr(() | (,))}.F
eT S A S G S A    (A1 2.13)

It is important to note that the expression (A1 2.13) is equally good for TMAQL. However, in
TMAQL, the probabilities: Pr(,)S A and /Pr(() | (,))S G S A both remain constant over the

learning epochs, whereas in FCMQL the above two probabilities increase with increase in
learning epochs. Thus, (A1 2.13) transforms to (A1 2.14) and (A1 2.15) for TMAQL and
FCMQL respectively.

exp()TM
eT k  (A1 2.14)

for any positive real number .k
exp(())F F

e eT k k T   (A1 2.15)

where ()F
ek T is a linearly increasing function of F

eT . A little algebra, given below, returns
F

eT as a non-linear function of k

.exp(()) exp()F F
e eT k T k  

. () exp()F F
e eT k T k   [as () 0.]F

ek T 

.{ . } exp()F F
e eT T k   [by linear approximation of ()F

ek T]

135

1 exp()F
eT k


   (A1 2.16)

It is apparent from (A1 2.14) and (A1 2.16) that .F TM
e eT T Thus the theorem follows.

Proof of Theorem 2.2

 Let the Q-values of agent [1,]i m at joint state S due to all joint actions { }A A is denoted
by the set { (,) : { }}.iQ S A A A Now, one can write,

min max(,) , .ir Q S A r i   (A1 2.17)

where, minr and maxr are the minimum and maximum immediate rewards respectively of an
agent. Let agent [1,]x m explores its individual goal due to NA at S and the subsequent

joint Q-value of agent x adapted by the proposed NQLP12 is given by
min(,) .x NQ S A r [by (2.8)] (A1 2.18)

Again, by (A1 2.17)
/

min (,).xr Q S A [where [1,]x m and / { }]A A (A1 2.19)

Combining (A1 2.18) and (A1 2.19) we obtain
/ /(,) (,), A { }.x N xQ S A Q S A A  (A1 2.20)

However, in the above situation joint Q-value of agent x adapted by TMAQL is
max(,) .x NQ S A r [by (2.7)] (A1 2.21)

Again, by (A1 2.17)
/ /

max (,), A { }.xr Q S A A  [where [1,]x m and / { }A A] (A1 2.22)

Combining (A1 2.21) and (A1 2.22) we obtain
/ /(,) (,), A { }.x N xQ S A Q S A A  (A1 2.23)

Now, by the principle of multi-agent planning algorithm, let maximum joint Q-value of all
except agent x at joint state S because of joint action NA is

(,) { (,) : { }}, .x N xQ S A Q S A A A x    Therefore,
/ /(,) (,), A { }, .x N xQ S A Q S A A x    (A1 2.24)

By (A1 2.20), (A1 2.24) we can conclude that /(,) (,)i N iQ S A Q S A for i x and
/(,) (,),i N iQ S A Q S A , .i i x  Hence, by Definition 2.2, we say that in the proposed

NQLP12 induced planning, the joint action NA is not a NE at .S Again by (A1 2.23), (A1

2.24) we conclude that /(,) (,), .i N iQ S A Q S A i  So, by Definition 2.2, we say that in
TMAQL induced planning, the joint action NA is a NE at .S

2.11 Appendix 2.2
Additional details of Experiment 2.1

136

Two agents’ individual state numbers 1s and 2s are mapped into a single integer S (joint

state) by the mapping function:

2 1(1)S s n s    (A2 2.1)

for n × n grid map. For three and four agents the mapping functions are given by (A2 2.2) and
(A2 2.3) respectively, where 3s and 4s are the state of third and fourth agent respectively.

2
3 2 1(1) (1)S s n s n s       (A2 2.2)

3 2
4 3 2 1(1) (1) (1)S s n s n s n s          (A2 2.3)

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

(b) EQLP12 and reference algorithms for two agents

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

UQL
UQLET
UQLP1
UQLP2
UQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

UQL
UQLET
UQLP1
UQLP2
UQLP12

(c) UQLP12 and reference algorithms for two agents

137

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

RQL
RQLET
RQLP1
RQLP2
RQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3

x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

RQL
RQLET
RQLP1
RQLP2
RQLP12

(d) RQLP12 and reference algorithms for two agents

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105 Deterministic

LQL
LQLET
LQLP1
LQLP2
LQLP12

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3
x 105

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

LQL
LQLET
LQLP1
LQLP2
LQLP12

 (e) LQLP12 and reference algorithms for two agents

Fig. A2. 2.1 Convergence plot of FCMQL and reference algorithms for two agents

138

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

1

2

3

4
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

1

2

3

4

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

X 108

X 108

X 108

X 108

Fig. A2. 2.2 Convergence plot of EQLP12 and reference algorithms for three agents

0 0.5 1 1.5 2 2.50

0.5

1

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.50

0.5

1
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

x 1011

x 1011

x 1011

x 1011

Fig. A2. 2.3 Convergence plot of EQLP12 and reference algorithms for four agents

139

Table A2. 2.1 Number of joint state-action pair converged in deterministic situation for two agents

Table A2. 2.2 Number of joint state-action pair converged in stochastic situation for two agents

Algorith
ms

Number of joint state-action pair has been converged within
105 epochs in 15×104 epochs in 106 epochs in

map map map
1 2 3 1 2 3 1 2 3

NQL 2976 2965 2979 30060 30057 30061 318314 318312 318317
NQLET 12365 12367 12366 74299 74302 74298 318723 318725 318724
NQLP1 47566 47567 47568 115164 115168 115167 318878 318879 318877
NQLP2 2600 2602 2599 31522 31524 31521 319968 319968 319968
NQLP12 48846 48847 48844 142010 142011 142014 319968 319968 319968
UQL 2732 2734 2733 27824 27826 27823 318296 318299 318297
UQLET 40726 40727 40729 105388 105387 105390 318795 318798 318799
UQLP1 45834 45833 45836 113614 113615 113618 318858 318861 318860
UQLP2 2910 2909 2912 27140 27141 27143 319968 319968 319968
UQLP12 50934 50932 50935 319968 319968 319968 319968 319968 319968
EQL 2388 2390 2389 20834 20835 20834 318230 318229 318228
EQLET 3582 3580 3581 32630 32630 32632 318342 318340 318341
EQLP1 43518 43517 43516 111101 111102 111100 318863 318861 318862
EQLP2 894 896 894 16092 16093 16091 319968 319968 319968
EQLP12 48524 48526 48525 141596 141597 141599 319968 319968 319968
RQL 2732 2732 2733 27824 27826 27824 318299 318298 318300
RQLET 19648 19649 19648 88577 88575 88576 318667 318668 318666
RQLP1 43256 43254 43255 110322 110321 110323 318954 318955 318953
RQLP2 1096 1097 1098 16820 16821 16822 319968 319968 319968
RQLP12 48748 48748 48749 142642 142641 142642 319968 319968 319968
LQL 1377 1379 1378 14067 14067 14068 317953 317954 317955
LQLET 10019 10020 10018 62028 62027 62029 318502 318503 318501
LQLP1 46126 46125 46127 113724 113725 113726 318786 318786 318786
LQLP2 2910 2911 2912 27140 27141 27143 319968 319968 319968
LQLP12 47954 47955 47954 140408 140408 140410 319968 319968 319968

Algorith
ms

Number of joint state-action pair has been converged within
105 epochs in 15×104 epochs in 106 epochs in

map map map
4 5 6 4 5 6 4 5 6

NQL 12365 12366 12363 74299 74302 74301 318723 318724 318723
NQLET 2976 2978 2977 30060 30062 30061 318314 318313 318315
NQLP1 42371 42372 42373 111814 111817 111816 318823 318823 318825
NQLP2 11472 11471 11475 82937 82939 82938 319937 319938 319939
NQLP12 54705 54708 54706 147816 147815 147818 319948 319951 319950
UQL 40726 40727 40728 105388 105386 105389 318795 318796 318798
UQLET 2732 2733 2735 27824 27827 27826 318296 318295 318299
UQLP1 45768 45765 45769 113985 113986 113987 318822 318824 318821
UQLP2 10877 10876 10879 84040 84042 84039 319896 319900 319899
UQLP12 51191 51193 51196 146529 146531 146532 319893 319895 319896
EQL 2388 2390 2387 20834 20833 20836 318228 318230 318231
EQLET 3582 3581 3583 32630 3263 32634 318342 318341 318342
EQLP1 4928 4927 4929 36492 36493 36494 318438 318440 318439
EQLP2 1738 1740 1739 20824 20823 20825 319810 319812 319811
EQLP12 3759 3761 3760 34658 34660 34661 319803 319806 319804
RQL 2732 2733 2731 27824 27825 27823 318298 318302 318299
RQLET 19648 19647 19649 88575 88577 88576 318667 318669 318668
RQLP1 45653 45654 45655 113840 113839 113842 318820 318819 318822
RQLP2 10751 10750 10749 83343 83341 83344 319882 319883 319881
RQLP12 3759 3760 3761 34658 34657 34659 319803 319802 319804
LQL 1377 1379 1378 14067 14068 14066 317953 317952 317954
LQLET 10018 10020 10019 62028 62027 62029 318502 318501 318504
LQLP1 6362 6364 6363 46961 46960 46963 318486 318485 318487
LQLP2 1042 1040 1043 16178 16180 16179 319766 319765 319764
LQLP12 5721 5720 5722 44249 44249 44250 319783 319784 319782

140

(a) NQLP12 and reference algorithms for two agents

(b) EQLP12 and reference algorithms for two agents

141

(c) UQLP12 and reference algorithms for two agents

(d) RQLP12 and reference algorithms for two agents

142

(e) LQLP12 and reference algorithms for two agents

(f) FMRQP12 and reference algorithms for two agents

Fig. A2. 2.4 CR versus learning epoch plot for FCMQL and reference algorithms for two

agents

143

 Table A2. 2.3 Count of team-goal explored in the deterministic situation for two agents within

Table A2. 2.4 Count of team-goal explored in the stochastic situation for two agents within

Algorithms

15000 epochs 10000 epochs 5000 epochs
map map map

1 2 3 1 2 3 1 2 3
NQL 0 1 0 0 0 0 0 0 0
NQLET 1 0 0 0 0 0 0 0 0
NQLP1 55 65 70 37 38 41 16 20 27
NQLP2 0 1 1 0 0 0 0 0 0
NQLP12 57 66 68 38 39 40 18 22 26
UQL 1 1 0 0 0 0 0 0 0
UQLET 0 1 1 0 0 0 0 0 0
UQLP1 56 68 69 37 38 41 21 23 27
UQLP2 1 0 1 0 0 0 0 0 0
UQLP12 55 65 67 38 39 39 23 25 26
EQL 0 1 0 0 0 0 0 0 0
EQLET 1 0 2 0 0 0 0 0 0
EQLP1 57 69 70 38 39 41 18 23 25
EQLP2 1 2 0 0 0 0 0 0 0
EQLP12 56 62 68 38 39 40 20 22 26
RQL 1 0 1 0 0 0 0 0 0
RQLET 0 1 0 0 0 0 0 0 0
RQLP1 56 68 69 37 38 41 21 23 27
RQLP2 0 1 1 0 0 0 0 0 0
RQLP12 57 63 69 38 39 40 19 21 25
LQL 0 2 1 0 0 0 0 0 0
LQLET 1 0 1 0 0 0 0 0 0
LQLP1 55 62 68 37 38 40 20 24 27
LQLP2 1 0 1 0 0 0 0 0 0
LQLP12 56 61 68 38 39 41 22 23 26
FMRQ 0 1 0 0 0 0 0 0 0
FMRQP1 60 65 70 37 38 41 21 26 27
FMRQP2 2 1 0 0 0 0 0 0 0
FMQRP12 56 61 68 38 39 41 23 24 26

Algorithms

15000 epochs 10000 epochs 5000 epochs
map map map

4 5 6 4 5 6 4 5 6
NQL 1 0 0 0 0 0 0 0 0
NQLET 0 2 1 0 0 0 0 0 0
NQLP1 55 59 66 35 38 41 12 18 28
NQLP2 0 1 0 0 0 0 0 0 0
NQLP12 56 59 65 36 37 40 16 19 26
UQL 0 1 1 0 0 0 0 0 0
UQLET 1 0 0 0 0 0 0 0 0
UQLP1 57 58 63 37 38 41 18 22 25
UQLP2 0 1 1 0 0 0 0 0 0
UQLP12 55 57 65 36 39 40 15 21 27
EQL 0 2 1 0 0 0 0 0 0
EQLET 1 0 0 0 0 0 0 0 0
EQLP1 57 58 65 37 39 41 16 23 27
EQLP2 0 0 1 0 0 0 0 0 0
EQLP12 56 58 64 35 37 40 19 20 26
RQL 0 1 0 0 0 0 0 0 0
RQLET 1 0 2 0 0 0 0 0 0
RQLP1 55 59 65 34 37 39 21 22 25
RQLP2 0 2 1 0 0 0 0 0 0
RQLP12 56 58 65 35 39 41 17 21 26
LQL 0 2 1 0 0 0 0 0 0
LQLET 1 1 0 0 0 0 0 0 0
LQLP1 57 58 65 36 37 40 16 19 25
LQLP2 0 1 0 0 0 0 0 0 0
LQLP12 55 58 66 35 37 41 21 23 27
FMRQ 2 0 1 0 0 0 0 0 0
FMRQP1 56 58 64 37 38 40 18 22 26
FMRQP2 1 0 1 0 0 0 0 0 0
FMQRP12 56 57 65 35 38 41 21 24 26

144

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

(b) EQLP12 and reference algorithms for two agents

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

UQL
UQLET
UQLP1
UQLP2
UQLP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R Stochastic

UQL
UQLET
UQLP1
UQLP2
UQLP12

(c) UQLP12 and reference algorithms for two agents

145

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

RQL
RQLET
RQLP1
RQLP2
RQLP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R Stochastic

RQL
RQLET
RQLP1
RQLP2
RQLP12

(d) RQLP12 and reference algorithms for two agents

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

LQL
LQLET
LQLP1
LQLP2
LQLP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R

Stochastic

LQL
LQLET
LQLP1
LQLP2
LQLP12

(e) LQLP12 and reference algorithms for two agents

146

0 2 4 6 8 10
x 105

0

20

40

60
Deterministic

FMRQ
FMRQP1
FMRQP2
FMRQP12

0 2 4 6 8 10
x 105

0

20

40

60

Learning epoch

AA
R Stochastic

FMRQ
FMRQP1
FMRQP2
FMRQP12

(e) FMRQP12 and reference algorithms for two agents

Fig. A2. 2.5 Average of average reward (AAR) plot of FCMQL and reference algorithms for two

agents

0 0.5 1 1.5 2 2.50

20

40

60
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.50

20

40

60

Learning epoch

AA
R

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

X 108

X 108

Fig. A2. 2.6 Average of average reward (AAR) plot of EQLP12 and reference algorithms for three

agents

147

0 0.5 1 1.5 2 2.50

20

40

60
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.50

20

40

60

Learning epoch

AA
R

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

x 1011

x 1011

Fig. A2. 2.7 Average of average reward (AAR) plot of EQLP12 and reference algorithms for four

agents

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

1

2

3

4
Deterministic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

1

2

3

4

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

Random
Boltzmann
SQL
EQLP12

Random
Boltzmann
SQL
EQLP12

X 108

X 108

X 108

X 108

Fig. A2. 2.8 Joint action selection strategy in EQLP12 and reference algorithms for three agents

148

0 0.5 1 1.5 2 2.50

0.5

1

Learning epoch

Jo
in

t s
ta

te
-a

ct
io

n
pa

ir
co

nv
er

ge
d

Stochastic

0 0.5 1 1.5 2 2.50

0.5

1
Deterministic

Random
Boltzmann
SQL
EQLP12

Random
Boltzmann
SQL
EQLP12

x 1011

x 1011

x 1011

x 1011

Fig. A2. 2.9 Joint action selection strategy in EQLP12 and reference algorithms for four agents

Additional details of Experiment 2.2

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent Planning

Fig. A2. 2.10 Path planning with stick in deterministic situation

149

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent Planning

Fig. A2. 2.11 Path planning with stick in stochastic situation

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent planning

Fig. A2. 2.12 Path planning with triangle in stochastic situation

150

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent planning

Fig. A2. 2.13 Path planning with square in stochastic situation

 a. by NQIMP algorithm b. by NQLP12 based cooperative multi-agent planning

Fig. A2. 2.14 Path planning with square in deterministic situation

Additional details of Experiment 2.4

Details of Khepera-II mobile robot: Khepera-II is a miniature robot [61], [62], equipped
with an onboard Microcontroller (Motorola 68331), and includes a flash memory of 512 KB
and clock speed of 25MHz, having 8 inbuilt infrared proximity sensors. 1 unit speed of

151

Khepera II mobile robot is 0.08mm/10ms. Selected speeds in this experiment are 2 unit (0.16
mm/10ms), 3 unit (0.24 mm/10ms) and 5 unit (0.4 mm/10ms). Considering one grid length of
80 mm (square grid), theoretically time taken by an agent to cover one grid length, with 2
unit, 3 unit and 5 unit speed are 500 ms, 333.33 ms and 200 ms respectively [61], [62].
Assuming a circle of 40 mm radius inside each grid, Khepera-II has to cover 20π mm of the
total circumference of the circle for 90 degree rotation. Therefore theoretically time taken by
an agent for one 90 degree rotation with 2 unit, 3 unit and 5 unit speed are 392.7 ms, 261.8 ms
and 157 ms respectively.

Fig. A2. 2.15 Cooperative path planning to carry a stick by two Khepera-II mobile robots using

NQIMP algorithm

 The stick-carrying problem has been realized in Fig. 2.7 and 2.8 by controlling two
Khepera-II mobile robots using pre-learned joint Q-tables. The stick length is one grid width
and two robots can carry the stick if they occupy neighborhood cells. Each Khepera-II mobile
robots (agents) are connected by wires to two different Pentium IV machines through serial
port connections. Agents do not communicate between them while transporting the stick. The
next joint states of the robots are determined by evaluating the NE employing the learned
joint Q-tables, stored in the attached Pentium IV machine.

152

Fig. A2. 2.16 Cooperative path planning to carry a stick by two Khepera-II mobile robots using

NQIMP algorithm

References
[1] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement Learning and Dynamic

Programming Using Function Approximators, CRC Press, 2010.

[2] B. Banerjee, S. Sen and J. Peng, “Fast Concurrent Reinforcement Learners,” International Joint

conference on Artificial Intelligence, Seattle, Washington, USA, vol. 17, no. 1, pp. 825-832, 2001.

[3] S. Wen, X. Chen, C. Ma, H. K. Lam and S. Hua, “The Q-learning obstacle avoidance algorithm

based on EKF-SLAM for NAO autonomous walking under unknown environments,” Robotics and

Autonomous Systems, vol. 72, pp. 29-36, 2015.

[4] Y. Shoham, R. Powers and T. Grenager, “Multiagent Reinforcement Learning: A Critical

Survey,” Web manuscript, 2003.

[5] D. Srinivasan and L. C. Jain (Eds.), Innovations in Multi-agent Systems and Applications-1,

Springer-Verlag, 2010.

[6] R. S. Sutton, and A. G. Barto, Introduction to Reinforcement Learning, MIT Press, 1998.

[7] L. Buşoniu, R. Babuška and B. De Schutter, “Multi-agent reinforcement learning: An overview. In

Innovations in Multi-Agent Systems and Applications-1,” Springer, pp. 183-221, 2010.

153

[8] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

[9] N. Sommer and A. Ralescu, “Developing a Machine Learning Approach to Controlling Musical

Synthesizer Parameters in Real-Time Live Performance,” MAICS, pp. 61-67, 2014.

[10] T. Dean, J. Allen and Y. Aloimonos, Artificial Intelligence: Theory and Practice, Massachusetts,

Addison-Wesley Publishing Company, 1995.

[11] E. Pashenkova, I. Rish and R. Dechter, “Value Iteration and Policy Iteration Algorithms for

Markov Decision Problem,” AAAI96: Workshop on Structural Issues in Planning and Temporal

Reasoning, 1996.

[12] C. Boutilier, “Sequential Optimality and Coordination in Multiagent Systems,” IJCAI, University

of British Columbia, Canada, pp. 478-485, 1999.

[13] E. A. Feinberg, “Total Expected Discounted Reward MDPS: Existence of Optimal Policies,

“Wiley Encyclopedia of Operations Research and Management Science,” State University of New

York, New York, 2010.

[14] T. Kondo and L. Ito, “A Reinforcement Learning with Evolutionary State Recruitment Strategy

for Autonomous Mobile Robots Control,” Robotics and Autonomous Systems, vol. 46, no. 2, pp.

111-124, 2004.

[15] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement learning: A survey," Journal of

artificial intelligence research, pp. 237-285, 1996.

[16] Von Neumann, John and Oskar Morgenstern, Theory of Games and Economic Behavior, 60th

Anniversary Commemorative Edition, Princeton university press, 2007.

[17] R. Sharma and M. Gopal, "Synergizing reinforcement learning and game theory-A new direction

for control,” Applied Soft Computing, vol. 10, no. 3, pp. 675-688, 2010.

[18] Y. Wang and C. W. de Silva, "A machine-learning approach to multi-robot coordination,"

Engineering Applications of Artificial Intelligence, vol. 21, no. 3, pp. 470-484, 2008.

 [19] X. R. Cao and H-F. Chen, “Perturbation Realization, Potentials, and Sensitivity Analysis of

Markov Processes,” IEEE Transactions on Automatic Control, vol. 42, no. 10, pp. 1382–1393,

1997.

[20] C. J. Watkins and P. Dayan, “Q-learning, in: Machine learning” vol. 8, no. 3-4, pp. 279-292, 1992.

[21] R. E. Bellman, “Dynamic programming,” Proceedings of the National Academy of Science of the

United States of America, vol.42, no. 10, 1957.

[22] Y. Hu, Y. Gao and B. An, “Multiagent Reinforcement Learning With Unshaired Value

Functions,” IEEE Trans. On Cybernatics, vol.45, no. 4, 2015.

[23] C. Boutilier, “Planning, Learning and Coordination in Multiagent Decision Processes,”

Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge,

Groningen, Netherlands, Morgan Kaufmann Publishers Inc., pp. 195-210, 1996.

[24] C. Claus and C. Boutilier, “The Dynamics of Reinforcement Learning in Cooperative Multiagent

154

Systems,” AAAI/IAAI, Madison, Wisconsin, pp. 746-752, 1998.

[25] C. Georgios and C. Boutilier, “Coordination in Multiagent Reinforcement Learning: A bayesian

approach,” Proceedings of the second international joint conference on Autonomous agents and

multiagent systems, ACM, pp. 709-716, 2003.

[26] A. Greenwald, K. Hall and R. Serrano, “Correlated Q-learning,” ICML, Washington, DC, USA, 3,

pp. 242-249, 2003.

[27] J. Hu and M. P. Wellman, "Nash Q-learning for general-sum stochastic games," The Journal of

Machine Learning Research 4, pp. 1039-1069, 2003.

[28] J. Hu and M. P. Wellman, “Multiagent Reinforcement Learning: Theoretical Framework and an

Algorithm,” ICML, Madison, Wisconsin, pp. 242-250, 1998.

[29] M. L. Littman, “Markov Games as a Framework for Multiagent Reinforcement Learning,” ICML,

Brown University, Providence, pp. 157-163, 1994.

[30] M. L. Littman, “Friend-or-foe Q-Learning in General-sum Games,” ICML, Williams College,

Williamstown, MA, USA, pp. 322-328, 2001.

[31] M. L. Littman and C. Szepesvári, “A Generalized Reinforcement Learning Model: Convergence

and Applications,” ICML, Bari, Italy, pp. 310-318, 1996.

[32] S. Mukhopadhyay and B. Jain, “Multi-agent Markov Decision Processes with Limited Agent

Communication,” Intelligent Control, (ISIC'01), Proceedings of the 2001 IEEE International

Symposium, pp. 7-12, 2001.

[33] S. Sen, S. Mahendr and J. Hale, “Learning to Coordinate Without Sharing Information, AAAI,

Seattle, Washington, pp. 426-431, 1994.

[34] P. Stone and R. S. Sutton, “Scaling Reinforcement Learning Toward RoboCup Soccer,” ICML,

Williams College, Williamstown, MA, USA, pp. 537-544, 2001

[35] Y. Wang, H. Lang and C. W. de Silva, “Q-Learning Based Multi-robot Box-Pushing With

Minimal Switching of Actions,” International Conference on Automation and Logistics, IEEE,

Qingdao, China, pp. 640-643, 2008.

[36] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” Proceedings of

the tenth international conference on machine learning, 337, 1993.

[37] V. Könönen, "Asymmetric multiagent reinforcement learning," International Conference on

Intelligent Agent Technology, pp. 336-342, 2003.

[38] M. Lauer and M. Riedmiller, "An algorithm for distributed reinforcement learning in cooperative

multi-agent systems," Proceedings of the Seventeenth International Conference on Machine

Learning, 2000.

[39] M. Bowling and M. Veloso, "Rational and convergent learning in stochastic games," International

joint conference on artificial intelligence, Vol. 17, No. 1, pp. 1021-1026. LAWRENCE ERLBAUM

ASSOCIATES LTD, 2001.

155

[40] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,”

Proceedings of the eleventh international conference on machine learning, Vol. 157, pp. 157-163,

1994.

[41] M. J. Osborne, An introduction to game theory, Oxford University Press, New York, 3(3), 2004.

[42] M. Bowling, “Convergence problems of general-sum multiagent reinforcement learning,” ICML,

pp. 89-94, 2000.

[43] N. Suematsu and A. Hayashi, "A multiagent reinforcement learning algorithm using extended

optimal response," Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 1, pp. 370-377, ACM, 2002.

[44] X. Wang and T. Sandholm, "Reinforcement learning to play an optimal Nash equilibrium in team

Markov games," In Advances in neural information processing systems, pp. 1571-1578, 2002.

[45] S. Kapetanakis and D. Kudenko, "Reinforcement learning of coordination in cooperative multi-

agent systems," AAAI/IAAI, pp. 326-331, 2002.

[46] R. Sadananada, "Agent Computing and Multi-Agent Systems," 9th Pacific Rim International

Workshop on Multi-Agents, Springer, PRIMA, Guilin, China, Vol. 4088, 2006.

[47] L. Busoniu, R. Babuska, and B. De Schutter. “A comprehensive survey of multiagent

reinforcement learning,” IEEE Transactions on Systems, Man, And Cybernetics-Part C:

Applications and Reviews, vol. 38, no. 2, pp. 156-172, 2008.

[48] Y. Hu, Y. Gao and B. An, “Accelerating multiagent reinforcement learning by equilibrium

transfer,” IEEE transactions on cybernetics, vol. 45, no. 7, pp. 1289-1302, 2015.

[49] Y. M. De Hauwere, P. Vrancx and A. Nowé, “Learning multi-agent state space representations,”

Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems:

volume 1, pp. 715-722, 2010.

[50] J. R. Kok and N. Vlassis, “Sparse cooperative Q-learning,” Proceedings of the twenty-first

international conference on Machine learning, p. 61, ACM, 2004.

[51] R. A. Bianchi, M. F. Martins, C. H. Ribeiro and A. H. Costa, “Heuristically-accelerated multiagent

reinforcement learning,” IEEE transactions on cybernetics, vol. 44, no. 2, pp. 252-265, 2014.

[52] Z. Zhang, D. Zhao, J. Gao, D. Wang and Y. Dai, “FMRQ-A Multiagent Reinforcement Learning

Algorithm for Fully Cooperative Tasks,” 2016. DOI: 10.1109/TCYB.2016.2544866

[53] Z. Wang, Z. Shi, Y. Li and J. Tu, "The optimization of path planning for multi-robot system using

Boltzmann Policy based Q-learning algorithm," International Conference on Robotics and

Biomimetics, pp. 1199-1204, 2013.

[54] J. Pugh and A. Martinoli, “Multi-robot learning with particle swarm optimization,” Proceedings of

the fifth international joint conference on Autonomous agents and multiagent systems, pp. 441-

448, 2006.

[55] J. Pugh, Y. Zhang and A. Martinoli, “Particle swarm optimization for unsupervised robotic

156

learning,” Swarm Intelligence Symposium, SWIS-CONF-2005-004, pp. 92-99, 2005.

[56] K. V. Price, “Differential evolution vs. the functions of the 2nd ICEO,” IEEE Proceedings of

International Conference Evolutionary Computing, pp. 153–157, 1997.

[57] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L. C. Jain and A. K. Nagar, "Realization

of an Adaptive Memetic Algorithm Using Differential Evolution and Q-Learning: A Case Study in

Multirobot Path Planning," IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. 3, no. 4,

pp. 814-831, 2013.

[58] M. F. Martins and Y. Demiris, “Learning multirobot joint action plans from simultaneous task

execution demonstrations,” Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: volume 1, pp. 931-938, 2010.

[59] M. L. Littman, “Value-function reinforcement learning in Markov games,” Cognitive Systems

Research, vol. 2, no. 1, pp. 55-66, 2001.

[60] J. Nash, “Non-cooperative games,” Annals of mathematics, vol. 54, no. 2, pp. 286-295, 1951.

[61] E. Franzi, Khepera BIOS 5.0 Reference Manual, K-Team, SA, 1998.

[62] K. U. M. Version, Khepera User Manual 5.02, K-Team, SA, Lausanne, 1999.

[63] A. K. Sadhu, P. Rakshit and A. Konar, “A Modified Imperialist Competitive Algorithm for Multi-

Robot Stick-Carrying Application,” Robotics and Autonomous Systems, 2015.

[64] Appendix 2 of the chapter: www.computationalintelligence.net/ras/appendix2.pdf

[65] R. W. Cottle, J. S. Pang and R. E Stone, “The Linear Complementarity Problem,” Vol. 60, SIAM,

1992.

[66] R. Porter, E. Nudelman and Y. Shoham, “Simple Search Methods for Finding a Nash

Equilibrium,” Representation And Computation With Decision–And Game–Theoretic Agents, vol.

94, 2005.

Chapter 3
Multi-robot Cooperative Planning by
Consensus Q-learning

Multi-robot cooperation entails planning by multiple robots for a common objective, where
each robot/agent actuates upon the environment based on the sensory information received
from the environment. Multi-robot cooperation employing equilibrium-based reinforcement
learning is optimal in the sense of system resource (time and/or energy) utilization, because of
the prior adaption of the environment by the robots. Unfortunately, robots cannot enjoy such
benefit of reinforcement learning in presence of multiple types of equilibria (here Nash
equilibrium or correlated equilibrium). In the above perspective, robots need to adapt with a
strategy, so that robots can select the optimal equilibrium in each step of the learning. The
chapter proposes consensus-based multi-agent Q-learning to address the bottleneck of the
optimal equilibrium selection among multiple types. An analysis reveals that a consensus
(joint action) is coordination type pure strategy Nash equilibrium as well as pure strategy
correlated equilibrium. The superiority of the proposed consensus-based multi-agent Q-
learning algorithm over the traditional reference algorithms in terms of the average reward
collection is shown in the experimental section. In addition, the proposed consensus-based
planning algorithm is also verified considering multi-robot stick-carrying problem as a
benchmark.

158

Table 3.1 List of acronyms

Full form Acronyms
Multi-agent Q-learning : MAQL
Nash equilibrium : NE
Nash Q-Learning : NQL
Correlated equilibrium : CE
Correlated Q-learning : CQL
Consensus Q-learning : CoQL
Utilitarian Q-Learning : UQL
Egalitarian Q-Learning : EQL
Republican Q-Learning : RQL
Libertarian Q-Learning : LQL

3.1 Introduction
Planning [1] refers to the execution of an action sequence, with an aim to achieve a
predefined goal by optimally employing the system resource (time and/or energy). An agent
(here robot) can plan individually or in a group. While planning in a group, the agent may be
cooperative or competitive towards the remaining group members. In this paper, only the
cooperative robots are considered and analyzed.

Several techniques are available for planning in the literature, including Graphs [2],
Voronoi diagrams [3], potential field [4], adaptive action selection [5], intention inference [6],
cooperative conveyance [7], perceptual cues [8], and the like. All these require information
about the environment, and thus are unable to function when the information about the
environment is absent. Reinforcement Learning (RL) [9]-[18] fills this void.

RL is the model-free approach and hence, it is preferred over other traditional planning
approaches. There exist a number of RL algorithms [9]-[18]. Based on the number of agents
involved, RL is of two types: single agent and multi-agent. Multi-Agent Reinforcement
Learning (MARL) algorithms are of three types: cooperative, competitive and mixed [19]. In
this paper, we focus only on cooperative MARL. Among the cooperative MARL algorithm
equilibrium-based MARL is one type [19], where each agent updates its joint Q-value at
equilibrium. By equilibrium, an agent attains a balance condition among the agents. In the
literature, there are two types of equilibria: Nash equilibrium (NE) [20] and correlated
equilibrium (CE) [21]. In Nash Q-learning (NQL) [22]-[23] and correlated Q-learning (CQL)
[21], agents’ update Q-values at joint state-action space employing the NE and CE
respectively. As we are dealing only with the cooperative MAQL, so here only the
coordination type NE is considered. It is difficult to find out that which equilibrium (NE or
CE) is optimal at a joint state. If agents are instructed to select any one type of equilibrium
(either NE or CE) a priori, then there is a chance of missing the optimal solution.

To address the above problem we introduce the concept of consensus [24]-[25] in the
domain of MARL, from the field of cooperative control [26] and potential games (PGs) [26].

159

A consensus is a coordination type pure strategy NE [26]. In this paper, agents' are instructed
to update Q-values at consensus and proposed a novel consensus Q-learning (CoQL)
algorithm. In addition, an analysis reveals that that a consensus jointly satisfies the criterion
of pure strategy NE as well as pure strategy CE. Experimental result demonstrates the
superiority of the proposed CoQL algorithms over the reference algorithms in terms of the
average of the average rewards (AAR) earned by the agents. The consensus-based multi-robot
cooperative planning algorithm is also proposed and its superiority is shown over the
reference algorithms considering path length and torque requirement by the robots as the
performance metric. The merits of the chapterare:
1. The problem of selecting the equilibrium type in multi-agent system is addressed by
proposing the CoQL algorithm.
2. Agents evaluate consensus (joint action) [73-76] in each step of learning and planning
phases.
3. It is shown by an analysis that a consensus at a joint state is a coordination type pure
strategy NE as well as pure strategy CE.
 The rest of the chapter is structured as follows. Preliminaries of the Q-learning are given in
Section 3.2. Section 3.3 introduces the concept of consensus. Section 3.4 proposes the
consensus-based Q-learning and planning. Section 3.5 includes experiments and results. The
conclusions are listed in Section 3.6.

3.2 Preliminaries
In RL, the learner works on the principle of reward/penalty received from the environment.
Q-learning is an example of RL. This section briefly introduces the adaption mechanism of
single agent Q-learning [27] and the state-of-the-art equilibrium-based multi-agent Q-learning
(MAQL) algorithms. The state-of-the-art equilibrium-based MAQL includes NQL [22]–[23]
and the four variants of CQL [21].

3.2.1 Single agent Q-learning
The single agent Q-learning is proposed by Watkins and Dayna [27]. The recursive update
rule of the single agent Q-learning for an agent, denoted by i is given by (1) [27].

//

/ / /(,) (1) (,) [(,) [| (,)] (,)],
ii

i i i i i i i i i i i i i i i i
as

Q s a Q s a r s a P s s a maxQ s a  


     (3.1)

where, (0,1] 

refers to the learning rate, (0,1] 

denotes the discounting factor, (,)i i ir s a is
the immediate reward received by the agent i because of action { }i ia a at the current state

{ }.i is s (,)i i iQ s a refers to the sum of long term discounted rewards or Q-value of agent i at

state is because of action .ia /[| (,)]i i i iP s s a is the probability of moving to the next state

160

/ { }i is s from current state is because of .ia In the literature of Q-learning, /[| (,)]i i i iP s s a is

well-known as the state transition probability. On completion of the learning an agent (here
robot) begins to plan. During the planning phase it selects the action corresponding to the
maximum Q-value in the current state, at each step of planning.

3.2.2 Equilibrium-based multi-agent Q-learning
The Q-value adaption mechanism of single agent Q-learning is not applicable for MAQL. As
in multi-agent system, each agent learns in a common environment, which resulting in a
dynamic environment. Several attempts have been made to address such multi-agent
dynamics [22]-[23]. In cooperative MAQL, each agent attempts to maximize its own reward
as well as the reward of the team. Such requirement can be attained by achieving a balanced
condition among the agents, where no agent has any selfish intension to deviate from the
balanced condition. In the literature of cooperative MAQL, the above mentioned balanced
condition is achieved following equilibrium, e.g. NE or CE, where each agent updates its
optimal expected future reward at equilibrium. Equilibrium-based cooperative MAQL is
one of the interesting learning-based multi-robot planning algorithms, where each robot
has inherent capabilities to adapt equilibrium at the current joint state.

In this paper, we are interested only with the pure strategy NE/CE (or joint action).
The definitions of pure strategy NE and pure strategy CE are respectively given in
Definition 3.1 and 3.2.
Definition 3.1: With m interacting agents' pure strategy Nash equilibrium at a joint state

{ }S S is a joint action *
1

m
N i iA a   , such that no unilateral deviation (selfish deviation of

an agent) can occur as long as all the agents follow the same optimal joint action
*

1
m

N i iA a   at .S

Assuming * { }i ia a be the optimal action of agent i at is and *
iA A  be the optimal joint

action profile of all agents except agent i at 1
m

i iS s   and (,)iQ S A be the joint Q-value of

agent i at S because of joint action { }.A A Then the condition of pure strategy NE
* *,N i iA a A  at S is

*(,) (, ,), i N i i iQ S A Q S a A i  (3.2)

Definition 3.2: With m interacting agents pure strategy Correlated equilibrium at a joint
state ()S is the optimal pure strategy profile *1 2, ,..., ,CE mA a a a  if and only if agents

follow (3.3).
arg max[((,))]CE i

A
A Q S A  (3.3)

where, { , , , } [21].
i ii i

Min Max
  

  

(3.4)

Here, CE has four variants: Egalitarian equilibrium (EE), Utilitarian equilibrium (UE),
Republican equilibrium (RE) Libertarian equilibrium (LE). One problem of equilibrium-

161

based MAQL is the selection of optimal equilibrium among the multiple types of equilibria.
In addition, in the context of multi-robot cooperative planning problem, selection of optimal
equilibrium refers to the selection of optimal joint action. In this context, the traditional
equilibrium-based MAQL algorithm is given in Algorithm 3.1 [21]-[23].

Algorithm 3.1: Equilibrium-based MAQL
Input: Current state , ,is i action set iA at , ,is i [0,1)  and

[0,1); 

Output: Optimal joint Q-value *(,), , , ;iQ S A S A i  
Begin
 Initialize: (,) 0, , , ;iQ S A S A i   
 Repeat
 Select an action ,i ia A i  randomly and execute it;
 Observe immediate rewards (,), ;ir S A i

 Evaluate / (,), i i i is s a i  to obtain / /
1;m

i iS s  

/(,) (1) (,) [(,) . ()],i i i iQ S A Q S A r S A Q S i       

 and

/;S S / / { , }NE CE
 Until (,), , ,iQ S A S A i   converges;

*(,) (,), , , ;i iQ S A Q S A S A i   

End.

3.3 Consensus
In this section, the cooperative control problem employing potential games mainly focusing
upon the consensus problem is briefly discussed. Here cooperative control [28]-[30] refers to
a planning problem (e.g. object-transportation) by autonomous agents, satisfying all the
necessary constraint. One paradigm of cooperative control problem is the consensus problem
with plenty of literature in computer science and in the field of distributed computing [31],
where the challenge is to design the objective functions of the autonomous agents at a given
joint state due to a joint action to realize the team objective amidst obstacles. Alternatively,
the cooperative control problem (consensus problem) can also be deciphered by employing
the concept of game-theory. In the context of cooperative control, potential game has a big
role to play [28]. In potential game, agents require the perfect alignment between the team
objective/potential function and the individual objective of the agent. A consensus in the PG
is guaranteed to converge to a pure strategy NE with a potential function of increasing nature
[28] In Q-learning, individual objective is equivalent to the Q-value. The following
definitions are required to understand the later sections of the paper. The definition of
consensus is given by utilizing the concept that all the PGs are guaranteed to converge to a
pure strategy NE as given in [28].

162

Definition 3.3: In a m player game, if 1
m

iiS S and 1
m

iiA A indicate the joint state and

joint action respectively, individual objective functions are 1{ : }m
i iQ S A    and potential

function is denoted by : S A    satisfies
/ //

/ / /
(, ,) (, ,)

(, ,) (, ,)
i i i i i i

i i i i

Q S a A Q S a A

S a A S a A
 

 

 

 
 (3.5)

i. e., all players' objective functions are aligned with the potential function, then the game is
an Exact Potential game (EPG), where 1, ,

m
i jj j iA A   and / / /,i i ia a A [28].

Definition 3.4: In a m player game, if 1
m

iiS S and 1
m

iiA A indicate the joint state and

joint action respectively, individual objective functions 1{ : }m
i iQ S A    and potential

function denoted by : S A    satisfy
/ / /

/ / /
(, ,) (, ,)

(, ,) (, ,)

i i i i i i

i i i i

Q S a A Q S a A

S a A S a A

 

 



  
 (3.6)

i. e., at least one player’s objective function is aligned with the potential function, then the
game is weakly acyclic game (WAG), where 1,

m
i jj j iA A   and / / /,i i ia a A [28].

Definition 3.5: A consensus is a joint action * * *, { }i iA a A A  at a given joint state
{ },S S which jointly maximizes the individual objective function (, ,), ,i i iQ S a A A i   or

* *(, ,) (, ,)i i i i i iQ S a A Q S a A  , ,A i  and the potential function (,)S A or
*(,) (,), S A S A A    [28].

3.4 Proposed Consensus Q-Learning and Planning
In the section, we proposed a novel Consensus Q-learning (CoQL). Subsequently a
consensus-based multi-robot cooperative planning algorithm is proposed.

3.4.1 Consensus Q-learning
An example is given in Fig. 3.1 to understand the importance of consensus in multi-robot
cooperative planning. Let at a given joint state two robots 1 and 2 are synchronously
cooperating with the action set respectively A1={a, b} and A2={x, y} having no
communication among the robots. The reward matrixes in two different joint states are given
in Fig. 3.1(a) and (b) In Fig. 3.1(a), suppose, robots plan following the CE (UE) and then they
have two solutions ax and by to cooperate by (3.3). In such situation, in the absence of
communication among the robots, they cannot select one joint action to cooperate. But if they
evaluate coordination type NE (cooperative NE) by (3.2) and select the joint action ax, then
the above problem can be addressed. However, in Fig. 3.1(b), contains two coordination type
NEs (ax and by) by (3.2) and again the same problem arises. Here, robots can go for
evaluating the CE (UE or EE) by (3.3) and selects joint action ax to cooperate.

163

It is interesting to note that both the robots’ receive maximum reward for the joint action,
which satisfies the criterion of coordination type NE (or pure strategy NE for brevity) and
pure strategy CE jointly. Motivated by this observation, we are interested to find such an
equilibrium, which is a pure strategy NE as well as pure strategy CE. To achieve this we
borrow the concept of consensus from PGs, which by definition is a pure strategy NE. In this
paper, by a Theorem we have shown that a consensus is also a pure strategy CE.

(a) Two UE (ax and by) and one NE (ax) (b) Two NE (ax and by) and one UE or EE (ax)

Fig. 3.1 Equilibrium selection in multi-agent system

Theorem: In a potential game (PG), if * * *, { }i iA a A A  is a consensus point (joint action)

at a given joint state { },S S then at joint state S a consensus *()A is a pure strategy Nash
equilibrium (NE), NA as well as a pure strategy Correlated equilibrium (CE), .CEA

Assuming there exist at least one coordination type pure strategy NE.

Proof: Since *A is a consensus point, by Definition 5, we have:
 * *(, ,) (, ,), ,i i i i i iQ S a A Q S a A A i   

 * * *(, ,) (, ,), .i i i i i iQ S a A Q S a A i    *(, { })i ia A A 

 * *(,) (, ,), .i i i iQ S A Q S a A i   * * *(,)i ia A A  (3.7)

By (3.7) and Definition 3.1 we can say that
*

NA A (3.8)

at .S Again by Definition 3.5 at consensus, the inequality (3.9) holds.
*(,) (,), S A S A A    (3.9)

Now, by Definition 3.3 all players’ objective functions are aligned with the potential function
in an Exact Potential game (EPG) and by Definition 3.4 in WAG, at least one agent’s
objective function is aligned with the potential function and hence (,)S A is assumed as in

(3.10).
(,) [(,)]iS A Q S A   (3.10)

where, { , , , }.
i ii i

Min Max
  

   (3.11)

Now, by (3.9)
 *(,) (,), AS A S A   

 *[(,)] [(,)], i iQ S A Q S A A    [by (3.10) and { , , , }]
i ii i

Min Max
  

  

 *[(,)] [[(,)]]i i
A

Q S A max Q S A  

←
 A

1 A2 →
 x y
a 90, 72.9 81, 72.9
b 72.9, 72.9 72.9, 90 ←

 A
1

 A2 →
 x y
a 99, 100 94, 96
b 94, 95 97, 98

164

 *(,) [[(,)]]j i
A

Q S A max Q S A   [Let * *[(,)] (,), [1,]i jQ S A Q S A j m  ]

 *arg[(,)] arg [[(,)]]j i
A A

Q S A max Q S A  

 * arg [[(,)]]i
A

A max Q S A  

 *
CEA A  [by Definition 3.2] (3.12)

So, to hold (3.9) in a PG, *A should be a .CEA Hence, by (3.8) and (3.12) we can say that a

consensus *A at a given joint state S is a NA as well as .CEA □

Algorithm 3.2: Consensus Q-learning (CoQL)

Input: Current state , ,is i action set iA at , ,is i [0,1)  and [0,1); 

Output: Optimal joint Q-value *(,), , , ;iQ S A S A i  
Begin
 Initialize: (,) 0, , , ;iQ S A S A i   
 Repeat
 Select an action ,i ia A i  randomly and execute it;
 Observe immediate rewards (,), ;ir S A i
 Evaluate / (,), i i i is s a i  to obtain / /

1;m
i iS s  

/(,) (1) (,) [(,) .Co ()],i i i iQ S A Q S A r S A Q S i      

 and

/;S S / / Co= and NE CE
 Until (,), , ,iQ S A S A i   converges;

*(,) (,), , , ;i iQ S A Q S A S A i   

End.

So, in the CoQL and planning algorithms, instead of evaluating the pure strategy NE/CE at
a joint state, a consensus is evaluated motivated by the cooperative control and PG, as a
consensus is a pure strategy NE as well as a pure strategy CE as shown in the proposed
Theorem. The proposed CoQL algorithm is given in Algorithm 3.2. The brace in Algorithm
3.2 indicates the difference between Algorithm 3.1 and 3.2.

3.4.2 Consensus-based multi-robot planning
In multi-agent planning phase, each agent evaluates consensus by jointly satisfying (3.2) and
(3.3) at a feasible joint state. It may be noted that for multiple consensuses at the given joint
state, the consensus which appears first is selected. In this paper, we have considered the
well-known stick-carrying problem, where each robot needs to reach its individual goal
optimally without violating any constraint. Constraint violation refers to the collision with
obstacle or the team-mates and falling of stick following Algorithm 3. The brace in Algorithm
3 indicates the key contribution in the planning algorithm.

//Proposed

165

Algorithm 3.3: Consensus-based planning
Input: Feasible joint starting state ,FS joint goal state GS and optimal

joint Q-value
*(,), ;iQ S A i

Output: Consensus or joint action which is a NE as well as CE *
FA at ;FS

Begin
 While F GS S do Begin
 For { }A A
 Evaluate consensus by jointly following (3.2) and (3.3);
 If next feasible joint state /

FS satisfies all the constraints;

 Then *
FA A and / ;F FS S // / FS is the next joint state

 End If;
 End for;
 End While;
End.

3.5 Experiments and Results
Two experiments are presented in this section. The first experiment is designed to study the
relative performance of the CoQL over the reference algorithms, considering average reward
collection by the agents as a performance metric. Another experiment is framed to study the
relative performance of the consensus-based planning algorithm over the reference
algorithms, considering multi-robot stick carrying problem as a benchmark in terms of state-
transitions required to complete the task.

3.5.1 Experimental setup
All the experiments related to learning are performed in ten different 10×10 grid world maps
for two and three agents. However, for brevity multi-robot planning is conducted for two
agents only in 5×5 grid world maps. Each agent can execute one among the four possible
actions (Left (L), Forward (F), Right (R), and Back (B)) at a state. As an agent reaches its
goal state due to an action from a state, it receives maximum immediate reward of 100.
Similarly, an agent receives zero (0) immediate reward for a non-goal state transition. The
constraint violation is penalized by a negated immediate reward (here -1). In addition, to the
above parameter setting the learning rate,  and discounting factor,  are set to 0.1 and 0.9

respectively.

3.5.2 Experiments for CoQL
In this experiment, at each state an agent selects its action randomly from its individual action
pool. In the next step, agent updates its own as well as the remaining agents' Q-values at joint
state-action space following Algorithm 3.2. Average of the average rewards (AAR) as given
in (3.13) is considered as a performance metric of the learning algorithms for m number of
learning agents.

//Proposed

166

 
1

1 1 1(,)
|{ } | | { } |

m

i
i S A

AAR Q S A
A S m  

   
            
   (3.13)

Fig. 3.2 AAR versus learning epoch for two agent system

Fig. 3.3 AAR versus learning epoch for three agent system

It is apparent from Fig. 3.2 that the AAR collected by a team of two agents over the learning
epoch (iteration) in CoQL is more than the same offered by the traditional NQL and different
variants of CQL (EQL, UQL, RQL, and LQL). Similar experiment is conducted for three
agents as shown in Fig. 3.3.

3.5.3 Experiments for consensus-based planning
In this experiment, performance of the consensus-based multi-robot cooperative planning
algorithm has been tested considering the well-known stick-carrying problem as a benchmark.
The stick-carrying problem refers to the transportation of a stick from starting position to the
fixed destination optimally without violating any constraint. It is apparent from Fig. 3.5 and
3.5

167

Fig. 3.4 planning path offered by the consensus-based multi-agent planning algorithm

Table 3.2 Planning performance

Planning algorithm Number of state-transitions required Number of 90o turns required

A1 A2 A1 A2
Consensus-based 7 7 2 2

NQL-based 7 7 3 3

S1 S2

G1 G2

Fig. 3.5 planning path offered by the Nash Q- learning based planning algorithm

168

that the planning path offered by the consensus-based multi-agent cooperative planning
algorithm is better than the same offered by the traditional learning based planning path, in
terms of the path length and the number of 90o turns. Minimization of the 90o turns minimizes
the torque requirement by the robots, and hence, saving in the energy consumption. Table 3.2
illustrates the planning performance of the proposed Consensus-based planning algorithm
over the NQL-based planning algorithm (here NQL) in terms of the above explained metrics.

3.6 Conclusions
The chapter proposes a novel CoQL algorithm for multi-robot cooperative planning. The
proposed CoQL algorithm addresses the problem of equilibrium selection among different
types of equilibria, by evaluating the consensus (joint action) at the current joint state. An
analysis reveals that a consensus at a joint state is a pure strategy NE as well as pure strategy
CE. The novelty of the CoQL lies in the adaption of the joint Q-values at consensus. The
superiority of the proposed CoQL algorithm is verified over the reference algorithms in terms
of the AAR earned by the agents against the learning epoch. In addition, consensus-based
multi-robot cooperative planning algorithm is proposed and its superiority is verified over
reference algorithms considering path length and torque requirement as the performance
metrics.

3.7 Summary
In Chapter 3, it is shown that robots may select the suboptimal equilibrium in presence of
multiple types of equilibria (here Nash equilibrium or correlated equilibrium). In the above
perspective, robots need to adapt with such a strategy, which can select the optimal
equilibrium in each step of the learning and the planning. To address the bottleneck of the
optimal equilibrium selection among multiple types, chapter 3 presents a novel consensus Q-
learning for multi-robot cordination, by extending the equilibrium-based multi-agent Q-
learning algorithms. It is also shown that a consensus (joint action) jointly satisfies the
conditions of the coordination type pure strategy Nash equilibrium and the pure strategy
correlated equilibrium. The superiority of the proposed consensus Q-learning algorithm over
traditional reference algorithms in terms of the average reward collection are shown in the
experimental section. In addition, the proposed consensus-based planning algorithm is also
verified considering multi-robot stick-carrying problem as the testbed.

References
[1] S. M. LaValle, Planning algorithms, Cambridge university press, 2006.

169

[2] R. Luna and K. E. Bekris, "Efficient and complete centralized multi-robot path planning,"

International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, pp. 3268-3275,

2011.

[3] P. Bhattacharya and M. L. Gavrilova, "Roadmap-based path planning-Using the Voronoi diagram

for a clearance-based shortest path," Robotics & Automation Magazine, IEEE, vol. 15, no. 2, pp. 58-

66, 2008.

[4] R. Gayle, W. Moss, M. C. Lin and D. Manocha, "Multi-robot coordination using generalized social

potential fields," IEEE International Conference on Robotics and Automation, pp. 106-113, 2009.

[5] S. Yamada and J. Y. Saito, "Adaptive action selection without explicit communication for

multirobot box-pushing," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 31, no.3, pp. 398-404, 2001.

[6] H. Sugie, Y. Inagaki, S. Ono, H. Aisu and T. Unemi, "Placing objects with multiple mobile robots-

mutual help using intention inference," IEEE International Conference on Robotics and Automation,

Proceedings, Vol. 2, pp. 2181-2186, 1995.

[7] Y. Yamauchi, S. Ishikawa, N. Uemura and K. Kato, "On cooperative conveyance by two mobile

robots," IEEE International Conference on Industrial Electronics, Control, and Instrumentation,

Proceedings of the IECON'93, pp. 1478-1481, 1993.

[8] C. R. Kube and H. Zhang, "The use of perceptual cues in multi-robot box-pushing," IEEE

International Conference on Robotics and Automation, Proceedings, Vol. 3, pp. 2085-2090, 1996.

[9] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement Learning and Dynamic

Programming Using Function Approximators, CRC Press, 2010.

[10] B. Banerjee, S. Sen and J. Peng, “Fast Concurrent Reinforcement Learners,” International Joint

conference on Artificial Intelligence, Seattle, Washington, USA, vol. 17, no. 1, pp. 825-832, 2001.

[11] S. Wen, X. Chen, C. Ma, H. K. Lam and S. Hua, “The Q-learning obstacle avoidance algorithm

based on EKF-SLAM for NAO autonomous walking under unknown environments,” Robotics and

Autonomous Systems, vol. 72, pp. 29-36, 2015.

[12] Y. Shoham, R. Powers and T. Grenager, “Multiagent Reinforcement Learning: A Critical

Survey,” Web manuscript, 2003.

[13] D. Srinivasan and L. C. Jain (Eds.), Innovations in Multi-agent Systems and Applications-1,

Springer-Verlag, 2010.

[14] R. S. Sutton, and A. G. Barto, Introduction to Reinforcement Learning, MIT Press, 1998.

[15] L. Buşoniu, R. Babuška and B. De Schutter, “Multi-agent reinforcement learning: An overview. In

Innovations in Multi-Agent Systems and Applications-1,” Springer, pp. 183-221, 2010.

[16] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

[17] N. Sommer and A. Ralescu, “Developing a Machine Learning Approach to Controlling Musical

Synthesizer Parameters in Real-Time Live Performance,” MAICS, pp. 61-67, 2014.

170

[18] T. Dean, J. Allen and Y. Aloimonos, Artificial Intelligence: Theory and Practice, Massachusetts,

Addison-Wesley Publishing Company, 1995.

[19] L. Busoniu, R. Babuska, and B. De Schutter. “A comprehensive survey of multiagent

reinforcement learning,” IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications

and Reviews, vol. 38, no. 2, pp. 156-172, 2008.

[20] J. Nash, “Non-cooperative games,” Annals of mathematics, vol. 54, no. 2, pp. 286-295, 1951.

[21] A. Greenwald and K. Hall, “Correlated Q-learning,” ICML, Washington, DC, USA, 3, pp. 242-

249, 2003.

[22] J. Hu and M. P. Wellman, "Nash Q-learning for general-sum stochastic games," The Journal of

Machine Learning Research 4, pp. 1039-1069, 2003.

[23] J. Hu and M. P. Wellman, “Multiagent reinforcement learning: theoretical framework and an

algorithm,” ICML, vol. 98, pp. 242-250, 1998.

[24] A. Kashyap, T. Başar and R. Srikant. "Consensus with quantized information updates," 45th IEEE

Conference on Decision and Control, 2006.

[25] R. Olfati-Saber, A. Fax and R. M. Murray, "Consensus and cooperation in networked multi-agent

systems," Proceedings of the IEEE, vol. 95no. 1, 215-233, 2007.

[26] J. R. Marden, G. Arslan and J. S. Shamma, "Cooperative control and potential games," IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, no. 6, pp. 1393-1407,

2009.

[27] C. J. Watkins and P. Dayan, “Technical Note Q,-Learning,” in: Machine learning vol. 8, no. 3-4,

pp. 279-292, 1992.

[28] J. R. Marden, G. Arslan and J. S. Shamma, "Cooperative control and potential games," IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, no. 6, pp. 1393-1407,

2009.

[29] A. Kashyap, T. Başar and R. Srikant. "Consensus with quantized information updates," 45th IEEE

Conference on Decision and Control, 2006.

[30] R. Olfati-Saber, A. Fax and R. M. Murray, "Consensus and cooperation in networked multi-agent

systems," Proceedings of the IEEE, vol. 95no. 1, 215-233, 2007.

[31] N. A. Lynch, Distributed Algorithms, San Francisco, CA: Morgan Kaufmann, 1997.

Chapter 4
An Efficient Computing of Correlated
Equilibrium for Cooperative Q-Learning Based
Multi-Robot Planning

In traditional multi-agent Q-learning induced planning, we need to evaluate Nash/correlated
equilibrium at a given joint state during both learning and planning phases. Determination of
such equilibrium being computationally expensive prohibits the planning in real-time. The
chapter introduces a novel approach to adapt composite rewards of all the agents in one Q-
table in joint state-action space during learning, and uses these rewards to compute Correlated
equilibrium in the planning phase. Two schemes of multi-agent Q-learning have been
proposed. If success of only one agent is enough to make the team successful, then scheme-I
is employed. However, if an agent’s success is contingent upon other agents and simultaneous
success of the agents is mandatory then scheme-II is employed. New algorithms for multi-
agent learning/planning have been proposed, centering on the said schemes. It is shown that
the correlated equilibrium obtained by the proposed algorithms and the traditional correlated
Q-learning are identical. In order to restrict the exploration within the feasible joint states,
constraint versions of the said algorithms are also proposed. An analysis is included to
demonstrate the significant saving of computational time and space by the proposed
algorithms. In addition, convergence analysis of the proposed algorithms is done.
Experiments have been undertaken to validate the performance of the proposed algorithms in
multi-robot planning on both simulated and real platforms.

172

4.1 Introduction
Reinforcement learning (RL) works on the principle of reward and penalty earned by an agent
(robot) [1]-[7], [15] from the environment. An agent is an autonomous body [8]-[11] capable
of maintaining state transitions [12], [13] freely in a given environment. In RL, an agent
learns a policy  to maximize a value function V(s) [14], at any environmental state s to
achieve its (fixed) goal. Q-learning belongs to the family of RL algorithms. In Q-learning, the
agent learns an optimal policy to select the best (optimal) action a at state s to maximize the

sum of immediate reward and the value function of the next state s/, discounted by a factor
0≤γ<1.

In single agent Q-learning [16], [17], the environment is stationary because the agent earns
immediate reward due to its own action on the environment [18], [19]. However, in multi-
agent scenario, the immediate reward obtained by an agent depends also on the other agents’
actions on the environment, and thus the environment seems to be non-stationary [18]-[23].
Although the non-stationary behavior of the environment has not yet been modeled directly in
multi-agent Q-learning (MAQL), its effect is considered by updating the joint state-action
value function of the agents at equilibrium [24].

Several algorithms for MAQL have been proposed for both cooperative and competitive
applications [18]-[34]. Among the equilibrium based cooperative MAQL algorithms, Nash-Q
learning (NQL) [21], [28] and Friend-Q learning (FQL) [23] algorithms need special mention.
Both these algorithms allow each agent to optimize its reward (payoff) in joint state-action
space, considering fixed strategies (pure or mixed) of all other agents among possible
alternatives. Meanwhile, if an agent selects only one action with unity probability, then the
agent is said to use a pure strategy. A mixed strategy is the assignment of a probability
distribution over the available actions, indicating a possibility of being selected by an agent
[35]. The strategy profile corresponding to Nash-equilibrium (NE) [35], [36], [52], [53] thus
refers to the best joint strategy of all the agents that allow each agent to maximize its payoff,
considering fixed strategies of all other agents. Such payoff updating policy offers maximum
freedom to an agent to give its best choice. In [22], Greenwald and Hall compared the relative
performance of NQL and FQL algorithms with Correlated Q-learning (CQL), where the last
one is used as the reference. Different variants of CQL exist in the literature based on the
definition of Ω-equilibrium [22], where Ω usually takes any one of the four types: Utilitarian
(U), Egalitarian (E), Republican (R) and Libertarian (L) by which an agent updates its
future reward.

Curse of dimensionality is one of the prohibiting factors of the state-of-the-art equilibrium-
based MAQL (NQL and CQL). Such bottleneck increases with the increase in number of
learning agents while adapting Q-values in joint state-action space [43]-[45] by the state-of-

173

the-art update policies. To address the curse of dimensionality in MAQL, Jelle et al. proposed
the Sparse Cooperative Q-learning [44], where each agent maintains two Q-tables based on
the requirement of coordination among the agents at a joint state. Zhang et al. successfully
reduced the dimension of Q-tables in NQL, where unlike the traditional NQL; agents store Q-
values in joint state-individual action space [45]. To accelerate the convergence of the state-
of-the-art equilibrium-based MAQL (NQL and CQL), Hu et al. introduced the concept of
equilibrium transfer [43] by exploiting the previously computed equilibria in different joint
states with negligible transfer-loss. However, with the best of our knowledge there is no
equilibrium-based MAQL in the literature, where agents adapt only one joint Q-table to
accumulate the rewards of all agents.

The applicability of RL includes finance sector [47], gaming industry [31], [36], robotics
[5], [9], [29], [33] and many more. In this chapter, proposed algorithms are tested in the test
bed of multi-robot object-transportation problems [38], [46].

The Ω Q- learning (ΩQL)

algorithms proposed in this chapter has two attractive features,

which are not available in the traditional CQL. First, during the learning phase, an agent
needs to adapt only one Q-table in joint state-action space unlike adapting m joint Q-tables for
m agents in CQL. Second, the evaluation of the computationally expensive correlated
equilibrium (CE) is avoided, following a tricky approach of computing it partially during the
learning and the rest during the planning phases. This offers benefits in real-time planning as
computation of a CE, which is time-costly, is avoided here by the proposed technique.
Two schemes of ΩQL

have been proposed to serve two distinct type of MAQL based

planning applications. Scheme-I ensures the success of the team, if only one agent is
successful to serve its goal. This is useful for weakly coupled multi-agent systems, where
only one agent is active at a time to serve the fixed goal. For example, in a soccer game only
one person/agent at a time takes the ball ahead, serving its individual as well the team goal.
Scheme-II ensures simultaneous success of all the agents in a tightly coupled multi-agent
system, such as long stick/big object carrying by multiple robots. Both the schemes adapt Q-
tables in joint state-action space. However, there is a small difference in the adaptation
mechanism of Q-values by the two schemes. Scheme-I is used to adapt a Q-table in joint
state-action space based on the individual Q-values of the agents and the effect of
coordination among the agents, received as feedback from the environment. Scheme-II adapts
Q-table in joint state-action space by considering group (Ω) Immediate Reward (ΩIR) as a
function of individual immediate rewards plus expected group (Ω) future reward as a function
of individual expected future rewards discounted by a factor γ in [0, 1).

Scheme-I and -II have four variants depending on the functional form used to compute the
Q-value in joint state-action space. We here use a general nomenclature

174

1 11 1
{ , , , }

m m mm

i ii i
Min Max
  

   for a unified treatment of the four variants, for computing Q-values

following U, E, R and L equilibria respectively.
During the planning phase [37], we obtain one of the four equilibria, depending on the

choice of Φ in the preceding learning phases. The planned task is then executed
following the obtained equilibrium. Sometimes to execute a plan, we need to satisfy
certain constraints that appear naturally from the problem under consideration. For
example, in a twin robot cooperation to carry a stick held by the robots at the two end-
points of the stick [38], the stick-length is a constraint. It acts as a constraint in planning
as for all possible next positions of the robots, the separating distance should be equal to
the stick length. The constraint can be handled at the planning phase but at the cost of
extra time to identify feasible next states for the robots. Alternatively, the feasible joint
state-actions can be learned during the learning phase, so that equilibrium obtained in
the planning phase always falls in the feasible action-space. Here, we emphasized
learning only at the feasible joint state-action space to speed up planning.

The main contributions of the chapter are briefly summarized below.
1. Unlike traditional CQL, where CE is evaluated both in learning and planning phases, here
we need to compute CE partly in the learning and the rest in the planning phases, thereby
requiring CE computation once only when learning based planning is employed.
2. It has been proved that the CE obtained by the proposed schemes is same as that obtained
by the traditional CQL algorithms.
3. The computational cost to evaluate CE here is much smaller than that obtained by
traditional CQL algorithms for the following reasons. Computation of CE in CQL requires
consulting m Q-tables in joint state-action space for m agents, whereas in the present context
we use a single Q-table in the joint state-action space for evaluation of CE.
4. Complexity analysis undertaken here confirms the last point. Both time-and space-
complexity-wise the proposed algorithms are less expensive than traditional CQL algorithms.
5. Problem-specific constraints are taken care of in the proposed ΩQL to avoid unwanted
exploration of the infeasible state-space during the learning phase, thereby saving additional
run-time complexity during the planning phase.
6. Experiments are undertaken to validate the proposed concepts in simulated and practical
multi-agent robotic platform (here Khepera-environment).

The rest of the chapter is organized as follows. In Section II, an overview of the single
agent Q-learning and equilibrium based MAQL algorithms are given. Proposed cooperative
multi-agent Q-learning and corresponding planning algorithms are given in Section III.
Section IV offers complexity analysis. Simulation and experimental results are presented in
Section V. Conclusions are given in Section VI.

175

4.2 Single-Agent Q-Learning and Equilibrium Based MAQL
This section discusses the preliminary ideas concisely on single agent Q-learning and
equilibrium-based MAQL algorithm for better understanding of the proposed methods.

4.2.1 Single Agent Q learning
In 1989, Watkins and Dayan [17] coined the single agent Q-learning, which is one of the most
widely used RL techniques. It works by continuously updating an agent’s state-action value
(Q-value) by a fixed policy and earns a reward (or penalty) from the environment in each
step of learning. The Q-learning update rule of an agent i

is given in (4.1), assuming

* /ˆ ()i iQ s to be the expected (indicated by ̂) optimal (indicated by *) Q-value [3], [17] of agent

i

at next state /

i is S and the expression of * /ˆ ()i iQ s

is given in the Appendix [51] following

the traditional representation [14], [21].
* /ˆ(,) (1) (,) [(,) . Q (s)]i i i i i i i i i i iQ s a Q s a r s a     

(4.1)

where, (,)i i iQ s a and (,)i i ir s a are the Q-value and immediate reward respectively at a state

i is S because of action i ia A of agent ,i [0,1)  be the learning rate, [0,1)  denotes

the discounting factor and / (,)i i i is s a indicates the state-transition from state is to next

state /
is because of action ia with state-transition probability /(| (,))i i i ip s s a of agent .i

4.2.2 Equilibrium based MAQL
Depending upon the type of tasks MAQL can be classified into three categories: cooperative,
competitive and mixed [10]. Multi-agent cooperative scenario demands formulation of a
joint policy, which benefits each agent individually and also the team. The analysis and
further enhancement of the cooperative MAQL is carried out in this chapter.

In MAQL algorithm, more specifically in equilibrium-based MAQL, each agent
updates Q-values individually in joint state-action space employing one of the following
equilibria: NE [28] and CE [22] to update the expected joint Q-value at equilibrium of an
agent at the joint next state. CE includes U-equilibrium (UE), E-equilibrium (EE), R-
equilibrium (RE) and L-equilibrium (LE) [22].

Suppose in a m agent system, due to joint action 1 2 1{ } ... m
m iiK K A A A A       at joint

state 1{ } m
iiG G S   the agent i earns an immediate reward (,)ir G K and (,)iQ G K be the Q-

value of agent i because of joint action K at joint state ,G where  denotes the Cartesian

product. Now, following traditional representation [14], [21] of the expected joint Q-value at
a given joint next state, / { }G G because of mixed strategy   equilibrium,

* / / * / /

1
(|) (|),

m
i i i

i
p K G p a s


   (4.2)

for an agent i is given in (4.3),

176

/ /
* / / * / / / /ˆ () (| (,)) (|) (,)i i

G K
Q G p G G K p K G Q G K

 
    (4.3)

where, / /

1
(| (,)) (| (,))

m
i i i i

i
p G G K p s s a


  (4.4)

be the joint state-transition probability and / { }K K be the joint action at joint next state
/ .G The definition of CE is given below.

Definition 4.1: Correlated equilibrium (CE) [22], [39] at a joint state 1
m

i iG s   with

m interacting agents is the pure strategy CE, *K and mixed strategy CE, *()p K if
agents follow (4.5) and (4.6) respectively for { , , , }.U E R L

* arg max[((,))]i
K

K Q G K   (4.5)

*
()

() arg max[[()((,))]]i
Kp K

p K p K Q G K


    (4.6)

where,
1 11 1

{ , , , }.
m m mm

i ii i
Min Max
  

  

The CQL update rule is given in (4.7) [22] following the traditional representation [14],
[21].

* /ˆ(,) (1) (,) [(,) . ()]i i i iQ G K Q G K r G K Q G      

(4.7)

CQL algorithm [22] is given in the supplemental file [51].

4.3 Proposed Cooperative Multi-agent Q-Learning and
Planning
In CQL algorithm, the entries of the Q-tables of m-agents at a given joint state because of a
joint action need not necessarily be same. However, in the present formulation, an attempt is
made to solve the CQL algorithm by efficiently employing the { , , , }U E R L equilibrium,

with the motivation to create single joint Q-table in joint state-action space by considering m
Q-tables at individual state-action space and the environmental feedback about possible
penalty due to multi-agent coordination at joint state-action space.
After each learning epoch, the results of adaptation of each agent’s individual Q-tables are
exploited to update the single Q-table in joint state-action space. Two techniques are
proposed, namely scheme-I and -II, by efficiently employing the { , , , }U E R L equilibrium to

evaluate the single joint Q-table. To distinguish the nomenclatures of scheme-I and -II
respectively and  is placed on the top of each symbol. The basis of proposed schemes
with their applicability is provided below.

4.3.1 Proposed schemes with their applicability
The chapter proposes two distinct schemes for addressing two types of situations that may
arise during the MAQL based multi-robot planning. In the first scheme, the success of the
team is subject to the success of any one agent. Scheme-I is applicable for the weakly coupled

177

multi-agent systems, where only one agent is enough at a time to serve the fixed team goal.
For example, suppose, m numbers of agents are assigned to transport a box from one location
to another following scheme-I, and let transportation of the box requires only one agent at a
time. Once failure of an agent is detected, its nearest agent expresses cooperation toward the
failed agent for successful transportation of the box. Here, the success of any one agent is
enough to make the team successful. On the other hand, in the second scheme, the success of
a team is contingent upon the simultaneous success of all the agents and it is applicable for
the tightly coupled multi-agent system, such as long stick/big object carrying by multiple
robots [38], [46]. Therefore, in both schemes, agents adapt Q-tables depending upon the task
requirement.
In the proposed scheme-I induced Q-learning (QL-I), agents adapt the Q-table in joint state-

action space exploiting the individual Q-values at individual state-action space and the effect
of coordination among the agents, received as a feedback from the environment to be
explained in the next section. However, in the proposed scheme-II induced Q-learning
(QL-II), agents adapt the Q-table in joint state-action space following the traditional MAQL

rule by evaluating the ΩIR as a function of individual immediate rewards plus expected group
(Ω) future reward as a function of individual expected future rewards discounted by a factor
0≤γ<1.
It may be notated that in the proposed QL-II, at a joint state, G because of all the joint
actions, { },K K if an agent i receives less than or equal to () reward for EE (or)LE or
greater than or equal to () reward for UE (or)RE than the same by the proposed QL-I,
then for EE (or)LE the joint action { }K K corresponding to equal reward
((,) (,))Q G K Q G K   is preferred, as simultaneous success of all the agents is desired to
make the team successful. On the other hand for UE (or),RE also the joint action, { }K K
corresponding to equal reward ((,) (,))Q G K Q G K   is preferred as success of any one

agent is enough to make the team successful.

4.3.2 Immediate rewards in Scheme-I and -II
In the literature of MAQL, agents receive only one type of immediate reward, i.e., immediate
reward at joint state-action space. However, it is our observation that the immediate rewards
at individual state-action space and immediate rewards at joint state action space are often
diverse. Hence, in this chapter we have considered two types of immediate rewards for an
agent .i First one is the immediate rewards at individual state-action space, (,)i i ir s a and the

second one is the immediate rewards at joint state-action space during the multi-agent
coordination, (,).id G K The physical significance of such reward categorization is that an

agent should not receive penalty or reward because of remaining agents’ actions. For
example, if each robot in a group individually receives immediate reward at joint state-action

178

space and subsequently employs either scheme-I or -II to obtain single Q-table at joint state-
action space, then the penalty incurred by a robot due to possible collision with an obstacle,
might influence the identical Q-values offered by the scheme-I or -II. The above phenomenon
is not desired and hence such immediate reward categorization is done. The definition of the
proposed immediate reward is given in Definition 4.2.
Definition 4.2: { , , , }U E R L immediate reward (ΩIR), (,)R G K is given by (4.8), where

1 11 1
{ , , , }.

m m mm

i ii i
Min Max
  

  

(,) (,),iR G K d G K if agent i is penalized due to other agents

[(,)],i i ir s a 

otherwise. (4.8)

Trivially from (4.8) it can be inferred that
(,) [(,)]iR G K r G K  (4.9)

4.3.3 Scheme-I induced MAQL
The Q-value offered by scheme-I ((,))Q G K is evaluated by obtaining the

1 11 1
{ , , , }

m m mm

i ii i
Min Max
  

   of the summation of individual Q-value (,)i i iQ s a and the immediate

reward due to multi-agent coordination given by (,).id G K For example, in multi-agent
robotics, (,)id G K is the penalty because of collision among the agents. The (,)Q G K is

evaluated by the learning rule,
(,) [(,) (,)]i i i iQ G K Q s a d G K    (4.10)

at the joint state G because of joint action .K Assuming * *
1 2, ,..., mK a a a  be the jointly

optimized individual actions (joint action) at joint state ,G at the end of learning phase agents
evaluate the optimal pure strategy *K corresponding to the maximum of (,),Q G K

{ , , , }U E R L and is given by (4.11).
* arg max[(,)]

K
K Q G K   (4.11)

Note 4.1: As the CQL and the proposed scheme-I based learning algorithms share common
environment and agents, both have same joint action set given by (4.12).
{ } { }K K (4.12)

In ΩQL-I, the optimal mixed strategy *()p K is obtained by evaluating the maximum of the
expected reward () (,), :{ } [0,1]

K
p K Q G K p K


    and is given by (4.13).

*

()
() arg max[()[(,)]]

Kp K
p K p K Q G K


    (4.13)

On the other hand, Kok et al. observed that in most of the MAQL, agents required to
coordinate their actions only in a few states, and in the remaining they act independently [44].
Motivated by their observations Note 4.2 and 4.3 are given below before proposing Theorem
4.1 and 4.2.

179

Note 4.2: Following the principle of [44], in CQL, Q-value of agent i at joint state G
because of joint action K may be expressed by (4.14).

(,) (,) (,),i i i i iQ G K Q s a d G K  (4.14)
where (,)id G K is explained in Section III.B, elements of G and K include is and ia

respectively.
Note 4.3: Again, following the principle of [44], in CQL, the Q-value of agent i at joint state
G because of joint action K setting (,) 0id G K  may be expressed by (4.15).

/ (,) (,).i i i iQ G K Q s a (4.15)

Theorem 4.1: The optimal pure strategy, *K induced by scheme-I is an   equilibrium,
*K for { , , , }U E R L attained in CQL.

Proof. Here,

* arg max[(,)]

K
K Q G K   [by (4.11)]

 arg max[(,)]
K

Q G K  [by (4.12)]

 arg max[[(,) (,)]]i i i i
K

Q s a d G K   [by (4.10) and
1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

  

 arg max[[(,)]]i
K

Q G K  [by (4.14)]

*K  [by (4.5)] (4.16)

Hence, the Theorem is proved. □
Theorem 4.2: The optimal mixed strategy, *()p K induced by scheme-I is an

  equilibrium,
* ()p K for { , , , }U E R L attained in CQL.

Proof. Here,

*

()
() arg max[()[(,)]]

Kp K
p K p K Q G K


    [by (4.13)]

()

arg max[() [(,) (,)]]i i i i
Kp K

p K Q s a d G K


    [by (4.10) and
1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

  

()

arg max[(()[(,) (,)])]i i i i
Kp K

p K Q s a d G K


    [ is independent of]K

()

arg max[(()[(,)])]i
Kp K

p K Q G K


   [by (4.14)]

()

arg max[(()[(,)])]i
Kp K

p K Q G K


   [:{ } [0,1], :{ } [0,1]]p K p K   

* ().p K  [by (4.6)] (4.17)

Hence, the Theorem is proved. □
It may be noted that, if among m agents at least one is required to successfully transport

an object, (e.g., small box-carrying) to a predefined goal state cooperatively for
succeeding the team, then scheme-I is useful. In Scheme-I, while an agent searches for
its goal state, at the same time remaining agents keep on static (current state becomes the next
state) by maintaining the equilibrium (cooperating) with the active one at that joint state.

180

However, if in a task (e.g. long stick-carrying), all m agents need to reach their individual
goal simultaneously to complete the assigned task, then scheme-II is employed instead of
scheme-I. Details of scheme-II are given below:

4.3.4 Scheme-II induced MAQL
In the traditional single agent Q-learning, two types of rewards are used: immediate reward
and optimal future reward. The principle of ΩQL-II does not differ much from single agent
Q-learning except the consideration of (,)R G K at a given joint state G because of a joint

action K and * /ˆΩQ ()G at next joint state / .G Naturally, to optimize total reward, we need to

optimize both (,)R G K and * /ˆΩQ ().G Definition of (,)R G K is given in Definition 4.2 and
* /ˆΩQ ()G are formally defined in Definition 4.3 for convenience of the readers.

Definition 4.3: Expected optimal { , , , }U E R L Q-value at next joint state / ,G * /ˆΩQ (G) is

obtained by evaluating the
1 11 1

{ , , , }
m m mm

i ii i
Min Max
  

   among the summation of expected optimal

Q-value of agent i

at /

is
* /ˆ Q ()i is

and the expected optimal change in immediate reward due to

multi-agent coordination at joint next state / ,G * /ˆ ().iQ G * /ˆΩQ (G) is given by (4.18),
* / * / * /ˆ ˆ ˆ() [() ()]i i iQ G Q s Q G  

(4.18)

where, * /ˆ ()Q G

and * /ˆ ()iQ G are given by (4.19) and (4.20) respectively.

/ /
* / / * / / / /ˆ () (| (,)) (|) (,)

G K
Q G p G G K p K G Q G K

 
     

(4.19)

/ /
* / / * / / / /ˆ () (| (,)) (|) (,)i i

G K
Q G p G G K p K G d G K

 
    (4.20)

where, * / /(|)p K G be the probability of selecting joint action /K at joint next state /G in
scheme-II and the  Q-value by scheme-II ((,))Q G K  following the principle of single

agent Q-learning rule using Definition 4.2 and 4.3 is given in (4.21).
* /ˆ(,) (1) (,) [(,) . ()]Q G K Q G K R G K Q G         

(4.21)

At the end of learning phase agents evaluate the optimal pure strategy *K  corresponding to
the maximum of (,),Q G K 

 { , , , }U E R L and is given by (4.22).
* arg max[(,)]

K
K Q G K  


 

 (4.22)

Note 4: Similar to Note 1, the relation between joint action set in scheme-II, { }K and { }K at

a given joint state is given by (4.23).
{ } { }K K (4.23)

In ΩQL-II, the optimal mixed strategy *()p K  is obtained by evaluating the maximum of the
expected reward () (,), :{ } [0,1]

K
p K Q G K p K


      and is given by (4.24).

*

()
() arg max[()[(,)]]

Kp K
p K p K Q G K


   


  (4.24)

Lemma 4.1 to 4.6 are required to prove Theorem 4.3 and 4.4.

181

Lemma 4.1: The Inequality, () () (),i i i ix y x y      
 1 1

{ , }
m m

i i
Min
 

  holds for any real

values of , , , [1,]i ix y i i m  and [0,1),  where 0 { }ix and 0 { }.iy
Proof. See Appendix [51].

Lemma 4.2: The inequality, () () (),i i i ix y x y      
 1 1

{ , }
m m

i i
Max
 

  holds for any real

values of , , , [1,]i ix y i i m  and [0,1). 

Proof. See Appendix [51].

Lemma 4.3: The Inequality,
1 1

(1) () () [(1)], { , }
m m

i i i i
i i

x y x y Min   
 

          holds for

any real values of , , , [1,]i ix y i i m  and [0,1),  where 0 { }ix and 0 { }.iy
Proof. See Appendix [51].

Lemma 4.4: The Inequality,
1 1

(1) () () [(1)], { , }
m m

i i i i
i i

x y x y Max   
 

          holds for

any real values of , , , [1,]i ix y i i m  and [0,1). 
Proof. See Appendix [51].
Now, if * /ˆ () 0,iQ G  then let the expected Q-value at   equilibrium of agent i at next joint

state / ,G * /ˆ ()i G is given in (4.25).

/ /
* / / * / / / / /ˆ () (| (,)) (|) (,)i i

G K
G p G G K p K G Q G K

 
   

(4.25)

Now, if * /ˆ () 0,iQ G  (4.7) can be rewritten as in (4.26)
* / * /ˆ ˆ(,) (1) (,) [(,) .[() ()]]i i i i iQ G K Q G K r G K G Q G       

(4.26)

Now, comparing (4.7) and (4.26) one can write,
* / * / * /ˆ ˆ ˆ() () ().i i iQ G G Q G    

(4.27)

Lemma 4.5: If * / * / * /ˆ ˆ ˆ() () (),i i iQ G G Q G     then * / * / * /ˆ ˆ ˆ() () ()i i i iQ G Q s Q G   

at the next

joint state / /
1 .m

i iG s  

Proof. See Appendix [51].

Lemma 4.6: (,) [(,)]iQ G K Q G K  for
1 11

{ , , ,
m mm

i ii
Min Max
 

 
1
},

m

i
 holds for the equality cases

of Lemma 4.1-4.4.
Proof. See Appendix [51].
Theorem 4.3: The optimal pure strategy, *K  induced by scheme-II is an   equilibrium,

*K for { , , , }U E R L attained in CQL, holds for the equality cases of Lemma 4.1-4.4.

Proof. Here,
* arg max[(,)]

K
K Q G K  


 

 [by (4.22)]

 arg max[(,)]
K

Q G K   [by (4.23)]

182

argmax[[(,)]]i

K
Q G K  [by Lemma 4.6]

*K 

[by (4.5)]

(4.28)

Hence, the Theorem is proved. □
Theorem 4.4: The optimal mixed strategy, *()p K  induced by scheme-II is an

  equilibrium,
* ()p K for { , , , }U E R L attained in CQL, holds for the equality cases of

Lemma 4.1-4.4.
Proof. Here,

*

()
() arg max[()[(,)]]

Kp K
p K p K Q G K


   


  [by (4.24)]

 ()
arg max[()[[(,)]]]i

Kp K
p K Q G K


  




[by Lemma 4.6]

 ()
argmax[[()[(,)]]]i

Kp K
p K Q G K


  




[ is independent of]K

 ()

argmax[[()[(,)]]i
Kp K

p K Q G K


  

[:{ } [0,1], :{ } [0,1]]p K p K   

*()p K 

[by (4.6)] (4.29)

Hence, the Theorem is proved. □

4.3.5 Algorithms for scheme-I and II
Scheme-I and -II induced ΩQL algorithms are proposed in Algorithm 4.1. Now, for further
improvement, constraint version of QL-I/ QL-II 

 (CΩQL-I/CΩQL-II) is given below.
Algorithm 4.1: Scheme-I and -II induced ΩQL (ΩQL-I and ΩQL-II)

Input: Learning rate [0,1)  and discounting factor [0,1); 

Output: Optimal joint Q-value *(,), , ;Q G K G K   \\ for Scheme-I
 Optimal joint Q-value *(,), , ;Q G K G K  

 \\ for Scheme-II
Begin
 Initialize: state , ,is i action set iA at , ,is i (,) 0, ,Q G K G K    for Scheme-I and (,) 0, ,Q G K G K    for
 Scheme-II;
 Repeat
 1. Select an action ,i ia A i  by the Boltzmann strategy [48] and execute it for both the schemes;

 2. For both the schemes observe immediate rewards (,)i i ir s a and (,), ,id G K i evaluate next state

 / (,), i i i is s a i  to obtain joint next state / /
1

m
i iG s   and individual Q-value

 * /ˆ(,) (1) (,) [(,) . Q (s)], ;i i i i i i i i i i iQ s a Q s a r s a i      

 3. Update: Joint Q-value (,)Q G K by (4.10) for Scheme-I* and (,)Q G K  by (4.21) for Scheme-II** and

/;G G

1 11 1
// { , , , }, { , , , }.

m m mm

i ii i
U E R L Min Max

  
   

 Until (,), ,Q G K G K   converges for Scheme-I and (,), ,Q G K G K   converges for Scheme-II;

*(,) (,), ,Q G K Q G K G K    for Scheme-I and *(,) (,), ,Q G K Q G K G K     for Scheme-II;

End.

* In Scheme-I, suppose, there is a group of two robots, R1 and R2. R1 attempts to transport a box from one location to a fixed goal
G. Once, R1 fails R2 takes in charge and continues the box transportation. If R2 reaches the goal state G, then it receives the
maximum individual immediate reward, 100 (say). At the same time, R1 receives the minimum individual immediate reward, i.e., 0.
In the above circumstance, we choose RE for group immediate reward evaluation, because the success of one agent is enough to
make the successful. Group immediate reward = max(100, 0)=100.
** In Scheme-II, for the stick-carrying problem [46] both R1 and R2 should receive 100 rewards to make the team successful. Here,
EE is employed to evaluate the group immediate reward=min(100, 100)=100.

183

4.3.6 Constraint QL-I/ QL-II(CΩQL-I/CΩQL-II) 
In constraint ΩQL (CΩQL) algorithms, agents have to satisfy one or more task constraints to
determine next feasible joint state from a set of next joint states. For example, in the stick-
carrying problem, two robots (agents) transport a stick from a given location to the other in
their environment by holding it at two ends of the stick. During transportation, the stick
should not collide with any obstacle. The transportation of a fixed-length stick without having
encountered an obstacle by the stick acts as a task constraint that the agents have to maintain
throughout their journey. Similarly, in triangle-carrying problem three robots carry a triangle
satisfying the above mentioned constraint.

If joint next state /()G does not satisfy task constraint(s) after selecting a joint action ()K
from a feasible joint state (),FG then the next joint state /()G is removed from the feasible
joint Q-table and also the joint action ()K is dropped from the feasible joint state (),FG
otherwise the joint action is executed for learning. It is apparent that FG G and ,FK K

where G and K are joint state and joint action of the agents respectively. The constraint
ΩQL-I/ΩQL-II (CΩQL-I/CΩQL-II) algorithm mentioning the changes as compared to ΩQL

(Algorithm 4.1) is given in Algorithm 4.2.
Algorithm 4.2: Constraint QL-I/ QL-II  (C QL-I/C QL-II) 

Input: As in Algorithm 4.1 plus task constraints;
Output: Optimal Q-values for feasible joint state-action space;
Begin
 Initialize: Same as Algorithm 4.1;
 Repeat
 1. Select action as in Algorithm 4.1;
 2. Receive immediate rewards (,),i i ir s a i and (,),id G K i as in Algorithm 4.1 and evaluate joint next

 state / /
1

m
i iG s   and individual Q-value (,),i i iQ s a i as in Algorithm 4.1;

 3. Update:
(,)F FQ G K

 for Scheme-I and (,)F FQ G K  for Scheme-II; // F in the suffix indicates the feasible
 4. If the feasibility checking fails, then delete the FG from the joint Q-table and drop the FK taken at the current joint

state;

 Until (,), ,F F F FQ G K G K   converges for Scheme-I and (,), ,F F F FQ G K G K   converges for Scheme-II;

*(,) (,), ,F F F F F FQ G K Q G K G K    for Scheme-I and *(,) (,), ,F F F F F FQ G K Q G K G K    

 for Scheme-II; End.

4.3.7 Convergence
In [44], Kok et al. mentioned that in most of the MAQL, agents require coordinating their
actions only in a few states, while acting independently in the remaining states. Based on their
observations, we jointly optimize a combination of i) individual Q-function and ii) the change
in the individual Q-functions because of the multi-agent coordination. The function used to
combine the above two, is determined based on the choice of type of equilibrium. In the
present chapter, to consider the change in Q-values due to multi-agent coordination, we
classify the immediate reward (Section 4.3.2) into two types, one defined in individual state-

184

action space, and the other in the joint state-action space. Theorems (4.1, 4.2) and (4.3, 4.4)
respectively leads to the optimal global policy for deterministic and stochastic cases for both
scheme-I and -II. Convergence proofs of the proposed algorithms are offered by Theorem 4.5
and 4.6 respectively for scheme-I and-II. To propose Theorem 4.5 and 4.6 Lemma 4.7-4.9 are
the prerequisites.
Lemma 4.7: *| [(,) (,)] | 0, tR G K R G K t    hold for [0,1),  where t is the learning epoch.
Proof. See Appendix [51].
Lemma 4.8: * / * /ˆ ˆ| [() ()] | 0,tQ G Q G    holds for [0,1)  as learning epoch .t 
Proof. See Appendix [51].
Lemma 4.9: If *| (,) (,) | (,),t k t kQ G K Q G K Q G K       then

*
1(1) | [(,) (,)] | (1) (,),k

t t kQ G K Q G K Q G K         
 where, [0,1),  Rk  and t is the

learning epoch.
Proof. See Appendix [51].
Theorem 4.5: The proposed scheme-I induced Ω Q-learning converges

*[(,) (,)]tQ G K Q G K  as learning epoch .t  
Proof. By (4.10)

*

* *
 | (,) (,) |

 | [(,) (,)] [(,) (,)] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
 (4.30)

Now, we have two cases:

Case I: For,
1 1

{ , }
m m

i i
Min
 

  (4.30) becomes

*

* *
 | (,) (,) |

 | [(,) (,) (,) (,)] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
 [by Lemma 4.1 with 1 ]

* *= | [(,) (,)] [(,) (,)] |t t

i i i i i i i iQ s a Q s a d G K d G K   

*= | [(,) (,)] |t

i i i i i iQ s a Q s a  [for any agent i at a fixed (,)G K (,)id G K is constant]

 = | [(,)] | .t
i i iQ s a  (4.31)

Here, (,)t
i i iQ s a refers to the error in Q-value of agent i at tht iteration.

Case II: For,
1 1

{ , }
m m

i i
Max
 

  (4.30) becomes

*

* *
 | (,) (,) |

 | [(,)] [(,)] [(,)] [(,)] |
t

t t
i i i i i i i i

Q G K Q G K

Q s a d G K Q s a d G K

 

    
 [by Lemma 4.2 with 1 ]

* *= | [(,)] [(,)] [(,)] [(,)] |t t

i i i i i i i iQ s a Q s a d G K d G K   

* *| [(,)] [(,)] | | [(,)] [(,)] |t t

i i i i i i i iQ s a Q s a d G K d G K      [| | | | | |]a b a b  

* *| [(,) (,)] | | [(,) (,)] |t t

i i i i i i i iQ s a Q s a d G K d G K     [| [] [] | | [] |i i i ia b a b    

*| [(,) (,)] |t

i i i i i iQ s a Q s a   [for any agent i at a fixed (,)G K (,)id G K is constant]

 = | [(,)] | .t
i i iQ s a  (4.32)

185

Now, by [17] as learning epoch ,t  (,) 0.t
i i iQ s a  Hence, the scheme-I induced Ω Q-

learning converges *[(,) (,)]tQ G K Q G K  as .t  □
Theorem 4.6: The proposed scheme-II induced Ω Q-learning converges

*[(,) (,)]tQ G K Q G K   as learning epoch .t  
Proof. By (4.21)

*

* / * * * /
1

| [(,)] [(,)] |
ˆ ˆ | [(1) (,) [(,) . ()] [(1) (,) [(,) . ()] |

t

t t t

Q G K Q G K

Q G K R G K Q G Q G K R G K Q G     

  

           

 

 

* * * / * /

1 ˆ ˆ| (1)[(,) (,)] [(,) (,)] [() ()] |t t tQ G K Q G K R G K R G K Q G Q G           

* * * / * /

1 ˆ ˆ| (1)[(,) (,)] [(,) (,)] | | [() ()] |t t tQ G K Q G K R G K R G K Q G Q G           

 [| | | | | |]a b a b  

* * * / * /

1 ˆ ˆ| (1)[(,) (,)] | | [(,) (,)] | | [() ()] |t t tQ G K Q G K R G K R G K Q G Q G           

 [| | | | | |]a b a b  
* * * / * /

1 ˆ ˆ(1) | [(,) (,)] | | [(,) (,)] | | [() ()] |t t tQ G K Q G K R G K R G K Q G Q G           

(1) (,).k
t kQ G K     [by Lemma 4.7-4.9] (4.33)

Now, [0,1),  with , (1) (,) 0,k
t kk Q G K     where k is the dummy variable

indicates the learning epoch. Hence, the scheme-II induced Ω Q-learning converges
*[(,) (,)]tQ G K Q G K   as learning epoch .t  □

4.3.8 Multi-agent planning
Multi-agent planning is followed by multi-agent learning. In Correlated-Q induced Planning
(CQIP) algorithm [22], [39], m number of agents plan to reach a predefined joint goal state by
determining CE using m joint Q-tables. In the proposed multi-agent planning algorithms, the
(strategy or CE) joint action corresponding to the (maximum expected) maximum joint Q-
value offered by the proposed multi-agent planning algorithms is selected. Two alternatives of
multi-agent planning algorithms are proposed. The first one, called  Multi-agent Planning
(MP) does not require to satisfy task constraints as it has already been undertaken during the
learning phase (by C QL-I and C QL-II algorithms). The MP algorithm is given in

Algorithm 4.3. However, in case the task constraint (e.g., fixed stick length or triangle
structure) is not undertaken during the learning phase (as happens to be in QL-I and QL-II),
task constraint(s) are to be satisfied during the planning phase. Constraint MP (C MP)

algorithm takes into account the task constraint during the planning phase. To handle the task
constraint (stick-length) in C MP algorithm, the policy given in Algorithm 4.4 is adapted.

Let the space (grids) between the agents (robots) holding a stick called intermediate state.
Since the stick lies over the intermediate space, it is difficult to ascertain whether the region
containing the next (front/back) intermediate state is occupied by an obstacle or not. To
handle this problem, an agent has to check whether joint Q-value of the next intermediate

186

space is nonzero (as Q-values are initialized as zero). A nonzero Q-value indicates that the
next joint state is free from obstacles.

Algorithm 4.3:  Multi-agent Planning (MP)

Input: Feasible joint state ,FG Goal state ,LG *(,)F FQ G K for scheme-I and *(,)F FQ G K  for scheme-II;
Output: Optimal feasible joint action (or CE)

*
FK at ;FG

Begin
 While F LG G do Begin

 For { }F FK K

 If * * *(,) (,)F F F FQ G K Q G K   // for scheme-I

* * *(,) (,)F F F FQ G K Q G K    // for scheme-II

 Then *
F FK K and / ;F FG G // / FG is the joint next state

 End If;
 End for;
 End While;
End.

Algorithm 4.4: Constraint  Multi-agent Planning (C MP)

Input: Feasible joint state ,FG Goal state ,LG *(,)Q G K for scheme-I and *(,)Q G K  for scheme-II;
Output: Optimal feasible joint action (or CE) *

FK at ;FG
Begin
 While F LG G do Begin

 For { }K K
 If * * *(,) (,)F FQ G K Q G K   // for scheme-I

* * *(,) (,)F FQ G K Q G K    // for scheme-II

 and feasible joint next state /
FG satisfies task constraints;

 Then *
FK K and / ;F FG G // / FG is the joint next state

 End If;
 End for;
 End While;
End.

4.4 Complexity Analysis
In this section, evaluation of the space- and time-complexities of the proposed learning and
planning algorithms in deterministic settings and comparing them respectively with the CQL
and CQIP algorithms are done for { , }.E R The time-complexity for { , }U L are shown in

the Appendix [51] and the space-complexity is not shown as it does not vary with the
variation of . However, the run-time complexities of the proposed and existing algorithms
for { , , , }U E R L are given in Section 4.5. For simplicities, let us assume that

1 2| | | | | | | |mS S S S    (4.34)
and 1 2| | | | | | | |mA A A A    (4.35)

Now, the cardinality of joint state set
1 2 |{ }| | | mG S S S   

187

 1 2 | | . | | . . | |mS S S 

 | |mS [by (4.34)]

Further, the cardinality of joint action set
1 2 |{ }| | | mK A A A   

 1 2 | | . | | . . | |mA A A 

 | |mA [by (4.35)]
Let CQIPt and C MPt  be the number of steps required to satisfy task constraint in one epoch

during the planning phase by CQIP and C MP algorithms respectively. In CQIP algorithm,
task constraint is satisfied for m joint Q-tables and in C MP algorithm, task constraint is
satisfied for one joint Q-table, so, .CQIP C MPt t  Also let C QL It   and C QL IIt   are the number

of steps required to satisfy task constraint in one learning epoch by CΩQL-I and CΩQL-II

algorithms respectively. Comparison of the CQL and CQIP algorithms with the proposed
ΩQL,CΩQL and Ω induced planning algorithms (MP and C MP) are given below.

4.4.1 Complexity of Correlated Q-Learning
Complexities of Correlated-Q induced learning and planning algorithms are given below.

4.4.1.1 Space Complexity

Learning: In CQL algorithm, agents maintain their own Q-tables in joint state-action space.
Hence, the space requirement for a joint Q-table is | | . | | .m mS A Assuming there is no

communication among the agents, during the learning phase, each agent has to maintain all
agent’s joint Q-tables individually by observing other agents state, action and rewards. So, in
CQL algorithm, space complexity (SC) of one agent is

. | | . | | (. | | . | |)m m m m
CQLSC m S A O m S A  (4.36)

Planning: In the CQIP phase, agents need the same number of joint Q-tables as required
during the learning phase. Hence, SC of CQIP algorithm is given by,

. | | . | | (. | | . | |)m m m m
CQIPSC m S A O m S A  (4.37)

4.4.1.2 Time Complexity
Learning: In CQL, during the learning phase for { , }E R an agent has to find out CE among

all the joint actions. Therefore, in CQL algorithm, time complexity (TC) in a single learning
epoch is

(1) | | (| | 1) (| |)m m m
CQLTC m A A O m A     (4.38)

Planning: For { , }E R during the CQIP phase, except finding CE agents have to satisfy task

constraint. Therefore, in CQIP algorithm, TC is
(1) | | (| | 1) (| |)m m m

CQIP CQIPTC m A A t O m A      (4.39)

188

4.4.2 Complexity of the proposed algorithms
Complexities of the proposed learning and planning algorithms are given below.

4.4.2.1 Space Complexity
Learning: In ΩQL algorithms, an agent maintains m agents’ Q-tables at individual state-
action space and one joint Q-table. Hence, during the learning phase SC in ΩQL algorithms is

(| | . | |)m m m m
QLSC m.| S | .| A| | S | .| A| O S A   

(4.40)

 Planning: During the planning phase, in CΩMP, agents need only one joint Q-table to plan.

Hence, SC in CΩMP algorithm is
(| | . | |)m m m m

MPSC | S | .| A | O S A  C

(4.41)

4.4.2.2 Time Complexity
Learning: For { , }E R in ΩQL algorithms, TC in a single learning epoch is the number of
comparisons required to update joint Q-value for a joint state-action pair. In ΩQL-I and
CΩQL-I, during the learning phase an agent has to evaluate m

individual Q-values by

(| | 1)m A  comparisons and evaluate the
1 1

{ , }
m m

i i
Min Max
 



among the summation of m

individual

Q-values and (,)id G K by (1)m  comparisons. Hence, TC during the learning phase in ΩQL-I

and CΩQL-I (satisfying task constraint) algorithms are respectively
.(| | 1) (1) (. | |)QL ITC m A m O m A      

(4.42)

and

.(| | 1) (1) (. | |)C QL I C QL ITC m A m t O m A        

(4.43)

 In ΩQL-II and CΩQL-II, during the learning phase, each agent has to find out the IR and
*ˆΩQ . For that, an agent requires 2(1)m 

number of comparisons. Also agents update m

 individual Q-values by .(| | 1)m A 

comparisons. Hence, TC during the learning phases in

ΩQL-II and CΩQL-II (satisfying task constraint) algorithms are given respectively in (44)

and (4.45).
 .(| | 1) 2(1) (. | |)QL IITC m A m O m A      

(4.44)

.(| | 1) 2(1) (. | |).C QL II C QL IITC m A m t O m A        

(4.45)

Planning: During the planning phase agents evaluate optimal joint action (CE) corresponding
to the maximum joint Q-value at a given joint state. Hence, TC in ΩMP and CΩMP

(satisfying task constraint) algorithms are
(| | 1) (| |)m m

MPTC A O A   

(4.46)

and (| | 1) (| |)m m
C MP C MPTC A t O A    

(4.47)

Space-complexity Analysis of Stick-Carrying and Triangle-Carrying Problem: SC of
CΩQL algorithms ()C QLSC  and ΩMP algorithm ()MPSC depend on the task to be solved. In

the context of stick-carrying and triangle-carrying problems, a description is given below. In a
grid map, usually there exist three types of cells, called Corner cell (),c Wall cell ()w and Other

189

Cell ().oc From Fig. 4.1 it is observed, that in an n×n grid map, number of Corner cells (),cC

Wall cells ()wC
and Other cells ()ocC

are 4, 4(2)n and 2(2)n  respectively. An analysis of

Fig. 4.2 indicates that in a two-agent system (m=2), from a ,c w

and oc there exist 3, 5 and 8

feasible joint states respectively for an agent. Therefore, assuming kF be the number of

feasible joint states from state k
in an n×n grid map, total number of feasible joint states by

CΩQL

algorithm is

{ , , }
k k

k c w oc

m C F


 
22[4 3 4(2) 5 (2) 8]n n       

(4.48)

which on simplification returns

{ , , }

k k
k c w oc

m C F


 
216 24 8,n n   i.e., 2().O n (4.49)

while that in ΩQL

algorithm, for 2m

is

2 4() () () ,mn n n n n    i.e., 4().O n (4.50)

Similarly, for triangle-carrying problem 3m
and total space complexity in CΩQLalgorithm

is

{ , , }
k k

k c w oc

m C F


 
224 48 24,n n  

i.e., 2()O n

(4.51)

and space complexity in ΩQL algorithm

for 3m is

3 6() () () ,mn n n n n    i.e., 6().O n (4.52)

From (4.49), (4.50), (4.51) and (4.52) we conclude

QL C QLSC SC 

(4.53)

As only learned joint state-action pairs are utilized to plan

.C MP MPSC SC  

(4.54)

Fig. 4.1 Corner cell, boundary cell and other cell

Fig. 4.2 Feasible joint states for two agent systems in stick-carrying problem

4.4.3 Complexity comparison

Comparisons of complexities between CQL and proposed algorithms are given below.

Corner

Cell

Wall

Cell

Corner

Cell

Wall
Cell

Other
Cell

Wall
Cell

Corner

Cell

Wall

Cell

Corner

Cell

1

2

 2 2 2 2 2

2

2

1

2

 2
1

2

2

2

 2 2

2

190

4.4.3.1 Space complexity

From (4.36) and (4.40),
. | | . | | | | . | |

. | | . | |

m mQL
m mCQL

SC m S A S A
SC m S A

 


| | . | | 1
| | . | |m m

S A
mS A

 

1 1

1
| | . | |m mS A 

 [after approximation]

 1.

 (4.55)

 From (4.37) and (4.41),

| | . | |
. | | . | |

m m
C MP

m mCQIP

SC S A
SC m S A

 

1 .
m



(4.56)

SC of CΩMP is 1
m of the SC in CQIP.

We by (4.53) and (4.55) obtain,
.CQL QL C QLSC SC SC   (4.57)

We by (4.54) and (4.56) obtain,
.CQIP C MP MPSC SC SC   (4.58)

4.4.3.2 Time complexity

From (4.38) and (4.43),
.(| | 1) (1)

(1) | | (| | 1)
C QL IC QL I

m mCQL

m A m tTC
TC m A A

      


  

1

1
| |mA 

 [after approximation]

 1.

 (4.59)

From (4.42), (4.43) and (4.59),
.CQL C QL I QL ITC TC TC     (4.60)

From (4.38) and (4.45),
.(| | 1) 2(1)

(1) | | (| | 1)
C QL II C QL II

m mCQL

TC m A m t
TC m A A
      


  

1

1
| |mA 

 [after approximation]

 1. (4.61)

From (4.44), (4.45) and (4.61),
.CQL C QL II QL IITC TC TC     (4.62)

Again from (4.39) and (4.47),

(| | 1)
(1) | | (| | 1)

m
C MP C MP

m mCQIP CQIP

TC A t
TC m A A t

  


   
()C MP CQIPt t 

191

1 .
m



[after approximation]

(4.63)

From (4.46), (4.47) and (4.63) we obtain,
.CQIP C MP MPTC TC TC   (4.64)

4.5 Simulation and experimental results
This section provides three experiments on multi-agent cooperation: one is the Experiment
4.1 where complexity analysis of the proposed and the existing algorithms are shown. Second
one is Experiment 4.2 (for)R  in which success of any one agent is enough to make the
team successful. The last one is Experiment 4.3 (for)E  where simultaneous success of all

the agents is needed to make the team successful. Experiment 4.1 provides experiments on
cooperation of multiple mobile robots (agents) during the learning phase in the framework of
object-transportation (stick-carrying and triangle-carrying) problem. The stick-carrying
(triangle-carrying) problem [38] refers to transposition of the stick (triangle) from a given
location to a desired destination in the given workspace by two (three) robots, where the stick
(triangle) is held at its end-points (vertices). In Experiment 4.2, two agents cooperatively
transport an object (box) from a given location to a predefined destination. Agents cooperate
among themselves by moving (passing) the box to another agent with an aim to achieve
success. In Experiment 4.3, two/three agents transport a stick/triangle from a given location to
a predefined destination. Obstacles are added to the workspace to add complexity for all the
mentioned Experiments. These Experiments are undertaken to study the performance of the
proposed learning and planning algorithms to compare their performance with equilibrium
based MAQL (NQL, FQL, and CQL) algorithms. The performance metric used during
learning phase is the number (or percentage) of converged Q-values in joint state-action pair
required with learning epochs and run-time complexity per learning epoch, while that during
the planning phase includes only the run-time required to completely execute the plan.

4.5.1 Experimental platform
Both computer simulations (for stick-carrying, triangle-carrying problem and box-carrying)
and hardware testing (for stick-carrying and box-carrying problem) are performed to compare
the relative performance of the proposed and existing algorithms.

4.5.1.1 Simulation

The simulation is done employing MATLAB GUI (graphical user interface) R2015a version
on an i7-3370 processor desktop computer with clock speed of 3.40GHz. The individual grid
size in computer simulation is fixed at 20 pixels × 20 pixels. The total arenas in computer
simulation are considered as of 5 unit × 5 unit grids size and 9 unit × 9 unit grids size.

192

In the present chapter, learning is conducted only in simulation, either by mimicking a real-
world environment or by generating an arbitrary environment to avoid any damage of the
real-robot. On the other hand, in simulation, planning is straight forward; where at the current
joint state each agent evaluates the CE employing the identical Q-table maintained by each
agent in joint state-action space, and moves to the next state by adding a fixed length in the
direction of the action executed. In case of multiple equilibria, agents select the CE, which
appears first.

4.5.1.2 Hardware

The hardware testing is done with two Khepera-II mobile robots [40]-[41], equipped with an
onboard Microcontroller (Motorola 68331) having a flash memory of 512 kB and a clock
speed of 25MHz. It has 8 inbuilt active infrared proximity sensors and they are the well-
known semiconductor (GaAs) type proximity sensors [50]. In addition, both motor axes
consist of an incremental encoder for position and speed measurement of the robot [40], [41].
Considering 2 unit and 5 unit speed (1 unit = 0.08mm/10ms), the stick-carrying problem is
realized by connecting two robots through serial ports to two different Pentium IV desktop
computers with clock speed of 2GHz.
As already discussed, to avoid damage of the real-robot, learning is conducted in simulation
only and subsequently the planning is done in real-time. During the planning phase, the next
positions of the robots are determined employing the proposed 

induced joint Q-table for

C MP, MP algorithms and the Correlated-Q induced joint Q-tables for CQIP algorithm

stored in both the Pentium IV machines. As the joint Q-table maintained by each Pentium IV
machine (or robot) is identical, hence, robots do not require communicating with fellow
robots as well as with fellow robots’ computers during coordination (i.e., evaluation of CE).
In the perspective of implementation, robots identify the change in states (next state) by
measuring the distance traversed, in the direction of the action executed using incremental
encoders. The individual grid size in hardware testing is fixed at 80 mm × 80 mm. Total arena
for hardware testing is 9 unit × 9 unit grids (720 mm × 720 mm).
Both in computer simulation, and hardware testing, each agent cooperates by selecting one set
of actions among two sets. The first one consists of five actions: Left (L), Forward (F), Right
(R), Back (B) and Pause (P) from a state. The second one includes nine actions, which are
Left (L), Left-Forward (LF), Forward (F), Forward-back (FB), Right (R), Right-Back (RB),
Back (B) and Pause (P) from a state.

4.5.2 Experimental approach
Experimental approaches for both learning and planning phases are given below.

193

4.5.2.1 Learning phase

In the present chapter, it is assumed that agents can observe other agents’ state, action and
reward, i.e., the environment can be represented as a Multi-agent Markov Decision Process
(MMDP) [3]. Hence, in the above perspective inter-agent communication is not required. The
parameters required during the learning phase of the QL-I, C QL-I, QL-II, C QL-II,    NQL,
FQL and CQL algorithms are set as follows: discounting factor 0.90,  learning rate 0.2 

and maximum immediate reward 100. In NQL, FQL and CQL algorithms, a reward of 1

(penalty) is given to an agent, when it hits other agents besides when hitting an obstacle or
boundary wall in the proposed Experiment 4.1, 4.2 and 4.3. However, in

QL-I, C QL-I, QL-II   and C QL-II algorithms, an agent receives the same reward (1) due to
penalty (hitting an obstacle or the boundary wall). In QL-I and QL-II,  because of the
collision among the agents and in C QL-I and C QL-II,  because of collision among the agents
as well as collision between the stick (or triangle) with an obstacle results in a reward of 1,

however, individually agents are not penalized for the former cause. In simulation, the system
joint state-transition probabilities are assigned as randomly generated constant values
assuming the workspace to be slippery, satisfying the property of a Markovian matrix, subject
to the sum of state-transition probabilities at each state is unity, and slippery workspace is the
cause of uncertainty. In hardware, experiments are conducted only in the deterministic
environment. To determine convergence performance of NQL, FQL, CQL,

QL-I, C QL-I, QL-II   and C QL-II algorithms, number (or percentage) of joint state-action
pairs having converged Q-values after each learning epoch ()algoN

is accumulated in an array

to plot with respect to the learning epoch, where,
 lg {NQL, FQL, CQL, ΩQL-I, CΩQL-I, ΩQL-II, CΩQL-II}.a o

The plots are shown under

Experiment 4.1. In case of CQL, the average of algoN among the four variants of CQL is done

before comparison.

4.5.2.2 Planning phase

To study the total execution time in the planning phase (Experiment 4.2 and 4.3), the run-time
complexity of MP, C MP and CQIP algorithms are evaluated utilizing the ‘run & time’

button in MATLAB GUI. To study the run-time complexity during hardware test by Khepera-
II mobile robot, a stop watch is used. Let algoT be the run-time complexity of the

{CQIP, CΩMP, ΩMP}.algo

For multiple solutions (joint action or equilibrium), the solution

which appears first is selected by all the agents. Let Si

be the starting position of robot Ri

and

Gi

is the goal position of the robot, {1,2,3}.i

Real-time planning with Khepera-II mobile

robots is followed after learning by computer simulation. Results for Experiment 4.1, 4.2 and
4.3 are given below.

194

4.5.3 Experimental results
Experiment 4.1, 4.2 and 4.3 are given below in details.
Experiment 4.1: Performance test of the proposed learning algorithms
The motivation of this experiment is to examine the convergence of the QL-I, C QL-I  (Fig.
4.3.a, 4.4.a and 4.5.a) and QL-II, C QL-II  (Fig. 4.3.b, 4.4.b, and 4.5.b) algorithms with

learning epoch for a two/three agent system. In Fig. 4.3, 4.4 and 4.5, all the algorithms are run
for 20 times seperately in an obstacle free 5×5 grid map and the mean from the above 20 runs
is evaluated. It is apparent from Fig. 4.3 that for both the schemes

, { , , , }.CQL QL C QLN N N E U R L   

This is supported by (4.57) and (4.58). It is also observed

from Fig. 4.3 that ,QL I QL IIN N   

C QL I C QL IIN N    and .NQL FQL CQLN N N 

Further,

the learning epochs required for convergence of NQL exceeds the same for ΩQL algorithms,
which in turn exceeds the same for CΩQL

algorithms. This is supported by (4.62) and (4.64).

Hence, it is apparent from Fig. 4.3 that CΩQL

algorithms outperform NQL, FQL, CQL and

ΩQL

algorithms in terms of speed of convergence. In Fig. 4.3, a fluctuation is observed in

the curves of CΩQL because of task-constraint checking (here, maintaining stick length in

stick-carrying problem). Table-4.I offers the average of the percentage of joint state-action
pair converged. It is apparent that Table-4.I supports (4.57), (4.58), (4.62) and (4.64). Similar
inferences can be drawn from Fig. 4.4 and 4.5.

a. scheme-I

195

b. scheme-II

Fig. 4.3 Convergence comparision of QL, C QL, NQL, FQL and CQL algorithms for two agents five

actions, where { , , , }U E R L

a. scheme-I

196

b. scheme-II

Fig. 4.4 Convergence comparision of QL, C QL, NQL, FQL and CQL algorithms for three agents

five actions, where { , , , }U E R L

a. scheme-I

197

b. scheme-II

Fig. 4.5 Convergence comparision of QL, C QL, NQL, FQL and CQL algorithms for two agents nine

actions, where { , , , }U E R L

Table-II shows the superiority of the proposed schemes in terms of the run-time complexity
of single learning epoch over the equilibrium based MAQL including CQL for two agents.

Experiment 4.2: Object (box)-carrying by scheme-I based proposed planning algorithms
The motivation of this experiment is to transport a box by two agents from a given starting
position to the desired destination utilizing the earlier experimental platform and approach for

.R Corresponding simulation and experimental results for the planning paths are shown in

Table-4.I
Average of the percentage (%) of joint state-action pair converged within 1 X 10^5 learning

epochs of different learning algorithms

Algorithm unconstraint constraint Algorithm unconstraint constraint
EQL-I 99.76 % 100 % LQL-II 99.96 % 100 %
UQL-I 99.57 % 100 % EQL 89.76 % X
RQL-I 99.46 % 100 % UQL 90.75 % X
LQL-I 99.78 % 100 % RQL 90.17 % X
EQL-II 99.96 % 100 % LQL 89.98 % X
UQL-II 99.84 % 100 % NQL 89.67 % X
RQL-II 99.84 % 100 % FQL 90.61 % X

Table-4.II
 Average run-time complexity of different learning algorithms (second)

Algorithm unconstraint constraint Algorithm unconstraint constraint
EQL-I 0.008 0.014 LQL-II 1.011 1.017
UQL-I 0.019 0.023 EQL 12.019 X
RQL-I 0.008 0.015 UQL 22.018 X
LQL-I 1.008 1.015 RQL 12.020 X
EQL-II 0.010 0.016 LQL 32.801 X
UQL-II 0.021 0.025 NQL 14.201 X
RQL-II 0.012 0.016 FQL 16.206 X

198

Fig. 4.6 and 4.7. In Map 4.1 (Fig. 4.6 and 4.7), there are seven obstacles and two agents
(robots). Each agent has a gripper to grip the box with an aim to transport it from one position
to another. If two or more than two robots gather, then they exchange the box (indicated by
thick arrow in Fig. 4.6 and by a circle in Fig. 4.7), motivated by the principle of market-based
multi-robot coordination [42]. In Fig. 4.7, two Khepera-II mobile robots are employed in real-
time, for box transportation task. In real-time, only robot 2 (R2) has a gripper to grip the box
(Fig. 4.7) and robot 1 (R1) transports the same by carrying it on its top.

Fig. 6 (Map 1) Planning with box by CQIP, CΩMP and ΩMP algorithms

Table-III provides the mean of the run-time complexity of the 20 runs of the CQIP,

CΩMP
 and ΩMP

algorithms. It is apparent from Table-III that ,CQIP C MP MPT T T   which is

supported by (4.64). Hence, it is apparent from Table-III that ΩMP algorithm outperforms the
existing algorithms in terms of run-time complexity.

Table-4.III
Average run-time complexity of different planning algorithms (second)

Map

CQIP
algorithm

Proposed planning
algorithms

CΩMP ΩMP
4.1 (Fig. 4.4) 15.93 10.92 8.90

4.1 (Fig. 4.5) with 2 unit speed 28.84 23.75 21.92
4.1 (Fig. 4.5) with 5 unit speed 18.65 13.65 11.97

199

Fig. 4.7 (Map 4.1) Planning using Khepera-II mobile robot by CQIP, CΩMP and ΩMP algorithms, the

planned path of which is given in Fig. 4.6 also

Experiment 4.3: Stick- or triangle- carrying by model-II based proposed planning
algorithms
The motivation of this experiment is to transport a stick (by twin agents) or a triangle (by
three agents) from a given starting position to the desired destination utilizing the above
explained experimental platform and approach for .E To transport a stick, an agent is

contingent upon other agents, where all the agents have to reach their individual goal
simultaneously to successfully complete the task. In Map 4.2 (Fig. 4.8 and 4.9) two robots
transport a fixed length stick from a given joint state to the joint next state, indicated by
arrows avoiding eight obstacles. In Fig. 4.8-4.9, robots follow optimal strategy (CE) using
ΩMP

or CΩMP

algorithm. On the other hand, in CQIP, robots evaluate the same CE using m

joint Q-tables obtained after CQL. Similarly, in Map 4.3 (Fig. 4.10), three robots transport a
triangle from a given joint state to the joint next state, indicated by arrows avoiding seven
obstacles.

Table-4.IV provides the mean of the run-time complexity of the 20 runs of the CQIP,
 CΩMP

and ΩMP

algorithms. By Table-4.IV, one can conclude that ,CQIP C MP MPT T T  

which supports (4.64). Hence, it is apparent from Table-4.IV that ΩMP algorithm outperforms
the existing algorithms in terms of run-time complexity.

200

Fig. 4.8 (Map 4.2) Planning with stick by CQIP, CΩMP and ΩMP algorithms

Fig. 4.9 (Map 4.2) Path planning using Khepera-II mobile robot by CQIP, CΩMP and ΩMP algorithms,

the planned path of which is given in Fig. 4.6 also

201

Fig. 4.10 (Map 4.3) Path planning with triangle employing CQIP, CΩMP and ΩMP

algorithms

4.6 Conclusion
The chapter introduces a new approach to MAQL and learning based multi-agent planning by
efficiently fusing the CE and the proposed principles of scheme-I and -II. The principles
adapted in the proposed schemes yield a single Q-table in joint state-action space, which
contains sufficient information to plan by employing the proposed multi-agent planning
algorithms. Also the task-constraint is considered during the learning phase to further reduce
the space-, time- and run-time complexities.
CE is efficiently employed in the proposed scheme-I and -II to obtain single Q-table in joint
state-action space. The Q-table obtained from scheme-I and -II, with less computational cost
than the CQL, contains sufficient information to plan by employing the proposed MP

and

C MP. This is also proved by Theorems 4.1, 4.2, 4.3 and 4.4. Convergence analyses of both
the schemes are provided in Theorem 4.5 and 4.6 respectively. Although C MP plans well
but it needs to satisfy the task-constraint (e.g., stick length in stick-carrying problem) during
the planning phase. To save the run-time for task-constraint satisfaction, CΩQL is proposed,

where only feasible joint state-action pairs that satisfy the task-constraint are learned and the

Table 4.1 Average run-time complexity of different planning algorithms
(second)

Map

CQIP
algorithm

Proposed planning
algorithms

CΩMP ΩMP
4.2 (Fig. 5.6) 29.31 15.91 10.31
4.3 (Fig. 10) 37.92 20.13 16.11

4.2 (Fig. 5.7) with 2 unit speed 39.72 20.31 15.31
4.2 (Fig. 4.9) with 5 unit speed 34.55 17.63 13.46

202

proposed MP follows the CΩQL.

An analysis reveals that both time- and space- complexities

of proposed learning and planning algorithms are significantly less to those of the CQL. A
further reduction in complexity is obtained by dropping the infeasible joint state-action pairs
from the joint Q-table.
Simulation and practical experimental results are given to validate the superiority of the
proposed algorithms over the reference algorithms considering space-, time- and run-time
complexities as the performance metrics.

4.7 Summary
Unlike correlated Q-learning, Chapter 4 proposes an attractive approach to adapt composite
rewards of all the agents in one Q-table in joint state-action space during learning, and
subsequently these rewards are employed to compute correlated equilibrium in the planning
phase. Two seperate schemes of multi-agent Q-learning have been proposed. If success of
only one agent is enough to make the team successful, then scheme-I is employed. However,
if an agent’s success is contingent upon other agents and simultaneous success of the agents is
required then scheme-II is employed. It is also shown that the correlated equilibrium obtained
by the proposed algorithms and by the traditional correlated Q-learning are identical. In order
to restrict the exploration within the feasible joint states, constraint versions of the said
algorithms are also proposed. Complexity analysis and experiments have been undertaken to
validate the performance of the proposed algorithms in multi-robot planning on both
simulated and real platforms.

203

4.8 Appendix
The expected optimal Q-value of an agent i

at next state /

i is S is denoted by * /ˆ ()i iQ s and is

expressed in (4A.1).

/ /
* / / * / / / /ˆ () (| (,)) (|) (,)

i i
i i i i i i i i i i i i

s a
Q s p s s a p a s Q s a

 
   (4A.1)

Here, /
i ia A is the action at / .is / /(,)i i iQ s a be the Q-value of agent i

 at next state /
i is S

because of action / .i ia A * : [0,1]i ip A  is the optimal probability distribution over .iA

Algorithm 4A.1 Correlated Q-Learning (CQL)

Input: Learning rate [0,1)  and discounting factor [0,1); 

Output: Optimal joint Q-value *(,), , , ;iQ G K G K i  
Begin
 Initialize: Current state ,is action set iA at ,is joint Q-value (,) 0, , , ;iQ G K G K i   
 Repeat
 Randomly select an action ,i ia A i  and execute it;
 Observe joint immediate reward (,), ;ir G K i

 Evaluate next state / (,), i i i is s a i  to obtain joint next state
/ /

1
m

i iG s   for m agents;

* /ˆ(,) (1) (,) [(,) . ()],i i i iQ G K Q G K r G K Q G i        and /;G G / / { , , , }U E R L
 Until (,), , ,iQ G K G K i   converges;

*(,) (,), , , ;i iQ G K Q G K G K i   

End.

Lemma 4.1: The Inequality, () () (),i i i ix y x y      
 1 1

{ , }
m m

i i
Min
 

  holds for any real

values of , , , [1,]i ix y i i m  and [0,1),  where 0 { }ix and 0 { }.iy
Proof. Given , , , [1,]i ix y i i m  as real values and [0,1), 

For any [1,]j m and
1

,
m

i
Min


 

 1
()

m
j i

i
x Min x


 and

1
()

m
j i

i
y Min y




always hold

 1 1
 () (), , [1,]

m m
j j i i

i i
x y Min x Min y j j m 

 
     

 1 1 1
() () ()

m m m
j j i i

j i i
Min x y Min x Min y 
  

   

 1 1 1
() () ()

m m m
i i i i

i i i
Min x y Min x Min y 
  

   

[, [1,]]i j m

 1 1 1
() () ()

m m m
i i i i

i i i
Min x Min y Min x y 
  

   

(4A.1)

Similarly, if
1
,

m

i
   0 { }ix and 0 { },iy then

204

1 1 1
() () (),

m m m
i i i i

i i i
x y x y

  
    

(4A.2)

Thus, the desired inequality holds. □

Lemma 4.2: The inequality,

() () (),i i i ix y x y      
 1 1

{ , }
m m

i i
Max
 

  holds for any real

values of , , , [1,]i ix y i i m  and [0,1). 
Proof. Given , , , [1,]i ix y i i m  as real values and [0,1), 

For any [1,]j m and
1

,
m

i
Max


 

 1
()

m
j i

i
x Max x


 and

1
()

m
j i

i
y Max y




always hold

 1 1
 () (), , [1,]

m m
j j i i

i i
x y Max x Max y j j m 

 
     

 1 1 1
() () ()

m m m
j j i i

j i i
Max x y Max x Max y 
  

   

 1 1 1
() () ()

m m m
i i i i

i i i
Max x y Max x Max y 
  

   

[, [1,]]i j m

 1 1 1
() () ()

m m m
i i i i

i i i
Max x Max y Max x y 
  

   

(4A.3)

Similarly, if
1
,

m

i
   then

1 1 1
() () ()

m m m
i i i i

i i i
x y x y 

  
     

(4A.4)

Thus, the desired inequality holds. □

Lemma 4.3: The Inequality,
1 1

(1) () () [(1)], { , }
m m

i i i i
i i

x y x y Min   
 

          holds for

any real values of , , , [1,]i ix y i i m  and [0,1),  where 0 { }ix and 0 { }.iy
Proof. Proof of Lemma 4.3 is similar to the proof of Lemma 4.1. □

Lemma 4.4: The Inequality,
1 1

(1) () () [(1)], { , }
m m

i i i i
i i

x y x y Max   
 

          holds for

any real values of , , , [1,]i ix y i i m  and [0,1). 
Proof. Proof of Lemma 4.4 is similar to the proof of Lemma 4.2. □
Lemma 4.5: If * / * / * /ˆ ˆ ˆ() () (),i i iQ G G Q G     then * / * / * /ˆ ˆ ˆ() () ()i i i iQ G Q s Q G   

at the next

joint state / /
1 .m

i iG s  
Proof. By (4.26),

 / /
* / / * / / / / /ˆ () (| (,)) (|) (,)i i

G K
G p G G K p K G Q G K

 
   

 / /
/ * / / / / /

1 1
(| (,)) (|) (,)

m m
j j j j j j j i

j jG K
p s s a p a s Q G K

  
   

[by (4.3) and (4.5)]

 / /
/ * / / / /

1 1
(| (,)) (|) (,)

j j

m m
j j j j j j j i i i

j js a
p s s a p a s Q s a

  
   

[by (4.14), / / / / /(,) (,)]i i i iQ G K Q s a

205

 / /
/ * / / / /(| (,)) (|) (,)

i i
i i i i i i i i i i

s a
p s s a p a s Q s a

 
  

/ /
/ * / /

1, 1,
(| (,)) (|),

j j

m m
j j j j j j j

j js a
j i j i

p s s a p a s
  
 

  

[, [1,]]i j m

 / /
/ * / / / /(| (,)) (|) (,)

i i
i i i i i i i i i i

s a
p s s a p a s Q s a

 
  

 / /
/ * / /[(| (,)) 1 and (|) 1,]

j j
j j j j j j j

s a
p s s a p a s j

 
   

* /ˆ ()i iQ s

 [by (4.1)] (4A.5)

Given, * / * / * /ˆ ˆ ˆ() () ()i i iQ G G Q G    

* / * / * /ˆ ˆ ˆ() () ()i i i iQ G Q s Q G   

[by (4A.5)]

 Hence, the Lemma is proved. □

Lemma 4.6: (,) [(,)]iQ G K Q G K  for
1 11 1

{ , , , },
m m mm

i ii i
Min Max
  

   holds for the equality cases

of Lemma 4.1-4.4.
Proof. Here,
 * /ˆ(,) (1) (,) [(,) . ()]Q G K Q G K R G K Q G         

[by (4.21)]

 1 * / 2 * /

* / * /

ˆ ˆ(1) (,) (1) [(,) ()] (1) [(,) ()] ...
ˆ ˆ (1) [(,) ()] [(,) ()]

t t tQ G K R G K Q G R G K Q G

R G K Q G R G K Q G

      

    

             

     



 [by recursively substituting (4.21), where, learning epoch]t 

1 * / 2 * /

* / * /

ˆ ˆ[(1) (,)] (1) [(,) ()] (1) [(,) ()] ...
ˆ ˆ (1) [(,) ()] [(,) ()]

t t t
iQ G K R G K Q G R G K Q G

R G K Q G R G K Q G

      

    

             

     

[and [0,1) (1) 0,tt        where 1 11 1

{ , , , }]
m m mm

i ii i
Min Max
  

  

1 * / * / 2

* / * / * / * /

* / * /

ˆ ˆ[(1) (,)] (1) [[(,)] . [() ()]] (1) [[(,)]
ˆ ˆ ˆ ˆ. [() ()]] ... (1) [[(,)] . [() ()]] [[(,)]
ˆ ˆ. [() ()]]

t t t
i i i i i i

i i i i i i i i

i i i

Q G K r G K Q s Q G r G K

Q s Q G r G K Q s Q G r G K

Q s Q G

     

    



             

           

 

[by (4.9) and (4.18)]

1 * / 2

* / * / * /

ˆ[(1) (,)] (1) [[(,)] . [()]] (1) [[(,)]
ˆ ˆ ˆ. [()]] ... (1) [[(,)] . [()]] [[(,)] . [()]]

t t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

     

     

             

             

[by Lemma 4.5]

1 * / 2 * /

* / * /

ˆ ˆ[(1) (,)] (1) [[(,) . ()]] (1) [[(,) . ()]] ...
ˆ ˆ(1) [[(,) . ()]] [[(,) . ()]]

t t t
i i i i i

i i i i

Q G K r G K Q G r G K Q G

r G K Q G r G K Q G

      

    

              

        

 [by statement considering only the equalities in Lemma 4.1 and 4.2]

206

1 1 * / 2

* / * / * /

ˆ(1) [(1) (,)] (1) [[(,) . ()]] (1) [[(,)
ˆ ˆ ˆ. ()]] ... (1) [[(,) . ()]] [[(,) . ()]]

t t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

      

     

              

         

[

is independent of t and]

1 * / 2

* / * / * /

ˆ(1) [(1) (,) [(,) . ()]] (1) [[(,)
ˆ ˆ ˆ. ()]] ... (1) [[(,) . ()]] [[(,) . ()]]

t t
i i i i

i i i i i

Q G K r G K Q G r G K

Q G r G K Q G r G K Q G

     

     

           

         

 [by statement considering only the equalities in Lemma 4.3 and 4.4]
1 2 * /

* / * /

ˆ(1) [(,)] (1) [[(,) . ()]] ... (1) [[(,)
ˆ ˆ. ()]] [[(,) . ()]]

t t
i i i i

i i i

Q G K r G K Q G r G K

Q G r G K Q G

     

  

             

   

[by (4.7)]

 2 2 * /

* / * /

ˆ(1) [(1) (,)] (1) [[(,) . ()]] ...
ˆ ˆ (1) [[(,) . ()]] [[(,) . ()]]

t t
i i i

i i i i

Q G K r G K Q G

r G K Q G r G K Q G

    

    

           

      

[

is independent of t and]

2 * /

* / * /

ˆ(1) [(1) (,) [(,) . ()]] ...
ˆ ˆ(1) [[(,) . ()]] [[(,) . ()]]

t
i i i

i i i i

Q G K r G K Q G

r G K Q G r G K Q G

   

    

        

      

 [by statement considering only the equalities in Lemma 4.3 and 4.4]
which on further simplification returns

* /ˆ(,) [(1) (,) [(,) . ()]]i i iQ G K Q G K r G K Q G       

[(,)]iQ G K 

[by (4.7)]

Hence, the Lemma is proved. □
Lemma 4.7: *| [(,) (,)] | 0, tR G K R G K t    holds for [0,1),  where t is the learning

epoch.
Proof. By (4.9),

* *| [(,) (,)] | | [(,)] [(,)] |t
t i iR G K R G K r G K r G K     (4A.6)

For
1 1

{ , }
m m

i i
Min
 

  (4A.6) becomes

* *| [(,) (,)] | | [(,) (,)] |,t

t i iR G K R G K r G K r G K     [by Lemma 4.1 with 1] 

*| [(,) (,)] | 0.tR G K R G K  

*[(,) (,), ,]t
i ir G K r G K t i   (4A.7)

for
1 1

{ , }
m m

i i
Max
 

  (4A.6) becomes

* *| [(,) (,)] | | [(,) (,)] | .t

t i iR G K R G K r G K r G K     [| () () | | |]i i i ia b a b    

*| [(,) (,)] | 0.tR G K R G K  

*[(,) (,), ,]t
i ir G K r G K t i   (4A.8)

Hence, by (4A.7) and (4A.8) the Lemma holds. □
Lemma 4.8: * / * /ˆ ˆ| [() ()] | 0,tQ G Q G    holds for [0,1)  as learning epoch .t 

Proof. By (4.18),

* / * /ˆ ˆ| [() ()] |tQ G Q G  

207

* / * / * / * /ˆ ˆ ˆ ˆ| [[() ()] [() ()]t t

i i i i i iQ s Q G Q s Q G       (4A.9)
Now, we have two cases:

Case I: For,
1 1

{ , }
m m

i i
Min
 

  (4A.9) becomes

 * / * /ˆ ˆ| [() ()] |tQ G Q G  
 * / * / * / * /ˆ ˆ ˆ ˆ| [() () () ()] |t t

i i i i i iQ s Q G Q s Q G       [by Lemma 4.1 with 1] 
 * / * / * / * /ˆ ˆ ˆ ˆ| [[() ()] [() ()]] |t t

i i i i i iQ s Q s Q G Q G      

/ /

/ /

/ * / / / / * / /

/ * / / / / * / /

| [(| (,)) (|)[(,) (,)]

(| (,)) (|)[(,) (,)] |
i i

t
i i i i i i i i i i i i i

s a
t
i i

G K

p s s a p a s Q s a Q s a

p G G K p K G d G K d G K


 

 

    

 
 [by (4A.1) and (4.20)]

* / /[(,)i i iQ s a is the maximum individual Q-value of agent i at / /(,)i is a

 and / / * / /(,) (,), ,]t
i id G K d G K t i  

/ /

/ * / / / / * / /| [(| (,)) (|)[(,) (,)]
i i

t
i i i i i i i i i i i i i

s a
p s s a p a s Q s a Q s a

 
    (4A.10)

Case II: For,
1 1

{ , }
m m

i i
Max
 

  (4A.9) becomes

 * / * /ˆ ˆ| [() ()] |tQ G Q G  
 * / * / * / * /ˆ ˆ ˆ ˆ| [() () () ()] |t t

i i i i i iQ s Q G Q s Q G       [| () () | | |]i i i ia b a b    
 * / * / * / * /ˆ ˆ ˆ ˆ| [() ()] [() ()] |t t

i i i i i iQ s Q s Q G Q G      

/ /

/ /

/ * / / / / * / /

/ * / / / / * / /

| (| (,)) (|)[(,) (,)]

(| (,)) (|)[(,) (,)] |
i i

t
i i i i i i i i i i i i i

s a
t
i i

G K

p s s a p a s Q s a Q s a

p G G K p K G d G K d G K


 

 

    

 
 [by (4A.1) and (4.20)]

* / /[(,)i i iQ s a is the maximum individual Q-value of agent i at / /(,)i is a

 and / / * / /(,) (,), ,]t
i id G K d G K t i  

 / /
/ * / / / / * / /| (| (,)) (|)[(,) (,)] |

i i

t
i i i i i i i i i i i i i

s a
p s s a p a s Q s a Q s a

 
    (4A.11)

Now as t  by [17] / / * / /(,) (,).t
i i i i i iQ s a Q s a So, from (4A.10) and (4A.11)

* / * /ˆ ˆ| [() ()] | 0,tQ G Q G    as .t 
Hence, the Lemma holds. □
Lemma 4.9: If *| (,) (,) | (,),t k t kQ G K Q G K Q G K       then

*
1(1) | [(,) (,)] | (1) (,),k

t t kQ G K Q G K Q G K         
 where, [0,1),  Rk  and t is the

learning epoch.
 Proof. By (4.21),

208

*
1(1) | [(,) (,)] |tQ G K Q G K    

* /

2 2 2
* * * /

ˆ(1) | [(1) (,) [(,) . ()]]
ˆ[(1) (,) [(,) . ()]] |

t t tQ G K R G K Q G

Q G K R G K Q G

   

  

         

    





* *
2 2

* / * /
2

(1) | (1)[(,) (,)] [(,) (,)]
ˆ ˆ[()] . ()] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

 

 



       

  

 

* *
2 2

* / * /
2

(1) | (1)[(,) (,)] [(,) (,)] |
ˆ ˆ(1) | [()] . ()] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

  

 



       

   

 

(| | | | | |)a b a b  

* *
2 2

* / * /
2

(1) | (1)[(,) (,)] | (1) | [(,) (,)] |
ˆ ˆ(1) | [() . ()] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

   

  

 



        

   

 

(| | | | | |)a b a b  

2 * *
2 2

* / * /
2

(1) | [(,) (,)] | (1) | [(,) (,)] |
ˆ ˆ(1) | [() . ()] |

t t

t

Q G K Q G K R G K R G K

Q G Q G

  

  

 



       

   

 

2 * * / * /

2 2ˆ ˆ(1) | [(,) (,)] | (1) | [() . ()] |t tQ G K Q G K Q G Q G             

 [by Lemma 4.7]

2 *

2(1) | (,) (,) |tQ G K Q G K     

[by Lemma 4.8 with .t ]

*(1) | (,) (,) |k

t kQ G K Q G K     

[For Rk  and continuing recursively employing (4.21)]

(1) (,).k

t kQ G K     [by statement]

Hence, the Lemma holds. □
The time-complexity for { , }U L are given in Table 4A.1 for the traditional as well as for

the proposed algorithms. Let N be the maximum number of digits required to represent one
Q-value all agents’ Q-values.

Table 4A.1 Time-complexity analysis

Table 4A.1

 Algorithm U L

Le
ar

ni
ng

CQL | | (| | 1)m mm A A  | | (| | 1)m m mN A A 
ΩQL-I (| | 1)m A m  (| | 1) mm A N 

CΩQL-I (| | 1) C QL Im A m t     (| | 1) m
C QL Im A N t    

ΩQL-II (| | 1) 2m A m  (| | 1) 2 mm A N 
CΩQL-II (| | 1) 2 C QL Im A m t     (| | 1) 2 m

C QL Im A N t    

Pl
an

ni
ng

 CQIP | | (| | 1)m m
CQIPm A A t   | | (| | 1)m m m

CQIPN A A t  
ΩMP (| | 1)mA  (| | 1)mA 

CΩMP (| | 1)m
C MPA t   (| | 1)m

C MPA t  

209

It is apparent from Table 4A.1 and earlier complexity analysis in Section 4.4 that the time-
complexity of the proposed planning algorithms does not vary with the variation of Ω.

References
[1] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement learning and dynamic

programming using function approximators, New York, CRC Press, 2010.

[2] D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations of computational agents,

Cambridge University Press, 2010.

[3] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, Cambridge, MA, MIT

Press, 1998.

[4] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[5] S. K. Pradhan and B. Subudhi, “Real-time adaptive control of a flexible manipulator using

reinforcement learning,” IEEE Tran. on Automation Science and Engineering, vol. 9, no. 2, pp.

237-249, 2012.

[6] P. Vrancx, K. Verbeeck and A. Nowe, "Decentralized learning in markov games" IEEE Trans. on

Systems, Man and Cybernetics (Part B: Cybernetics), vol. 38, no. 4, pp. 976–981, 2008.

[7] J. Leng, L. Jain and C. Fyfe, Convergence analysis on approximate reinforcement learning, In

Knowledge Science, Engineering and Management, editors (eds.) Z. Zhang and J. Siekmann,

Berlin Heidelberg, Springer, pp. 85-91, 2007.

[8] P. Kamkarian and H. Hexmoor, “A human inspired collision avoidance strategy for moving

agents,” Proc. IEEE Federated Conference on Computer Science and Information System, pp.

63-67, 2013.

[9] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger and E. Liang,

“Autonomous inverted helicopter flight via reinforcement learning,” Experimental Robotics IX,

Berlin Heidelberg, Springer, pp. 363-372, 2006.

[10] L. Busoniu, R. Babuska and B. De Schutter, " A Comprehensive Survey of Multiagent

Reinforcement Learning," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 38, no. 2, pp. 156-172, 2008.

[11] Y. Hu, Y. Gao and B. An, "Accelerating Multiagent Reinforcement Learning by Equilibrium

Transfer" Trans. on Cybernetics, vol. 45, No. 7, 2014.

[12] K. Samejima and T. Omori. “Adaptive internal state space construction method for

reinforcement learning of a real-world agent,” Neural Networks, vol. 12, no. 7, pp. 1143-1155,

1999.

[13] S. Mahadevan, “To Discount or Not to Discount in Reinforcement Learning: A Case Study

Comparing R Learning and Q Learning,” Int. Conf. on Machine Learning, New Brunswick, NJ,

USA, pp. 164-172, 1994.

210

[14] M. L. Littman, "Value-function reinforcement learning in Markov games," Cognitive Systems

Research, vol. 2, No. 1, pp. 55-66, 2001.

[15] S. Park and K. S. Roh, “Coarse-to-Fine Localization for a Mobile Robot Based on Place

Learning With a 2-D Range Scan,” IEEE Transactions on Robotics, 2016. DOI:

10.1109/TRO.2016.2544301

[16] A. Konar, I .G. Chakraborty, S. J. Singh, L. C. Jain and A. K. Nagar, “A Deterministic Improved

Q-Learning for Path Planning of a Mobile Robot,” IEEE Trans. on Systems, Man, And

Cybernetics: Systems, vol. 43 no. 5, pp.1-13, 2013.

[17] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8 no. 3-4, pp. 279-292, 1992.

[18] Z. Bin and Z. Lin, "Consensus of high-order multi-agent systems with large input and

communication delays," Automatica, vol. 50, no. 2, pp. 452-464, 2014.

[19] D. Chakraborty and P. Stone, “Multiagent learning in the presence of memory-bounded agents,”

Autonomous agents and multi-agent systems, Elsevier, vol. 28 no. 2, pp. 182-213, 2014.

[20] Y. Shoham, R. Powers and T. Grenager, “Multi-agent reinforcement learning: a critical

survey,” Web manuscript, 2003.

[21] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic games,” The Journal of

Machine Learning Research 4, pp. 1039-1069, 2003.

[22] A. Greenwald, K. Hall and R. Serrano, “Correlated Q-learning,” Int. Conf. on Machine

Learning, Washington, DC, USA, vol. 3, pp. 242-249, 2003.

[23] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” Int. Conf. on Machine

Learning, MA, USA vol. 1, pp. 322-328, 2001.

[24] M. Bowling, “Convergence Problems of General-sum Multiagent Reinforcement Learning,” Int.

Conf. on Machine Learning, pp. 89-94, 2000.

[25] S. Sen, S. Mahendr and J. Hale, “Learning to coordinate without sharing information,”

Association for the Advancement of Artificial Intelligence, Washington, pp. 426-431, 1994.

[26] M. Tan, "Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents." Proc. of

the tenth international conference on machine learning, vol. 337, 1993.

[27] H. Yanco and L. Stein, “An adaptive communication protocol for cooperating mobile robots,”

Proc. of the 2nd Int. Conference on Simulation of Adaptive Behavior, The MIT Press,

Cambridge Ma, pp. 478-485, 1993.

[28] J. Hu and M. P. Wellman, "Multiagent Reinforcement Learning: Theoretical Framework and an

Algorithm," Int. Conference on Machine Learning, Vol. 98, pp. 242-250, 1998.

[29] K. Muelling, A. Boularias, B. Mohler, B. Schölkopf and J. Peters, “Learning strategies in table

tennis using inverse reinforcement learning,” Biological cybernetics, 2014.

211

[30] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent

systems,” Association for the Advancement of Artificial Intelligence/ American Association for

Artificial Intelligence, Madison, Wisconsin, pp. 746-752, 1998.

[31] J. Leng, C. Fyfe and L. Jain, “Simulation and reinforcement learning with soccer agents”,

Multiagent and Grid Systems, vol. 4, no. 4, pp. 415-436, 2008.

[32] M. L. Littman and P. Stone, “A polynomial-time Nash equilibrium algorithm for repeated

games,” Decision Support Systems, vol. 39 no. 1, pp. 55-66, 2005.

[33] J. Peters, S. Vijayakumar and S. Schaal, “Reinforcement learning for humanoid robotics,” Proc.

international conference on humanoid robots, pp.1-20, 2003.

[34] C. Boutilier, "Planning, learning and coordination in multiagent decision processes," Proc. of the

6th conference on Theoretical aspects of rationality and knowledge, Morgan Kaufmann

Publishers Inc. pp. 195-210, 1996.

[35] B. Polak, "Game Theory," Yale University, Fall, 2007. URL:

http://oyc.yale.edu/economics/econ-159.

[36] J. Nash, “Non-cooperative games,” Annals of mathematics, vol. 54, no. 2, pp. 286-295, 1951.

[37] M. de Weerdt and B. Clement, “Introduction to planning in multiagent systems,” Multiagent and

Grid Systems, vol. 5, no. 4, pp. 345-355, 2009.

[38] A. K. Sadhu, P. Rakshit and A. Konar, “A modified Imperialist Competitive Algorithm for

multi-robot stick-carrying application,” Robotics and Autonomous Systems, vol. 76, pp.15-35,

2016.

[39] A. Greenwald, K. Hall, M. Zinkevich, "Correlated Q-Learning," Journal of Machine Learning

Research 1, vol. 1, no. 1, 2007.

[40] E. Franzi, Khepera BIOS 5.0 Reference Manual, K-Team, SA, 1998.

[41] K. U. M. Version, Khepera User Manual 5.02, K-Team, S

[42] M. B. Dias, "Traderbots: A new paradigm for robust and efficient multi-robot coordination in

dynamic environments," Doctoral dissertation, Carnegie Mellon University Pittsburgh, 2004.

[43] Y. Hu, Y. Gao and B. An, “Accelerating multiagent reinforcement learning by equilibrium

transfer,” IEEE transactions on cybernetics, vol. 45, no. 7, pp. 1289-1302, 2015.

[44] J. R. Kok and N. Vlassis, “Sparse cooperative Q-learning,” Proceedings of the twenty-first

international conference on Machine learning, p. 61, ACM, 2004.

[45] Z. Zhang, D. Zhao, J. Gao, D. Wang and Y. Dai, “FMRQ-A Multiagent Reinforcement Learning

Algorithm for Fully Cooperative Tasks,” 2016. DOI: 10.1109/TCYB.2016.2544866

[46] A. K. Sadhu and A. Konar, “Improving the speed of convergence of multi-agent Q-learning for

cooperative task-planning by a robot-team,” Robotics and Autonomous Systems, vol. 92, pp.

66-80, 2017.

212

[47] D. Eilers, C. L. Dunis, H. J. von Mettenheim and M. H. Breitner, “Intelligent trading of seasonal

effects: A decision support algorithm based on reinforcement learning,” Decision support

systems, vol. 64, pp. 100-108, 2014.

[48] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement learning: A survey," Journal

of artificial intelligence research, pp. 237-285, 1996.

[49] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvari, “Convergence results for single-step on-

policy reinforcement learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 287-308,

1998.

[50] Siemens Semiconductor Group, “SFH 900-A low cost miniature reflex optical sensor app note

26,” SFH900 Datasheet.

[51] Appendix of the chapter: URL

 http://amitkonar.com/SMCsystems/supplementalfile.pdf

[52] Q. Fan, K. Zeitouni, N. Xiong, Q. Wu, S. Camtepe and Y. C. Tian, “Nash equilibrium-based

semantic cache in mobile sensor grid database systems,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 47, no. 9, pp. 2550-2561, 2017.

[53] J. Barreiro-Gomez, G. Obando and N. Quijano, “Distributed population dynamics: Optimization

and control applications,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.

47, no. 2, pp. 304-314, 2017.

Chapter 5
A Modified Imperialist Competitive Algorithm
for Multi-Robot Stick-Carrying Application

This chapter proposes a novel evolutionary optimization approach of solving a multi-robot
stick-carrying problem. The problem refers to determine the time-optimal trajectory of a stick,
being carried by two robots, from a given starting position to a predefined goal position
amidst static obstacles in a robot world-map. The problem has been solved using a new
hybrid evolutionary algorithm. Hybridization, in the context of evolutionary optimization
framework, refers to developing new algorithms by synergistically combining the composite
benefits of global exploration and local exploitation capabilities of different ancestor
algorithms. The chapter proposes a novel approach to embed the motion dynamics of fireflies
of the Firefly Algorithm (FA) into a socio-political evolution-based meta-heuristic search
algorithm, known as the Imperialist Competitive Algorithm (ICA). The proposed algorithm
also uses a modified random walk strategy based on the position of the candidate solutions in
the search space to effectually balance the trade-off between exploration and exploitation.
Thirteen other state-of-art techniques have been used here to study the relative performance of
the proposed Imperialist Competitive Firefly Algorithm (ICFA) with respect to run-time and
accuracy (offset in objective function from the theoretical optimum after termination of the
algorithm). Computer simulations undertaken on a well-known set of 25 benchmark functions
reveal that the incorporation of the proposed strategies into the traditional ICA makes it more
efficient in both run-time and accuracy. The performance of the proposed algorithm has then
finally been studied on the real-time multi-robot stick-carrying problem. Experimental results
obtained for both simulation and real frameworks indicate that the proposed algorithm based
stick-carrying scheme outperforms other state-of-art techniques with respect to two standard
metrics defined in the literature. The application justifies the importance of the proposed
hybridization and parameter adaptation strategies in practical systems.

214

5.1 Introduction
Multi-robot coordination has emerged as an important part of robotics research since late
1980s [1]. The problem of coordination of multiple robots arises in numerous applications, for
example, in factory environment (to transfer materials and products between workstations), in
patient-carrying systems in hospitals/airports and in defense and security systems.
Coordination in multi-agent robotics aims at synchronizing and harmonizing the simultaneous
actions of multiple robotic agents in pursuit of a specific goal. One of the crucial challenges
for multi-agent coordination systems is to design appropriate coordination strategies between
the robotic agents that enable them to perform effectively and time optimally in complex
workspace. There exists extensive literature on multi-robot coordination employing different
approaches including graphs [2], Voronoi diagrams [3], potential field [4], adaptive action
selection [5], intention inference [6], cooperative conveyance [7], and perceptual cues [8].
The traditional mathematical model of a multi-robot coordination system can be recast in the
settings of an optimization problem [9] with an aim to efficiently utilize the system resources.
The objective of optimization here is to determine optimal robotic actions based on the
sensory readings collected from the environment by the robots to meet one or more desired
objectives of the problem. Thus optimization of the objective functions, characterizing the
functionality of a multi-robot coordination system, provides the feasible solutions for the
qualitative system performance. The chapter proposes a novel formulation of a multi-robot
stick-carrying system as an optimization problem. The stick-carrying problem [10] includes
two robots to jointly carry a stick from an assigned initial position to a specified final position
in a given environment, without collision with the given obstacles near the robots and the
stick, constrained by the constant distance (equal to the stick length) between the robots. The
sensory data of the robots, offering the range measurements of the stick from the nearby
obstacles and the workspace boundary, are the input variables of the optimization problem
while the output variables being the necessary amount of rotation and translation of the stick
(by the robots) to transfer it in small step towards the goal. The primary objective function of
the stick-carrying optimization problem in this context is concerned with the minimization of
the time consumed by the robots (i.e., the length of the path to be traversed by the robots) for
complete traversal of the planned trajectory. In other words, we expect the robots to plan the
local trajectory, so that the stick is shifted from a given position to the next position (sub-
goal) in a time-optimal sense avoiding collision with the obstacles or the boundary of the
world-map in the robots’ workspace. The optimization algorithm is executed for each local
planning step to carry the stick by a small distance. A sequence of local planning ultimately
transports the stick to the desired goal position.

215

In the past decades, a plethora of computing algorithms has been proposed in the domain of
numerical function optimization. Traditional derivative-based optimization techniques, such
as Newton-Raphson method, quasi-Newton strategy, and steepest descent leaning algorithm
and the like completely rely on the derivative information of the objective function guiding
the direction of search in the fitness landscape. These methods perform satisfactorily when
the objective function to be optimized is globally concave over the search space. However, in
real world scenario, the objective functions are sometimes found to be irregular and
multimodal comprising multiple local optima, saddle points and discontinuities. Traditional
gradient-based optimization algorithms are, therefore, ineffective to capture the global optima
of these non-differentiable functions.

Since early 1990s, Evolutionary Algorithms (EAs) have emerged as a derivative-free
stochastic global optimizer with capability of providing promising results to optimize the non-
differentiable functions of the real world problems. EAs with the real-valued vector
representation of the potential solutions of a complex physical system have earned wide
popularity due to its flexibility and simple search strategy in the high-dimensional hyper-
space and robust performance in the dynamic environment. They commence with a
population of trial solutions, symbolizing the potential solutions of the problem. The relative
integrity of a solution can be assessed by evaluating its associated objective function value
(often called fitness). New solutions are then generated by population-based evolutionary
procedure. Finally, a greedy selection step is employed being inspired by Darwinian principle
of the survival of the fittest. The selection step is responsible for filtering and promoting
better candidate solutions from the candidate pool to the next evolutionary generation.

The radical reduction in the computational time in the recent past coupled with the
increasing demand to solve complex real world problems has enhanced the quest for more
proficient nature-inspired metaheuristics. It is to be noted that two fundamental processes
drive the evolution of an EA population—the diversification process, which enables exploring
different regions of the search space and the intensification process, which ensures the
exploitation of previous knowledge about the fitness landscape. The effects of such
exploration and exploitation processes need to be competently balanced by an EA for its
qualitative performance both w.r.t computational accuracy and run-time complexity over
different fitness landscapes.

However, the superiority of an EA in optimizing different objective functions is subjected
to the No Free Lunch Theorem (NFLT) [11]. According to NFLT the expected effectiveness
of any two traditional EAs across all possible optimization problems is identical. A self-
evident implication of NFLT is that the elevated performance of one EA, say A, over other
EA, say B, for one class of optimization problems is counterbalanced by their respective

216

performances over another class. It is therefore practically difficult to devise a universal EA
that would solve all the problems. This apparently paves the way for hybridization of EAs
with other optimization strategies, machine learning techniques, and heuristics. In
evolutionary computation paradigm, hybridization [12] refers to the process of integrating the
attractive features of two or more EAs synergistically to develop a new hybrid EA. The
hybrid EA is expected to outperform its ancestors w.r.t both accuracy and complexity over
application-specific or general benchmark problems. The fusion of EAs through hybridization
hence can be regarded as the key to overcome their individual limitations.

In this chapter, we propose a simple yet very powerful hybrid EA by collegially coalescing
the attributes of two global optimizers— the traditional Imperialist Competitive Algorithm
(ICA) [13], [14] and the traditional Firefly Algorithm (FA) [15]. ICA is a novel socio-
politically motivated population-based meta-heuristic which has revealed remarkable
performance in variant fields of optimization problems. The population individuals of ICA,
resembling the countries in the world, are categorized as imperialist (best countries) and
colonies (rest of the population) based on their associated objective function values. The
entire population is subsequently divided into a number of sub-populations, known as
empires, each consisting of an imperialist and a number of colonies (randomly selected based
on the ruling power of the respective imperialist). The foundation of ICA is rooted in three
elementary operations— 1) assimilation, which allows the possible movement of the colonies
to their respective imperialist (strengthening exploitation), 2) revolution, which brings out
sudden change in the countries’ socio-political views (preventing premature convergence of
ICA) and 3) the imperialistic competition, which reinforces the powerful empires with an
attempt to collapse the weakest one. There exists a vast literature on the modification and
application of ICA. Among these the following contributions need special mentioning.

A new EA has been proposed in [16] by combining ICA, Differential Evolution (DE) [17]
and K-means clustering algorithm. ICA is also successfully hybridized with EA [18] and
Genetic Algorithm (GA) [19]. ICA is treated as a local search strategy to develop a new
memetic algorithm in [20]. A new variant of ICA has been introduced in [21] by
strengthening the interaction among the imperialists of all the empires. A modified version of
ICA is proposed in [22] based on the attraction and repulsion profiles between countries in an
empire and is applied to solve a brushless direct current wheel motor design problem. A
hybrid ICA, along with an artificial neural network, is implemented in [23] for oil flow rate
prediction combining the local search facility of back-propagation and the global search
ability of ICA. Seven different chaotic maps are utilized in [24] to improve the convergence
characteristics of traditional ICA. Chaos has also been employed in [25] to adapt the angle of
movement of colonies in ICA. In [26], an adaptive colony-radius selection strategy is

217

proposed for improvement in the assimilation policy of ICA. ICA has also been extended to
solve constrained optimization policy in [27] equipped with a classical penalty technique.

In [28], ICA is used to solve the dynamic economic dispatch problem while ICA is utilized
for parameter identification of a reduced detailed R-C-L-M model of transformer in [29]. The
capability of ICA to efficiently control the traffic of a metropolis is studied in [30]. ICA has
also shown its potential to design a novel rotor configuration [31]. In [32], promising results
are obtained for optimal design of a brushless doubly fed induction generator using ICA. ICA
has also been successfully applied for clustering [33] and optimizing epoxy adhesive layer in
fiberglass [34]. ICA has also been utilized to optimize the skeletal structures [35] and for
solving the integrated product mix-outsourcing optimization problem [36]. The efficiency of
ICA has also been validated in the field of template matching [37], IIR filter design [38], non-
linear multiple response [39], graph coloring problem [40], PID controller tuning [41] and
scheduling in a hybrid flexible flow-shop [42]. A comparative study carried out in [43]
exposes superiority of ICA over Particle Swarm Optimization (PSO) in solving the inverse
problem in eddy current non-destructive evaluation.

On the other hand, FA is a population based metaheuristic search algorithm for numerical
function optimization that draws inspiration from the collective behavior and biochemical
properties of fireflies. The motion dynamic of fireflies is derived from four properties of the
social interaction between a group of mobile agents—following, dispersion, aggregation and
homing. In [44], a fuzzy controller is employed to adaptively tune FA parameters for its better
performance. In contrast, a novel strategy employing optimal deviation based FA tuned fuzzy
membership function is introduced in [45] for multi-objective unit commitment problem.
Another multi-objective variant of FA, adaptively tuning its control parameters using beta
distribution, is proposed in [46]. A high convergence speed is obtained in [47] by using a
Gaussian probability distribution based position renewal of fireflies. FA has been extensively
applied to many optimization fields, including annual crop planning problem [48], complex
and nonlinear problem [49], data mining [50], digital image processing [51], structural size
and shape optimization [52], hybrid flow shop scheduling problems [53], QAP problem [54],
queuing system optimization [55], economic emissions load dispatch problem [56], object
tracking [57], traveling salesman problem [58], and so on. According to [59] FA outperforms
PSO in finding optimal solutions of noisy non-linear continuous mathematical models in
presence of higher level of noise. A hybridized version of FA is found in [60] for forecasting
day-ahead electricity price. FA has also been successfully hybridized with cellular learning
automata in [61]. A speciation-based FA has been implemented in [62] to solve dynamic
optimization problem. A detailed description of hybridization aspects of FA with learning
automata, GA and directed direction based search is provided in [63].

218

In our proposed hybrid stratagem, the foraging behavioral dynamic of fireflies in FA is used
to assimilate the colonies of ICA. The proposed assimilation dynamic enforces the colonies
within an empire to follow the socio-political aspects of all relatively better countries, even
including the imperialist, of the same dominion empire. It in turn increases the explorative
revelation of the colonies in the empire. For improving the performance of the hybrid
algorithm further, we modulate the step-size for random movement of each firefly according
to its relative position in the search space, such that an inferior solution is driven by the
explorative force while a qualitative solution should be confined in its local neighborhood in
the search space. The chapter also recommends a novel approach of evaluating the threshold
value for uniting empires, accelerating the convergence speed. Combinations of the FA-type
motion dynamic along with the adaptive step-size and search range based threshold
computation do not impose any serious computational overhead on the traditional ICA as
evident from the simulation results.

The complicated real world fitness landscape, induced by uncertain and imprecise
environment, encompasses multimodality, deception and isolation. Explorative and
exploitative capabilities are two cornerstones of EA that determines its efficacy in tracking
the global optimum in such ill-conditioned/diverse fitness landscape. Hence the performance
of EA is constrained by a trade-off between two antagonist processes: exploration and
exploitation. Exploitation favors good convergence speed by orienting the search towards the
desired global optimum through local refinement, whereas exploration aids in searching new
promising regions in a large search space without getting stuck at the local basins of
attraction. In population-based EAs the explorative power is manipulated by the population
diversity. A population consisting of almost identical candidates has a low exploration power.
Generally the search space is vigorously explored by the trial solutions (using the search
operators) in the earlier generations of EAs with a high population variance. The population
gradually loses its diversity during the convergence towards the global optimum (via greedy
selection) through evolutionary generations. In the earlier explorative phases of optimization
problems, low population diversity could induce premature convergence towards a sub-
optimal solution. In this article we analyze the evolution of the population variance of ICFA
and its two parent algorithms including the traditional ICA and FA over generations
delineating its impact on their explorative power. The simulation results reveal that the
proposed hybrid algorithm realized with the traditional ICA and the traditional FA (hereafter
referred to as Imperialist Competitive Firefly Algorithm –ICFA) enjoys a greater potential of
balancing the explorative and exploitative powers as compared to individual balancing
propensity of the original ICA and FA.

219

Experiments have been undertaken to test the expertise of the proposed hybrid algorithm on
a test-suite of 25 benchmark functions [64]. The performance of the proposed ICFA is
compared with ICA with DE (ICA-DE) [16], Interaction Enhanced ICA using Artificial
Imperialists (ICAAI) [21], Memetic ICA (Memetic-ICA) [20], ICA with Adaptive Radius of
Colonies Movement (ICAR) [26], Social-Based Algorithm (SBA) [65], Hybrid Evolutionary
ICA (HEICA) [18], Chaotic ICA (CICA) [24], Modify ICA with K-means (K-MICA) [33],
Recursive ICA with GA (R-ICA-GA) [19], the traditional Artificial Bee Colony (ABC) [66],
traditional FA [15], the traditional ICA [13] and the traditional global best PSO [67].
Experiments reveal that the proposed realization outperforms other competitor algorithms
both by computational accuracy and run-time complexity.

Lastly, the efficacy of the proposed hybrid evolutionary algorithm is validated in the present
context of the proposed multi-robot stick-carrying problem. Here too, the performance of the
proposed algorithm is compared with the state-of-art techniques for the same application and
the results are in favor of the proposed algorithm. Experiments undertaken further to compare
the relative performance of the ICFA based path-planner with other swarm/evolutionary
algorithm based design reveal that the proposed ICFA based planner outperforms other
realizations. We have arrived at this conclusion by performing comparative analysis of the
contender algorithms, used to plan the time-optimal trajectory of the stick, by using two
performance metrics which have been previously used in the existing literature [37].

The chapter is divided into five sections. Section 2.2 provides the formulation of the multi-
robot stick-carrying problem. Section 2.3 overviews the traditional ICA and FA. The section
then explores the proposed hybridization mechanism along with the experimental settings for
the benchmarks and simulation strategies. Computer simulation of multi-robot stick-carrying
problem in conjunction with the experiments with Khepera-II mobile robots is given in
section 2.4. Section 2.5 concludes the chapter with future research direction.

5.2 Problem Formulation for Multi-Robot Stick-Carrying
The problem is demonstrated by considering two homogeneous robots, capable of jointly
carrying a stick (by transporting it through a desired angle and distance) from a given starting
position to a given goal position avoiding collision with static obstacles in the workspace.
There exist two different planning approaches to address the stick-carrying problem: i) local
planning and ii) global planning. The global planning is concerned with the planning of the
entire trajectory of the robots with the stick from the given initial position to the final position.
Contrarily in the local planning, the local movement of the system (the robots with the stick) is
executed optimally in small steps towards the goal. The local planning has more flexibility
than the global counterpart for the following reasons. First, it can take care of dynamic
obstacles. Second, local planning requires small time to determine the next position of the stick

220

only, rather than deriving the entire trajectory of motion for the robots carrying the stick. Here,
the local planning is used for its time-efficiency.

The stick-carrying problem undertaken here is aimed at minimizing the time required by the
robots for the execution of each local plan of transportation of the stick. In the present context,
this is realized by minimizing the distance between the next positions of the robots with respect
to their goal position. It ensures that the robots will follow the shortest path, in turn reducing
time required to execute the plan. In order to take care that the next position of the stick is not
in the close vicinity of obstacles, a penalty is introduced. It offers a large (or a small) penalty
when the next position is close enough to (or far away from) any obstacle.

The mathematical model of the stick-carrying problem is configured with the distances of the
stick as well as the robots, R1 and R2, from the sidewall of the workspace as input variables
(Fig. 4.1) and the next position of the robots (carrying the stick) as output (estimator) variables.
The mathematical model is recast as minimizing an objective function, concerned with the
optimal selection of the next position of the system (i.e., the robots with the stick) avoiding
collision with obstacles for execution of each local plan. The hybrid evolutionary/swarm
algorithm to be proposed is used to determine the next local position of the stick to satisfy the
objective. Fig. 4.1 provides the distance measures and ((4.1)) combines these distances into a
single entity [69]. Here

     1 2 1 2 3 4 min , min , min , w w l l w wd d d d d d d   (5.1)

where the parameters used on the right side of ((4.1)) represent range-measures (indicated in
Fig. 4.1) and R1 and R2

 represent the centers of gravity of two robots carrying the stick.
The following principles are used for formulating the problem.
1) The robots first determine their next positions in order to align themselves with the goal

and thus plan for a local motion at that current position.
2) This alignment may result in a possible collision with static obstacles, if the determined

next position of either of the robots or the stick has already been occupied by a static
obstacle. Under this circumstance, the robots should turn left or right by certain angle and
hence new next positions are to be determined.

3) While planning locally, the most important issue to be taken care of is the distance
between two robots. If the distance becomes greater than the stick length, the stick will
fall.

221

4) If the robots can align themselves towards the goal position of the stick without any

collision satisfying the distance constraint between them, the local motion will be
executed.

Let, (xi, yi) and (xi
/, yi

/) be the current and the next positions of the robot Ri with θi
representing its angle of rotation for i= [1, 2]. Furthermore, (xi-goal, y i-goal) is regarded as the
goal position of Ri for i= [1, 2]. So, for unit time interval, we have

cos
sin

i i i i

i i i i

x x v
y y v




   
   

 (5.2)

To ensure that the robots should follow the shortest path we need to minimize i) the total
Euclidean distance traversed by robots from current position (xi, yi) to next position (xi

/, yi
/)

and ii) the expected Euclidian distance to be covered from the next position (xi
/, yi

/) to the goal
position (xi-goal, y i-goal), which is given by (5.3).

2 2 2 2 2

1
() () () ()i i i i i i goal i i goal

i
f x x y y x x y y 


           (5.3)

Combining (5.2) and (5.3), we have the primary objective function to be minimized as given
in (5.4).

 2 2 2

1
(cos) (sin)i i i i i goal i i i i goal

i
f v x v x y v y  


       (5.4)

Simultaneously, the robots need to satisfy the equality constraint of (5.5) for successfully
carrying the stick to execute each local step of the entire task.

1,2d l (5.5)

Here, d1,2 is the distance between the robots and l represents the length of the stick.
In a nutshell, the optimization problem here includes an objective function f, concerning

minimization of the Euclidean distance between the current positions of the robots with their
respective goal positions, avoiding collision with obstacles and subjected to the equality
constraint as in (5.5). Hence, the objective function for the proposed optimization problem is
given by

R2

R1

dl2
dl1

dw3

dw2
dw1

H

G
F

E

dw4

 Fig. 5.1 Diagram illustrating the calculation of d

222

2 2 2
1,2

1
(cos) (sin) () 2 d

i i i i i goal i i i i goal
i

f v x v x y v y d l K   
 


           (5.6)

Here λ is the Lagrangian multiplier, which needs to be evaluated to satisfy (5.5). The last
term in (5.6) is the penalty where K is a constant. The last term offers a large (or a small)
value when the next position is close enough to (or far away from) any obstacle in the
workspace.

5.3 Proposed Hybrid Algorithm
In this section, firstly the traditional Imperialist Competitive Algorithm (ICA) and then the
Firefly Algorithm (FA) are overviewed. It then proposes their hybridization methodology
following the simulation strategies to substantiate the merit of the proposed algorithm over
their traditional counterparts.

5.3.1 An Overview of Imperialist Competitive Algorithm (ICA)
Imperialist Competitive Algorithm (ICA) is a population-based stochastic algorithm, which is
inspired by the socio-political evolution and the imperialistic competitive policy of a
government to extend its power beyond its boundaries. It has earned wide popularity because
of its noticeable performance in computational optimization with respect to the quality of
solutions [13]. Like any other evolutionary algorithms, ICA starts with an initial population of
solutions, called countries. The countries are classified into two groups—imperialists and
colonies, based on their power (which is inversely proportional to their objective function
values). The colonies (weaker countries) with their relevant imperialist (stronger country)
form some empires. In each empire, the imperialist pursues an assimilation policy to improve
the economy, culture, and political situation of its colonies, thus winning their loyalty.
Moreover, the empires take part in the imperialistic competition in an attempt to gain more
colonies. In ICA, the assimilation of colonies towards their respective imperialists along with
the competition among empires eventually results in just one empire in the world with all the
other countries as colonies of that unique empire. An overview of the main steps of the ICA is
presented next.

5.3.1.1 Initialization

ICA starts with a population Pt of NP, D-dimensional countries,
)}(),...,(),(),({)(,3,2,1, txtxtxtxtX Diiiii 


 for i= [1, NP] representing the candidate solutions, at

the current generation 0t  by randomly initializing in the range min max[,]X X
 

 where
min min min min

1 2= { , ,..., }DX x x x


 and max max max max
1 2= { , ,..., }DX x x x


. Thus the d-th component

(socio-political feature) of the i-th country at t=0 is given by
)()1,0()0(minmaxmin

, ddddi xxrandxx  (5.7)

223

where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1,
D]. The objective function value))0((iXf


 of the country)0(iX


 is evaluated for i= [1, NP].

5.3.1.2 Selection of Imperialists and Colonies
The population P0 is sorted in ascending order of))0((iXf


 for minimization problem with i=

[1, NP]. The first N countries with less cost function values are selected as imperialists while
the remaining M = NP–N countries are declared as colonies. Hence the population individuals
are categorized into two groups of countries— imperialists and colonies.

5.3.1.3 Formation of Empires

The empire under the j-th imperialist is constructed based on its ruling power. To accomplish
this, first the normalized power of the j-th imperialist country, pj, is evaluated by (5.8) with

))0((NPXf


 representing the objective function value of the weakest country in the current

sorted population P0.

1

((0)) ((0))

((0)) ((0))

NP j
j N

NP l
l

f X f X
p

f X f X







 

  (5.8)

It is evident from (5.8) that better the j-th imperialist (i.e., less objective function
value))0((jXf


 for minimization problem), higher is the difference))0(())0((jNP XfXf




leading to the enhancement of its corresponding ruling power, pj. Now the initial number of
colonies under in the j-th empire, denoted by nj is computed by (5.9)

j jn M p    (5.9)

such that
1

N
j

j
n M


 (5.10)

Here   represents the floor function. According to (5.9) the stronger imperialists with

higher ruling power now possess larger empires. Hence pj symbolizes the fraction of the
colonies occupied by the j-th imperialist. Subsequently the j-th empire is formed by randomly
selecting nj countries from M colonies provided that there will be no common colony between
two different empires. Hence the number of countries within the j-th empire including its
imperialist is nj+1. Let the k-th country belonging to the j-th empire is denoted by)(tX j

k


(at

generation t=0) for k= [1, nj+1]. The countries within the j-th empire are now sorted in
ascending order of their objective function values such that the imperialist)(1 tX j in the j-th

empire attains the first rank. This step is repeated for j= [1, N].

5.3.1.4 Assimilation of Colonies

Each imperialist country now attempts to improve its empire by enhancing the socio-political
influences of its colonies. To accomplish this, each country)(tX j

k


in the j-th empire now

224

moves towards its corresponding imperialist)(1 tX j by changing its characteristic features

following (5.11) for k= [2, nj+1].

1(1) () (0,1) (() ())j j j j
k k kX t X t rand X t X t     
   

 (5.11)

Here (0,1)rand is a uniformly distributed random number lying between 0 and 1 and β is

the assimilation coefficient. The objective function value of the modified colony
))1((tXf j

k


is evaluated for k= [2, nj+1]. After assimilation, all the countries in the j-th

empire are sorted in ascending order of the objective function values and the first ranked
country is declared as the imperialist)1(1 tX j of the same empire for the next generation (i.e.,

t = t+1). The step is repeated for j = [1, N].

5.3.1.5 Revolution

Revolution creates sudden fluctuation in the economic, cultural and political aspects of
countries in an empire. The colonies in an empire are now equipped with the power of
randomly changing their socio-political attributes instead of being assimilated by their
corresponding imperialist. It resembles the mutation of trial solutions in the traditional EA.
The revolution rate η in the algorithm indicates the percentage of colonies in each empire
which will undergo the revolution process. A high value of revolution rate therefore fortifies
the explorative power at a cost of poor exploitation capability. Hence a moderate value of
revolution rate is favored. Revolution is implemented by randomly selecting η×nj countries
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are replaced by
randomly initialized countries characterized by new socio-political nature. After revolution,
as in case of assimilation, all the countries in each empire are sorted in ascending order of the
objective function values so that its imperialist is at the first position. The step is repeated for
all empires.

5.3.1.6 Imperialistic Competition

All the N empires now participate in an imperialistic competition to take possession of
colonies of other weaker empires based on their ruling power. The colonies of the weaker
empires will be gradually eluded from the ruling power of their corresponding imperialists
and will be thereafter controlled by some other stronger empires. Consequently, the weaker
empires will be losing their power and ultimately may be eradicated from the competition.
The imperialistic competition along with the collapse mechanism will progressively result in
an increment in the power of more dominant empires and diminish the power of weaker ones.
The imperialistic competition encompasses the following steps.

225

5.3.1.6.1 Total Empire Power Evaluation

Once an empire is constructed under the dominance of the j-th imperialist)1(1 tX j , the power

of the respective empire is compositely influenced by the objective function value of
)1(1 tX j as well as the constituent colonies)1(tX j

k


(after assimilation) under the respective

j-th empire for k= [2, nj+1]. The total objective function value of the j-th empire is evaluated
as follows.

1

1
2

1((1)) . (1)
jn

j j
j k

j k
tc f X t X t

n





   

 
 (5.12)

Here ξ<1 is a positive number which regulates the influence of the constituent colonies to
control the ruling power of the empire. A minuscule value of ξ causes the total power of the j-
th empire to be determined by its imperialist)1(1 tX j only, while increasing the value of ξ

accentuates the importance of the colonies in deciding the total power of the respective
empire. The N empires now are sorted in ascending order of tcj for j = [1, N]. Then the
normalized possession power of the j-th empire, ppj, is evaluated by (5.13) with tcN
representing the total objective function value of the weakest empire in the current population
Pt.

1

N j
j N

N l
l

tc tc
pp

tc tc







 (5.13)

It is evident from (5.13) that stronger the j-th empire (i.e., less the total objective function
value tcj for minimization problem), higher is the possession power, ppj, which consecutively
increases its probability of seizing colonies from weaker empires. This step is repeated for j =
[1, N].

5.3.1.6.2 Reassignment of Colonies and Removal of Empire

The empire with least possession power is interpreted as being defeated in the competition.
Let the weakest colony of this weakest empire be denoted as worstX


, which is now removed

from the dominance of its currently ruling imperialist and reassigned as a new colony to one
of the stronger empires based on their possession probabilities. It is noteworthy that

worstX


will not be possessed by the most powerful empires, but stronger the empire, more
likely to possess worstX


. To accomplish this, the possession probability of the j-th empire is

computed as follows for j= [1, N].

(0,1)j jprob pp rand  (5.14)

Now worstX


is assigned as a new colony to the j-th empire for which the possession

probability probj is maximum. However, if the worst colony consists of only its imperial

226

before exclusion operation, (i.e., worstX


is the imperialist of the weakest empire), the removal
of worstX


will result in the collapse of the weakest empire.

5.3.1.6.3 Union of Empires

The disagreement between two empires may be assessed by the difference in their respective
socio-political features. This dissimilarity between any two empires, j and l is evaluated by
taking the Euclidean distance between the respective imperialists)1(1 tX j and)1(1 tX l as

in (5.15) for j, l= [1, N].

, 1 1(1) (1)j l
j lDist X t X t   

 
 (5.15)

If Distj, l is less than a predefined threshold, Th, the two empires are merged into one
empire. The stronger country among)1(1 tX j and)1(1 tX l is declared as the imperialist of

the newly formed empire.
After each evolution, we repeat from step 5.3.1.4 until one of the following conditions for

convergence is satisfied. Stop criteria include a bound by the number of iterations, achieving
a sufficiently low error or aggregations thereof.

5.4 An Overview of Firefly Algorithm (FA)
In Firefly Algorithm (FA) [15], a potential solution to an optimization problem is encoded by
the position of a firefly in the search space and the light intensity at the position of the firefly
corresponds to the fitness of the associated solution. Each firefly changes its position
iteratively by flying towards brighter fireflies at more attractive location in the fitness
landscape to obtain optimal solutions.

5.4.1 Initialization
FA commences with a population Pt of NP, D-dimensional firefly positions,

)}(),...,(),(),({)(,3,2,1, txtxtxtxtX Diiiii 


 for i = [1, NP] by randomly initializing in the search

range min max[,]X X
 

 where min min min min
1 2= { , ,..., }DX x x x


 and max max max max

1 2= { , ,..., }DX x x x


 at

the current generation t = 0. Thus the d-th component (socio-political feature) of the i-th firefly
at t=0 is given by

min max min
, (0) (0,1) ()i d d d dx x rand x x    (5.16)

where (0,1)rand is a uniformly distributed random number lying between 0 and 1 and d= [1,
D]. The objective function value))0((iXf


 (which is inversely proportional to the light

intensity for minimization problem) of the i-th firefly is evaluated for i = [1, NP].

5.4.2 Attraction to Brighter Fireflies
Now the firefly)(tX i


is attracted towards the positions of the brighter fireflies)(tX j


 for i, j=

[1, NP] but i≠j such that))(())((tXftXf ij


 for minimization problem. Now the attractiveness

227

βi,j of)(tX i


 towards)(tX j


is proportional to the light intensity seen by adjacent fireflies.

However attractiveness βi,j decreases exponentially with the distance between them, denoted
by ri,j as given in (5.17).

, ,exp(), 1m
i j o i jr m      (5.17)

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its own position
(i.e., at ri,j = ri,i= 0) and γ is the light absorption coefficient, which controls the variation of βi,j
with ri,j. This parameter is responsible for the convergence speed of FA. A setting of γ=0 leads
to constant attractiveness while γ approaching infinity is equivalent to the complete random
search [15]. In (5.17) m is a positive constant representing a non-linear modulation index. The
distance between)(tX i


 and)(tX j


is computed using the Euclidean norm as follows.

, || () () ||i j i jr X t X t 
 

 (5.18)

This step is repeated for i, j = [1, N].

5.4.3 Movement of Fireflies
The firefly at position)(tX i


 moves towards a more attractive position)(tX j


occupied by a

brighter firefly (i.e.,))(())((tXftXf ij


) for j= [1, N] but i≠j following the dynamic given in

(5.19).

,() () (() ()) ((0,1) 0.5)i i i j j iX t X t X t X t rand       
   

 (5.19)

The first term in the position updating formula (5.19) represents the i-th firefly’s current
position. The second term in (5.19) denotes the change in the position of the firefly at)(tX i



due to the attraction towards the brighter firefly at)(tX j


. Hence it is apparent that the brightest

firefly with no more attractive firefly in the current sorted population Pt will have no motion
due to the second term and may get stuck at the local optima. To circumvent the problem, the
last term is introduced in (5.19) for the random movement of the fireflies with a step-size of
α (0, 1). Here rand(0,1) is a random number generator uniformly distributed in the range (0,
1). This step is repeated for i = [1, NP]. After completion of its journey mediated by the
brighter ones, the updated position of the i-th firefly is represented by)1(tX i


 for i= [1, NP].

After each evolution, the steps 5.4.2 and 5.4.3 are repeated until one of the following
conditions for convergence is satisfied. The conditions include restraining the number of
iterations, maintaining error limits, or the both, whichever occurs earlier.

5.5 Proposed Imperialist Competitive Firefly Algorithm
In our proposed hybridization stratagem, the light-intensity based attraction driven movement
of fireflies is embedded into the modified version of ICA to utilize the composite benefits of
the explorative and exploitative capabilities of both the ancestor algorithms. The fitness
profile based colonizing behavior of the countries in ICA provides them the local exploitation

228

capability surrounding the local optima (as discovered by their imperialists). In addition, the
imperialistic competition eventually helps the algorithm to converge towards the desired
global optimum. On the other hand, FA draws inspiration from the self-organizing behavior
of fireflies, which offers it potential for global exploration. The information of a better
position in the search space, as acquired by a brighter firefly, is distributed among others
through the motion dynamic as evident from (5.19). These facts have motivated us to propose
a new hybrid algorithm, named Imperialist Competitive Firefly Algorithm (ICFA). In ICFA,
the intensification process is controlled by the formation and revolution of empires (clusters)
in the search space by ICA, while the diversification is influenced by the foraging behavior of
fireflies.

In the modified ICA, each colony tries to contribute to the improvement of its governing
empire by improving its socio-political attributes following a new assimilation policy. This is
different from the traditional ICA where the revolution of a colony is instigated by the
features of its respective imperialist only. Hence the evolving colony is not guided by the
experience of more powerful colonies within the same empire. This issue is resolved here
being inspired by the self-organizing dynamics (5.19) of the fireflies in the traditional FA. In
the present context, the socio-political features of the assimilating colony are stimulated by
that of all other powerful colonies within the same empire including its imperialist. This is
implemented here by the assimilation dynamic in (5.20) employed by the k-th colony)(tX j

k



within the j-th empire for k = [2, nj+1]. Here it is presumed that the countries in the j-th
empire are sorted in ascending order of their respective objective function values such that the
imperialist)(1 tX j occupies the first position.

,() () (() ()) ((0,1) 0.5) (()) (())j j j j j j j
k k k l l k l kX t X t X t X t rand if f X t f X t        
     

 (5.20)

Expression (5.20) indicates that the colony)(tX j
k


 follows the nature of a stronger colony

)(tX j
l


 (including the imperialist 1 ()jX t


) with (()) (())j j

l kf X t f X t
 

in the j-th empire. The k-th

modernized country is now represented by)1(tX j
k


.

Again, it is noteworthy that the random movement of a firefly (or a colony) with step-size α
in (5.19) (or in (5.20)) in traditional FA helps the population individuals to avoid local optima
by their expedition proficiency. Particularly, the convergence of fireflies towards the global
optimum greatly relies on the step-size (α) profile. However, in the traditional FA, α is taken
to be constant for all fireflies in the current population. It indicates that α assists in the
exploration of the fireflies in the fitness landscape irrespective of their fitness. Consequently,
fireflies in vicinity of the global optimum may be deviated away (with α value greater than
the requirement) and may get trapped at local optima. Contrarily, fireflies far away from the
global optimum in the fitness landscape (with α smaller than necessity), may not be given any

229

opportunity to be attracted towards the global optimum. To overcome this problem, α, used
for the random movement of a firefly, needs to be modulated with its relative position with
respect to the current best firefly position.

It in turn ensures that the best candidate solution should search in the local neighborhood
with a small step-size to prevent the omission of the global optimum whereas a poor
performing member should participate in the global search to explore promising regions in the
search space. Under this proposed scheme, the step-size value αi,d assigned to the d-th
positional component of the i-th firefly at location)(tX i


is varied based on its spatial distance

from the best firefly rather than being constant as outlined in (5.21) for d = [1, D]. It is
apparent that in the sorted population)(1 tX


corresponds to the position of the brightest firefly.

1, ,
, min min max min

| () () |
(1) (0,1) d i d

i d
d d

X t X t
rand

X X
  


    


 (5.21)

Here |.| represents the absolute value and rand(0,1) is a uniformly distributed random
number lying in (0, 1). It is apparent from (5.21) that if Xi,d(t) is close to X1,d(t), αi,d reduces to
its small minimum value αmin confining Xi,d(t) in its small neighborhood. Again if the
difference | Xi,d(t) – X1,d(t) | increases and approaches to Xd

max(t) – Xd
min(t), αi,d also approaches

to unity offering Xi,d(t) a large magnitude of perturbation. Apparently, the step-size is now
treated as a D-dimensional vector as symbolized by },...,,{ ,2,1, Diiii  

 with its d-th

component αi,d(αmin, 1).
Moreover, in the traditional ICA, the dissimilarity threshold, Th, used for uniting two

empires is kept as a predefined constant disregarding the search space dimension. It is
obvious that the selection of threshold, being responsible for the union of empires, determines
the performance of ICA. In the proposed work, a new empirical formula is recommended to
calculate the threshold as in (5.22) with the search range min max[,]X X

 
and D and N as the

search space dimension and number of empires respectively.
max min|| ||X XTh

N D





 
 (5.22)

Motivated by these observations, we extend the traditional ICA with the proposed strategies
of hybridization with α modulated FA and uniting threshold Th selection. The extended ICA,
called Imperialist Competitive Firefly Algorithm (ICFA) is similar to the traditional ICA
except for the assimilation of the colonies and the union of the empires which are given
below.

5.5.1 Assimilation of Colonies
The assimilation of the k-th country)(tX j

k


under the sorted j-th empire (led by the

imperialist)(1 tX j) is performed by the following two steps for k = [1, nj+1] and j = [1, N].

230

5.5.1.1 Attraction to Powerful Colonies
The distance between the k-th and l-th countries,)(tX j

k


and)(tX j

l


, under the j-th empire is

computed using the Euclidean norm as follows.

, || () () ||j j j
k l k lr X t X t 

 
 (5.23)

Now, as in case of FA, the country)(tX j
k


is attracted towards a more powerful one

)(tX j
l


(including the respective imperialist) with an attractiveness βk,l

j for k, l = [1, nj+1] but k

≠ l such that))(())((tXftXf j
k

j
l


 . The associated attractiveness βk,l

j is evaluated by (5.24).

, ,exp(()), 1j j m
ok l k lr m      (5.24)

where β0 and γ are same as defined in (5.17).

5.5.1.2 Modification of Empire Behavior
The country)(tX j

k


updates its socio-political features inspired by the stronger one)(tX j

l


in the

same empire following the dynamic given in (2.25) for k, l = [1, nj+1] but k ≠ l
provided))(())((tXftXf j

k
j

l


 .

,(1) () (() ()) ((0,1) 0.5)j j j j j j
k k k l l k kX t X t X t X t rand        
     (5.25)

The D-dimensional step-size vector j
k
 for random movement in (5.25) is now modulated

based on the relative socio-political aspects of the country)(tX j
k


with respect to that of its

respective imperialist)(1 tX j (with least objective function value in the j-th empire) as given

in (5.26) for d= [1, D].

1, ,
min min, max min

| () () |
(1) (0,1)

j j
d k dj

k d
d d

X t X t
rand

X X
  


    


 (5.26)

Here rand(0, 1) is a uniformly distributed random number lying in (0, 1). It is apparent
from (5.26) that the imperialist)(1 tX j is assigned with a step size αmin for all its components.

After each movement of a country, the j-th empire is sorted in ascending order of the
objective function values of its constituent countries so that the first rank is always occupied
by the imperialist 1 ().jX t


 The step is repeated for k = [1, nj+1]. At the end of this step the

modified country is demoted by)1(tX j
k


for k = [1, nj+1].

5.5.1.3 Union of Empires

The dissimilarity Distj, l between any two empires, j and l is evaluated by taking the Euclidean
distance between the respective imperialists)1(1 tX j and)1(1 tX l as in (5.15) for j, l= [1,

N]. The two empires are merged into one empire if Distj, l is less than the threshold, Th as
computed using (5.22). The stronger country among)1(1 tX j and)1(1 tX l is declared as the

231

imperialist of the newly formed empire and the rest is treated as a colony under the former
one. The algorithm for ICFA is given in next page.

Algorithm 5.1 Imperialist Competitive Firefly Algorithm (ICFA)

Begin
1. Initialize a population of NP, D-dimensional countries)(tX i


at generation t=0 using (5.7) and evaluate

))((tXf i


 for i= [1, NP];
2. Sort Pt in ascending order of cost function values and select the top N countries as the imperialists with the

remaining M=NP–N countries as colonies;
3. Assign randomly selected nj colonies under the j-th imperialist, based on its power pj as computed using (5.9)

and (5.8) respectively for j= [1, N];
4. While termination condition is not reached do

Begin
4.1. For each empire j= 1 to N do begin

Sort the countries in the j-th empire in ascending order of their respective cost function values with the

imperialist)(1 tX j at the first position;
For each country under the j-th empire k= 1 to nj+1 do begin

For each country under the j-th empire k= 1 to nj+1 do begin

If))(())((tXftXf j
k

j
l


 then do

a. Evaluate the distance j
lkr , and hence the attraction j

lk , between)(tX j
k


and)(tX j

l


using (5.23)

and (5.24) respectively;
b. Compute the step-size of random movement of)(tX j

k


using (5.26);

c. Update the socio-political nature of)(tX j
k


using (5.25);

d. Sort the countries in the j-th empire in ascending order of their respective cost function values with

the imperialist)(1 tX j at the first position;
End If.

End For.

Denote the updated country with (1);j
kX t 


End For.

End For.
4.2. For each empire j= 1 to N do begin

i) Randomly select η×nj countries from the j-th empire and perform revolution by re-initialization
ii) Sort the countries in the j-th empire in ascending order of their respective cost function values with its

imperialist at the first position;
End For.

4.3. Evaluate the possession power ppj and the possession probability probj of the j-th empire using (5.13) and
(5.14) respectively for j= [1, N];

4.4. Sort the empires in descending order of the possession power ppj for j= [1, N]. Identify the worst
colony worstX


 of the weakest empire)1(tX N


and reassign worstX


as a colony of new empire, j, with

the largest possession probability probj for j [1, N];
4.5. If worstX


was the only country in the N-th empire then the N-th empire collapses with N←N–1

End If.
4.6. Evaluate the disagreement threshold Th and the dissimilarity Distj, l between any two imperialists)1(tX j



and)1(tX l


 using (5.22) and (5.15) respectively. Combine the j-th and l-th empires if Dj, l<Th. The

stronger among)1(tX j


 and)1(tX l


will be considered as the imperialist of the combined empire

while the remaining will be treated as its colony. Decrement the number of colonies by setting N←N–1. This
is done for j, l= [1, N];

4.7. Set t←t+1;
End While.

End.

232

5.6 Simulation Results
The performance of the proposed ICFA algorithm is examined here with respect to the
minimization of 25 benchmark functions recommended in [64].

5.6.1 Comparative Framework
The comparative framework includes ICA with DE (ICA-DE) [16], Interaction Enhanced
ICA using Artificial Imperialists (ICAAI) [21], Memetic ICA (Memetic-ICA) [20], ICA with
Adaptive Radius of Colonies Movement (ICAR) [26], Social-Based Algorithm (SBA) [65],
Hybrid Evolutionary ICA (HEICA) [18], Chaotic ICA (CICA) [24], Modify ICA with K-
means (K-MICA) [33], Recursive ICA with GA (R-ICA-GA) [19], the traditional Artificial
Bee Colony (ABC) [66], the traditional FA [15], the traditional ICA [67] and the traditional
PSO [54]. The above the traditional evolutionary/swarm optimization algorithms are chosen
because of their wide popularity in solving numerical single objective optimization problems.

5.6.2 Parameter Settings
To make the comparison fair, the populations for all the algorithms (over all problems tested)
are initialized using the same random seeds and the population size is kept at 50. We employ
the best parametric set-up for all these algorithms as prescribed in their respective sources. In
our proposed ICFA, the initial number of empires N is taken to be NP which is equals to 7

for a population size NP of 50 and αmin is taken to be 0.3 so that maximum permissible value
of step size is 1. The maximum attractiveness β0 and the light absorption coefficient γ both are

taken to be 1 with the non-linear modulation index m determined by  minmax

1
max jj

D

j
XXD 



as described in [68].

5.6.3 Analysis on Explorative Power of ICFA
The explorative and exploitative capabilities of an algorithm can be assessed by the
population variance. Let)(tX i


be the D-dimensional i-th solution of the population Pt at

generation t. The variance of the population Pt considering all its NP solutions is given by
(5.27).

2
2
, ,

1 1 1

1 1 1()
D NP NP

t i j i j
j i i

V P x x
D NP NP  

           

 (5.27)

4.2shows the evolution of the population variance over FEs for f15 in case of 50-D problem.
The plots of other functions are omitted for the sake of space economy. The plot indicates that
ICA offers a good level of exploitation capability from the initiation of the algorithm whereas
FA performs better in balancing the diversification at the earlier exploration stage and
gradually converges to the optimal point with a relatively smaller population variance.

233

However, it is evident that ICFA outperforms the rest two ancestors in providing a well trade-
off between high explorative and exploitative powers which prevail during the earlier and
later phases of the search respectively. Hence it can be concluded that the hybridization of
ICA and FA has empowered ICFA with better exploration and exploitation capabilities.

5 10 15 20 25 30 35 40 45 50
Function Evaluations

Po
pu

la
tio

n
Va

ria
nc

e 

f15

ICA
FA
ICFA

104

x104

102

100

10-2

10-4

10-6

Fig. 5.2 Evolution of the expected population variance

5.6.4 Comparison of Quality of the Final Solution
Here, we test the relative performance of our algorithm with other competitor algorithms
using 25 benchmark functions [64] of 10, 30 and 50 dimensions. The experiments are
conducted for 50 independent runs. For lack of space, the mean and standard deviation
(within parenthesis) of the benchmarks function values of 25 independent runs for each of the
fourteen algorithms are presented in Table 5.1 for 30-D problems only. Please note that the
results excluded follow a similar trend like those reported in Table 5.1. Maximum number of
function evaluations (Max_FEs) is set at 300,000 for 30-D.

In the last column of Table 5.1, the statistical significance level of the difference of the
means (of the final accuracies) of the best two algorithms, obtained using t-test with 25
samples, is reported. Here ‘+’ indicates that the t value of 49 degrees of freedom is significant
at a 0.05 level of significance by two-tailed test, while ‘–’ means the difference of the means
is not statistically significant and ‘NA’ stands for Not Applicable, referring to the cases for
which two or more algorithms achieve the same best accuracy results.

5.6.5 Performance Analysis
A close scrutiny of Table 5.1 indicates that the performance of the proposed ICFA has
remained effectually and consistently superior to that of the other algorithms. It is noteworthy
that out of 25 benchmark instances, in 21 cases ICFA outperforms its nearest neighbor
competitor in a statistically significant fashion. In three cases, (f10 and f19) ICA-DE, which

234

remains the second best algorithm, has achieved the best average accuracy surpassing ICFA.
It is evident from Table 5.1 that ICFA performs consistently better than all algorithms over
most of the 25 benchmark instances, and the advantage of ICFA is very prominent as well.

Table 5.1 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER

ALGORITHMS BASED ON SOLUTION QUALITY FOR f01 TO f25

Functions ICFA ICA-DE ICAAI
Memetic

ICA
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO Stat. Sig.

f01
0.00e+00

(0.00e+00)

2.88e-29

(1.99e-27)

1.10e-26

(2.74e-26)

1.94e-23

(2.95e-25)

3.39e-22

(4.59e-24)

3.82e-21

(4.75e-23)

4.42e-21

(5.20e-20)

5.70e-20

(5.30e-18)

6.34e-17

(5.54e-17)

6.39e-16

(5.60e-17)

6.70e-14

(5.94e-16)

6.70e-14

(6.41e-15)

7.75e-10

(6.53e-11)

7.79e-10

(6.71e-10)
+

f02
1.22e-04

(8.31e-04)

3.24e-04

(1.13e-03)

2.32e-03

(1.30e-03)

2.67e-03

(1.93e-02)

1.19e-02

(3.11e-01)

1.93e-01

(3.42e-01)

2.21e-01

(3.48e+00)

2.67e-01

(4.52e+02)

3.07e-01

(4.58e+02)

4.58e-01

(4.75e+02)

4.86e-01

(4.96e+02)

4.94e-01

(5.28e+02)

5.76e-01

(5.35e+03)

7.65e-01

(5.56e+03)
+

f03
1.97e-01

(1.37e+00)

1.04e+00

(1.50e+00)

1.56e+00

(1.75e+00)

1.78e+01

(1.77e+00)

1.80e+01

(2.44e+01)

2.38e+01

(2.46e+01)

3.54e+01

(3.31e+01)

3.83e+02

(3.84e+01)

4.09e+03

(4.09e+01)

4.89e+03

(4.31e+02)

5.25e+03

(5.69e+02)

6.23e+03

(5.81e+02)

6.71e+04

(5.50e+02)

6.71e+03

(5.88e+02)
+

f04
1.37e-05

(0.00e+00)

1.53e-04

(4.58e-26)

1.90e-04

(1.13e-25)

2.00e-04

(1.15e-23)

2.66e-04

(1.84e-22)

3.28e-03

(2.17e-20)

3.71e-03

(2.35e-20)

3.97e-02

(3.15e-16)

3.98e-02

(3.69e-16)

5.27e-02

(4.21e-14)

5.30e-02

(4.57e-10)

5.45e-01

(4.82e-03)

6.53e+01

(5.55e-01)

6.42e-01

(5.23e-02)
+

f05
1.03e-11

(4.59e-09)

2.54e-10

(6.95e-08)

3.74e-10

(1.01e-08)

1.06e-09

(1.01e-08)

1.60e-09

(1.27e-07)

3.09e-08

(1.81e-07)

3.76e-08

(1.84e-06)

5.42e-07

(2.79e-05)

5.72e-07

(3.01e-04)

5.78e-04

(3.84e-04)

6.08e-03

(4.05e-04)

6.39e-03

(5.60e-03)

6.97e-03

(7.37e-03)

6.73e-03

(6.08e-02)
+

f06
7.34e-01

(3.67e-05)

9.53e-01

(5.77e-05)

1.06e+00

(1.69e-04)

1.28e+00

(1.92e-04)

1.67e+00

(2.36e-03)

1.67e+00

(2.58e-03)

2.45e+00

(2.72e-02)

2.81e+00

(2.82e-01)

2.92e+00

(3.42e-01)

3.59e+00

(3.43e+00)

4.35e+00

(5.46e+00)

5.97e+00

(6.30e+00)

6.61e+00

(6.69e+01)

6.31e+00

(6.59e+01)
+

f07
1.10e-05

(8.56e-01)

1.30e-05

(1.28e+00)

1.41e-05

(1.32e+00)

1.18e-05

(2.14e+00)

1.64e-04

(2.57e+00)

2.07e-04

(3.05e+00)

2.47e-04

(3.12e+00)

3.15e-03

(3.40e+00)

3.82e-03

(4.37e+00)

4.02e-03

(4.80e+00)

4.53e-02

(5.21e+00)

4.54e-02

(5.42e+00)

5.74e-01

(6.50e+00)

5.12e-01

(5.46e+00)
+

f08
2.45e+01

(1.19e-02)

2.65e+01

(1.29e-02)

3.55e+01

(1.36e-02)

3.57e+01

(1.45e-02)

3.72e+01

(1.58e-01)

3.85e+01

(1.59e-01)

4.10e+01

(1.61e-01)

4.35e+01

(2.10e-01)

4.51e+01

(2.17e-01)

5.56e+01

(3.01e+00)

5.68e+01

(3.04e+00)

5.72e+01

(3.29e+01)

7.57e+01

(5.96e+01)

6.13e+01

(5.91e+01)
+

f09
0.00e+00

(2.20e-28)

4.82e-24

(3.59e-26)

1.55e-23

(1.66e-25)

1.80e-23

(1.83e-22)

1.83e-22

(2.96e-22)

2.07e-22

(3.21e-18)

2.23e-21

(3.42e-18)

2.86e-19

(3.55e-17)

3.07e-19

(3.82e-16)

4.16e-19

(4.04e-13)

4.21e-10

(5.11e-12)

4.97e-10

(5.60e-10)

8.85e-09

(7.74e-09)

6.33e-09

(6.50e-09)
+

f10
1.59e+01

(5.95e-06)

1.26e+01

(2.74e-06)

1.62e+01

(1.38e-05)

1.83e+01

(3.33e-04)

2.57e+01

(4.34e-04)

2.76e+01

(4.45e-03)

3.42e+01

(5.57e-03)

3.64e+01

(5.75e-02)

4.36e+01

(5.89e-02)

4.75e+01

(6.00e-01)

5.57e+01

(6.04e+00)

6.19e+01

(6.45e+00)

6.39e+01

(7.23e+00)

7.91e+01

(8.32e+00)
–

f11
2.07e-03

(1.29e-13)

1.21e-02

(3.41e-12)

1.28e-02

(4.50e-12)

1.67e-02

(2.67e-11)

3.35e-02

1.17e-10)

3.50e-01

(3.29e-10)

4.03e-01

(3.42e-09)

4.26e-01

(3.50e-09)

4.32e+00

(3.65e-09)

5.20e+00

(4.77e-09)

5.63e+00

(4.98e-08)

6.01e+00

(5.72e-08)

6.20e+00

(5.72e-08)

6.33e+00

(5.85e-08)
+

f12
2.58e-04

(6.10e-05)

7.93e-04

(1.42e-04)

1.04e-03

(1.74e-04)

1.21e-03

(1.87e-04)

2.73e-03

(2.04e-04)

3.02e-03

(2.79e-04)

3.17e-03

(2.91e-03)

3.63e-02

(3.02e-03)

4.54e-02

(3.68e-03)

4.61e-02

(4.39e-02)

5.05e-02

(4.59e-02)

5.60e-02

(5.62e-02)

5.77e-02

(5.81e-02)

6.81e-02

(5.88e-02)
+

f13
1.26e-01

(0.00e+00)

1.58e-01

(1.89e-19)

1.88e-01

(1.19e-19)

2.37e-01

(1.24e-18)

2.60e-01

(2.11e-15)

2.92e-01

(3.77e-14)

2.95e-01

(3.92e-14)

3.42e-01

(4.66e-13)

3.83e-01

(4.66e-11)

5.16e-01

(4.68e-10)

6.44e-01

(4.88e-09)

6.51 e-01

(4.90e-09)

6.66e-01

(6.17e-08)

6.88e-01

(7.99e-07)
+

f14
1.09e+00

(1.76e-01)

1.09e+00

(1.76e-01)

1.33e+00

(1.85e-01)

1.33e+00

(2.03e-01)

1.58e+00

(2.40e-01)

2.58e+00

(2.69e-01)

2.63e+00

(4.08e-01)

2.99e+00

(4.08e-01)

3.22e+00

(4.31e-01)

3.37e+00

(5.11e-01)

4.12e+00

(5.77e-01)

4.51e+00

(6.15 e-01)

5.98e+00

(6.34e-01)

7.87e+00

(8.87e-01)
NA

f15
9.15e-02

(1.23e-03)

1.11e-01

(3.48e-03)

1.13e-01

(6.73e-03)

1.25e-01

(2.23e-02)

1.82e-01

(2.27e-02)

2.18e-01

(2.85e-02)

2.96e+00

(3.71e-02)

2.97e+00

(3.71e-02)

3.29e+00

(4.27e-01)

4.16e+00

(4.46e-01)

4.18e+00

(4.58e-01)

4.87e+00

(5.02e-01)

4.89e+00

(5.73e-01)

5.72e+00

(5.78e-01)
+

f16
4.63e+01

(1.04e-04)

1.07e+02

(1.47e-04)

1.86e+02

(1.56e-04)

1.96e+02

(1.68e-04)

2.96e+02

(1.78e-03)

3.08e+02

(2.02e-03)

3.20e+02

(2.41e-02)

3.62e+02

(4.67e-02)

3.68e+02

(4.70e-02)

4.46e+02

(4.72e-01)

5.45e+02

(4.73e-01)

6.12e+02

(4.86e-01)

6.60e+02

(5.46e+00)

6.70e+02

(5.91e+00)
+

f17
0.00e+00

(7.63e-08)

0.25e+02

(1.06e-07)

1.23e+02

(1.32e-07)

2.25e+02

(1.34e-07)

2.70e+02

(1.69e-06)

2.97e+02

(1.88e-05)

3.22e+02

(2.01e-04)

3.23e+02

(2.38e-04)

3.29e+02

(3.31e-04)

4.21e+02

(4.03e-03)

5.05e+02

(4.25e-02)

5.39e+02

(5.16e-02)

5.49e+02

(5.35e+01)

6.41e+02

(6.42e+01)
+

f18
1.27e+02

(1.79e-05)

1.46e+02

(1.85e-05)

1.65e+02

(2.45e-05)

2.98e+02

(2.91e-05)

3.15e+02

(3.21e-05)

3.82e+02

(3.78e-04)

4.25e+02

(4.07e-04)

4.45e+02

(4.29e-04)

4.51e+02

(4.63e-04)

4.53e+02

(4.63e-04)

4.75e+02

(5.39e-03)

4.78e+02

(5.83e-03)

4.96e+02

(5.89e-03)

5.61e+02

(6.08e-03)
+

f19
1.33e+02

(1.08e-06)

1.04e+02

(4.44e-07)

1.53e+02

(1.15e-06)

2.22e+02

(1.27e-060

3.35e+02

(1.34e-06)

3.65e+02

(2.56e-05)

3.80e+03

(2.83e-05)

3.81e+03

(3.13e-05)

4.47e+03

(4.39e-05)

4.51e+03

(4.87e-04)

4.53e+03

(5.34e-04)

5.04e+03

(5.40e-04)

6.57e+03

(6.52e-04)

6.95e+03

(7.08e-04)
–

f20
3.31e-03

(1.13e-01)

1.04e-02

(1.37e-01)

1.83e-02

(1.69e-01)

2.43e-01

(1.89e-01)

2.75e+00

(2.31e-01)

3.39e+00

(2.51e-01)

3.64e+00

(2.76e-01)

3.67e+01

(2.97e-01)

3.71e+01

(3.09e+00)

4.10e+02

(3.09e+00)

4.70e+03

(4.78e+00)

5.18e+03

(4.81e+00)

5.28e+03

(4.92e+01)

5.82e+03

(5.15e+01)
+

f21
2.51e+02

(1.08e+00)

3.29e+02

(1.17e+00)

3.64e+02

(1.39e+00)

4.73e+02

(2.84e+00)

4.77e+02

(3.07e+00)

4.00e+02

(3.60e+00)

5.69e+02

(4.11e+00)

5.28e+03

(5.24e+00)

6.38e+03

(5.38e+01)

7.53e+03

(5.77e+01)

7.65e+03

(5.83e+01)

7.75e+03

(5.97e+01)

8.21e+03

(6.18e+01)

8.64e+03

(6.92e+01)
+

235

Functions ICFA ICA-DE ICAAI
Memetic

ICA
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO Stat. Sig.

f22
1.08e+02

(0.00e+00)

1.52e+02

(1.59e+00)

1.78e+02

(3.35e+00)

1.95e+02

(3.69e+00)

2.03e+02

(4.07e+00)

2.32e+02

(4.28e+00)

3.22e+02

(4.87e+00)

3.46e+02

(5.60e+00)

3.46e+02

(5.70e+00)

3.73e+02

(6.05e+00)

3.92e+02

(6.15e+00)

4.75e+02

(6.50e+00)

5.52e+02

(6.92e+00)

5.95e+02

(6.92e+00)
+

f23
3.38e+02

(0.00e+00)

4.72e+02

(5.22e-18)

4.48e+02

(1.84e-17)

5.02e+02

(1.46e-14)

5.10e+02

(3.39e-13)

5.38e+02

(3.86e-09)

5.62e+03

(4.06e-08)

5.66e+03

(4.07e-06)

6.10e+03

(4.30e-05)

6.17e+03

(4.40e-04)

6.91e+03

(5.38e-04)

7.23 e+03

(5.91e-03)

7.30 e+03

(6.03e-02)

7.87e+03

(6.49e-02)
+

f24
1.29e+02

(3.57e-17)

1.29e+02

(3.57e-17)

1.46e+02

(1.44e-16)

1.62e+02

(1.45e-15)

1.78e+02

(1.89e-14)

1.84e+03

(2.91e-12)

1.93e+03

(3.11e-10)

1.97e+03

(3.43e-10)

2.53e+03

(3.75e-09)

3.42e+03

(3.95e-07)

3.49e+03

(4.48e-06)

3.77e+03

(5.97e-05)

4.44e+03

(6.11e-05)

4.86e+03

(6.63e+01)
NA

f25
1.36e+02

(1.17e+00)

2.44e+02

(1.21e+00)

2.73e+02

(1.93e+00)

2.99e+02

(1.94e+00)

3.16e+02

(2.06e+00)

4.01e+02

(2.10e+00)

4.34e+02

(2.33e+00)

5.10e+02

(2.79e+00)

5.16e+02

(3.26e+00)

6.01e+02

(3.59e+01)

6.02e+02

(4.53e+01)

6.51e+02

(5.49e+01)

6.54e+02

(5.89e+01)

6.89e+02

(6.57e+01)
+

Table 5.2 COMPARATIVE ANALYSIS OF PERFORMANCE OF THE PROPOSED ICFA WITH OTHER

ALGORITHMS BASED ON CONVERGENCE TIME IN SECONDS FOR f01 TO f25
Functions Tolerance ICFA ICA-DE ICAAI

Memetic

ICA
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f01 1.00e-18 24.742 27.809 108.375 137.003 213.684 278.096 412.032 468.265 524.497 565.394 566.416 577.663 627.761 645.142

f02 2.00e-14 31.957 42.212 190.793 204.307 228.951 256.775 276.649 298.114 330.707 356.942 377.611 437.234 441.208 454.723

f03 4.00e-02 35.716 54.877 85.719 86.560 86.560 151.270 223.543 232.788 241.192 289.094 414.312 426.918 1554.722 489.107

f04 2.00e-04 44.991 46.230 222.895 280.683 359.109 404.514 584.069 693.453 864.752 899.838 1190.840 1197.032 1203.223 1271.330

f05 1.00e-10 56.435 66.432 354.738 570.807 738.502 964.245 980.369 1206.112 1241.586 1354.457 1699.522 1886.566 2438.024 2028.461

f06 4.00e-02 65.785 74.136 368.645 509.179 606.941 729.145 800.430 975.587 1120.194 1242.397 1317.756 1323.866 1751.577 1344.233

f07 3.00e-05 71.749 72.299 224.046 259.784 384.8657 412.356 426.101 501.700 531.939 607.538 716.125 801.345 874.195 1213.701

f08 2.00e-01 80.550 85.743 195.016 225.752 289.344 393.212 463.163 474.822 518.277 519.337 526.756 549.013 594.587 552.193

f09 2.00e-02 82.757 108.455 452.986 879.839 1520.119 1568.031 2060.219 2068.930 2121.198 2386.892 2700.498 2748.410 2883.435 2974.904

f10 3.00e-03 83.044 87.470 299.377 416.525 609.168 632.598 991.851 1239.163 1473.458 1496.888 3358.236 5987.554 12183.370 6430.112

f11 1.00e-10 87.984 136.390 335.992 410.024 586.563 879.845 936.792 1059.230 1104.789 1261.396 1312.649 1383.833 1765.384 2007.413

f12 8.00e-02 103.247 116.073 1154.319 1346.705 1513.440 2103.425 2218.857 2622.869 3078.184 3283.396 3341.112 3347.525 3629.692 3719.472

f13 9.00e-02 103.916 104.565 184.451 223.420 326.037 357.212 462.427 467.623 474.118 494.901 567.643 618.302 758.589 775.475

f14 7.00e-04 113.784 146.048 431.003 679.753 684.679 756.102 758.565 770.880 844.766 898.949 943.281 1098.442 1155.088 1293.009

f15 7.00e-01 117.032 144.925 312.086 374.504 2145.597 2360.156 3881.580 6807.394 8406.839 8874.969 9577.165 11157.105 11332.653 12795.561

f16 9.00e-03 120.138 177.510 81.890 87.284 622.757 2049.704 2093.837 2407.667 2505.739 2540.064 2785.244 2795.051 2834.280 3442.327

f17 1.00e-01 120.310 131.810 293.698 302.544 337.929 360.930 375.084 461.778 470.624 485.663 5051.256 5316.646 6015.507 6227.819

f18 2.00e-01 123.131 123.131 574.288 622.956 958.769 1065.840 1241.046 1620.661 1990.541 2710.835 3022.314 3178.053 3650.137 4263.361

f19 3.00e-02 128.413 168.148 327.428 185.883 325.722 3871.156 4280.442 5184.280 5798.208 6633.832 8339.188 8782.580 9925.168 11801.059

f20 2.00e+00 152.039 164.528 323.989 360.189 427.159 428.969 477.839 765.629 948.439 1035.319 1076.949 1136.679 1174.689 1230.799

f21 4.00e+01 152.635 201.814 250.264 324.213 743.142 863.356 1366.070 1653.855 1690.283 1850.569 2032.712 2112.854 2549.997 3398.782

f22 2.00e+00 156.405 184.566 1869.495 2129.448 2166.275 2751.169 4180.911 7603.627 9639.926 9661.589 10983.017 25995.306 34443.781 60439.088

f23 7.00e+01 165.270 207.414 224.767 243.773 269.390 329.714 428.049 437.966 444.576 454.493 472.672 545.391 2247.674 4016.065

f24 2.00e+02 180.090 266.919 543.129 571.715 618.167 1032.661 1386.410 1486.460 1650.828 1915.2471 19581.26 6860.587 7432.303 8254.144

f25 2.00e+02 182.976 365.211 1437.141 1659.379 2266.831 2718.715 3296.535 4178.080 4259.568 11852.711 12000.870 12371.267 20445.927 28965.063

236

10 20 30 40 50
Function Evaluations

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e


f05

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10-2

101

104

107

x104

Fig. 5.3 Relative performance in mean best objective function versus function evaluation for f05 with

Max_FEs=500000

6 12 18 24 30
Function Evaluations

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e


f07

ICFA
ICA-DE
ICAAR
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10-4

10-3

10-2

10-1

100

101

x104
Fig. 5.4 Relative performance in mean best objective function versus function evaluation for f17 with

Max_FEs=300000

0 2 4 6 8 10
Function Evaluations

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e


f17

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

101

101.5

102

103

103.5

104

102.5

x104
Fig. 5.5 Relative performance in mean best objective function versus function evaluation for f07 with

Max_FEs=100000

237

10 20 30 40 50
Function Evaluations

M
ea

n
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e


f20

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10-1

100

101

102

103

104

x104
Fig. 5.6 Relative performance in mean best objective function versus function evaluation for f20 with

Max_FEs=500000

In order to compare the speeds of different algorithms, we present the time taken by each
algorithm to converge to the prescribed threshold value of the objective function for the
minimization problem of 100-D search space in Table 5.2. The simulation results in Table 5.2
apparently substantiate the highest convergence speed of the proposed ICFA as compared to its
other thirteen contestants.

To compare the relative speed of convergence and quality of solution (accuracy) of ICFA
with its thirteen competitors, we plot the mean objective function values taken over 25 runs
versus FEs over four representative benchmark instances (f05, f07, f17 and f20) for different
settings of problem dimensions in Fig. 5.3 -5.6. The plots for all the functions are omitted for
space economy. In Fig. 5.3 -5.6, the maximum number of function evaluations Max_FEs is set
to be 100000, 300000 and 500000 for 10-D, 30-D and 50-D problems respectively. It is
observed from Fig. 5.3 -5.6 that ICFA outperforms all other algorithms in terms of
convergence speed and solution quality.

In Fig. 5.4 plot of accuracy versus run-time complexity for all fourteen algorithms over the
benchmark function f25 is presented with Max_FEs of 500000 for 50-D problem. It is to be
noted that the accuracy corresponds to absolute difference between the best-of-the-run value

)(bestXf


 (obtained after the termination of the algorithm) and the theoretical optimum *f of a
particular objective function, i.e., *)(fXf best 


. This provides a visual means of illustrating

the performance of the algorithms with respect to both accuracy and FEs/run-time. In order to
have uniformity in order of magnitude, the x- and the y-coordinates are scaled appropriately
and then we refer to the distance of a point from the origin as a measure of its performance.
The smaller the measure, the better is the performance of the algorithm. The relative
performance of two algorithms is symbolized by ‘≥”. Using this convention, Fig. 4.4 reveals
that the performance of the fourteen algorithms respectively is ICFA ≥ ICA-DE ≥ ICAAI

238

≥Memetic ICA≥ ICAR ≥ SBA ≥ HEICA ≥ CICA ≥ K-MICA ≥ R-ICA-GA ≥ ABC ≥ FA ≥
ICA ≥ PSO.

0 1 2 3 4 5 6 7 8 9 10
Function Evaluations

Ac
cu

ra
cy

 

f25

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

1018

1014

1010

106

10-2

102

x104

Fig. 5.7 Relative performance in accuracy versus function evaluation for ICFA over other competitive

algorithms for f25 with Max_FEs=5×106

The scalability of an algorithm signifies the consistency in its qualitative performance with
the growth of dimensionality of the search space. Increase of dimensions indicates a rapid
growth of the hyper-volume of the search space and this in turn decelerates the convergence
speed of most of the global optimizers. Fig. 5.7 illustrates the scalability of the fourteen
algorithms over two benchmark functions delineating the variation of the average
computational cost (measured in number of FEs required to yield a predefined accuracy
threshold) to capture the global optimum with the enhancement in the dimensionality of the
search space. It can be observed that ICFA requires smaller number of FEs to achieve the
threshold value irrespective of the problem dimensions. Hence the superiority of the proposed
ICFA over other algorithms is prominent as well.

10 20 30 40 50
5

10

15

20

25

30

Diomension

Fu
nc

tio
n

Ev
al

ua
tio

ns


f04

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

x105

239

10 20 30 40 50
10

20

30

40

50

60

Dimension

Fu
nc

tio
n

Ev
al

ua
tio

ns


f11

ICFA
ICA-DE
ICA-AI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

x104

Fig. 5.8 Variation of FEs required for convergence to predefined threshold accuracy (1.00e–08) with

increase in search space dimensionality for f04 and f11

A non-parametrical statistical test, known as Friedman two-way analysis of variances by
ranks [51], is also performed on the mean of the objective function values for 50 independent
runs of each of the fourteen algorithms, for 50-D problems. Additionally, we use Iman-
Davenport test as a variant of Friedman test that provides better statistics [52]. Table 5.3
summarizes the rankings obtained by Friedman procedure. The results emphasize ICFA as the
best algorithm, so the post-hoc analysis [40] is applied with ICFA as the control method. With
the level of significance α=0.05, both the Friedman and the Iman-Davenport statistics explain
significant differences in operators with test values of 275.7054 and 20591.88, respectively,
and p<0.001 (the estimated probability of rejecting the null hypothesis (H0) of a study question
when that hypothesis is true).

In the post-hoc analysis the Bonferroni-Dunn test [53] is employed over the results of
Friedman procedure. The outcome of the analysis provides a measure of the level of
significance of the superiority of the control algorithm over each of the remaining algorithms
(i.e., when the null hypothesis is rejected). For the Bonferroni-Dunn test, a critical difference
(CD) [53] is calculated which for these data appears as 2.639. It elucidates that the
performance of two algorithms is significantly different, only if their corresponding average
Friedman ranks differ by at least a critical difference. It is pictorially depicted in Fig. 5.9 . It
can be perceived that only ICA-DE and ICAAI, the null hypothesis cannot be rejected with any
of the tests for α=0.05. The performance of other eleven algorithms, however, may be regarded
as significantly poor than the ICFA in the present context.

240

Table 5.3 AVERAGE RANKINGS OBTAINED THROUGH FRIEDMAN’S TEST

Algorithm Ranking

ICFA 1.117

ICA-DE 1.883

ICAAI 3.000

Memetic ICA 4.000

ICAR 5.000

SBA 6.000

HEICA 7.000

CICA 8.000

K-MICA 9.000

R-ICA-GA 10.00

ABC 11.00

FA 12.00

ICA 13.00

PSO 14.00

Critical Difference α=0.05 2.639

Fig. 5.9 Graphical representation of Bonferroni-Dunn’s procedure considering ICFA as control

method

5.7 Computer Simulation and Experiment
Here the proposed algorithm is employed to carry a fixed length stick from a starting position
to a fixed destination by twin robots (multi-robot stick-carrying problem) both in computer
simulation and real-time environment. To analyze the performance of the proposed multi-
robot stick-carrying problem, the following performance metrics [69] are used.
5.7.1 Average total path deviation (ATPD)
Let Pik be a path from the starting point Si to the goal point Gi generated by the i-th robot
in the k-th run of the algorithm. If Pi,1, Pi,2,…, Pik are the paths generated over k runs then the

241

average total path traversed (ATPT) by the i-th robot is given by kP
k

j
ji

1
, and the

average path deviation (APD) is evaluated by measuring the difference between ATPT and the
ideal shortest path between Si to Gi. If the geometrically ideal path in a particular workspace is

Pi-ideal, then the average path deviation is given by Pi-ideal – kP
k

j
ji

1
, . Therefore for two robots

in the workspace the average total path deviation (ATPD) is
2

,
1 1
().

k
i ideal i j

i j
P P k

 
 

5.7.2 Average Uncovered Target Distance (AUTD)
Given a goal position Gi and the current position Ci of a robot on a 2-dimensional workspace,
where Gi and Ci are 2-dimensional vectors, the uncovered distance of robot i is ||Gi– Ci||,
where ||.|| denotes the Euclidean norm. For two robots, uncovered target distance

2

1
|| ||.i i

i
UTD G C


  Now, for k runs of the program, we evaluate the average of UTDs and

call it the average uncovered target distance (AUTD). For all experiments conducted in this
study, we have considered k=10.

5.7.3 Experimental Setup in Simulation Environment
The multi-robot stick-carrying problem is implemented in C on a Pentium processor. The
experiment is performed with two similar soft-bots of circular cross-sections of radius 6
pixels and 10 differently shaped obstacles. While performing the experiments, old obstacles
are retained and new obstacles are added in the workspace. The experiments are
accomplished with equal velocities for two robots in a given run of the program; however, the
velocities are regulated over different runs of the same program. Some instances of the
workspace of the robots, employing different evolutionary optimization algorithms, are given
in Fig. 5.10. It reveals that the robots successfully follow the shortest path with minimum path
deviation in case of ICFA-based realization of the multi-robot stick carrying problem.

 (a) (b)

242

 (c) (d)

 (e) (f)

Fig. 5.10 Initial (a) and final configuration of the world-map after execution of the (b) ICFA- (c) ICA-

DE- (d) ICAAI- (e) FA- and (f) ICA-based simulations with 5 obstacles requiring 23, 29, 32 and 34

steps respectively

5.7.4 Experimental Results in Simulation Environment
First, we plot ATPT by varying number of obstacles from 2 to 10 by generating paths using
five different algorithms, including ICFA, ICA-DE, ICAAI, FA and ICA. It is worth
mentioning from Fig. 5.11, that ICFA has the least ATPT in comparison to other algorithms
irrespective to the number of obstacles.

The second study on performance analysis is undertaken by plotting ATPD by generating
paths by five different evolutionary/swarm algorithms (as used in ATPT). Fig. 5.11 provides
the results of ATPD computation when the number of obstacles varies from 2 to 10. Here too,
we observe that ICFA outperforms the remaining four algorithms as ATPD remains the
smallest for ICFA based simulation irrespective to the number of obstacles.

243

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Obstacles

Av
er

ag
e

To
ta

l P
at

h
Tr

av
er

se
d 

ICA
FA
ICAAI
ICA-DE
ICFA

Fig. 5.11 Average total path traversed versus number of obstacles

2 4 6 8 10 8 10
0

100

200

300

400

500

600

700

800

900

Number of Obstacles

Av
er

ag
e

To
ta

l P
at

h
D

ev
ia

tio
n 

ICA
FA
ICAAI
ICA-DE
ICFA

Fig. 5.12 Average total path deviation versus number of obstacles

5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

Number of Steps

Av
er

ag
e

U
nc

ov
er

ed
 T

ar
ge

t D
is

ta
nc

e


ICA
FA
ICAAI
ICA-DE
ICFA

Fig. 5.13 Average uncovered target distance vs. number of steps with number of obstacles= 5 (constant)

The last analysis on performance is undertaken by comparing AUTD over the number of
planning steps. Fig. 5.13 provides a plot of AUTD when the paths are planned using the five

244

algorithms referred to above with number of obstacles=5. It is apparent from Fig. 5.13, that
AUTD returns the smallest value for ICFA irrespective of the number of planning steps. In
brief, the proposed ICFA-based stick-carrying methodology outperforms the remaining four
algorithms with respect to all three popular metrics.

5.7.5 Experimental Setup with Khepera Robots
The experiment is also undertaken in real environment with two homogeneous Khepera-II
mobile robots [70, 71] (diameter of 7 cm) in a world-map of 8  6 grids of equal size. Each
robot is equipped with 8 infrared sensors, two motor driven side wheels and one caster wheel
with a flash memory of 512 KB, and a Motorola 68331, 25MHz processor. The range sensors
placed at fixed angles have limited range detection capabilities. The robot represents
measured range data in the scale: [0, 1023]. When the distance of the obstacle from the sensor
exceeds 5cm, it is represented by zero. When an obstacle is approximately 2 cm away from
the sensor, it corresponds to 1023.

The robots are controlled by two Pentium-IV personal computers (PCs) through wired
connections. An optimization algorithm-based control program determining the next position
of each robot from its current position is run on the attached Pentium machine with the range
data obtained from sensory measurements of the robots. The necessary commands for
controlling motor movements are transferred to the robots from their connected computers.
One sample run of the stick-carrying problem on the Khepera environment is given in Fig.
5.14. The experiment is performed on 20 different world-maps of different grid counts, each
with five different obstacle-maps, and in all the 100 environments, the robots could
successfully follow the shortest paths avoiding collision with the obstacles.

5.7.6 Experimental Results with Khepera Robots
Results of the experiments performed are summarized in Table 5.4. Three performance
metrics, namely 1) total number of steps taken to reach the goal, 2) ATPT, and 3) ATPD have

Table 5.4 COMPARISON OF NUMBER OF STEPS, AVERAGE PATH TRAVERSED AND AVERAGE TOTAL PATH

DEVIATION BY THE KHEPERA ROBOTS

Algorithms

Total

Number

of Steps

ATPT

(inch.)

ATPD

(inch.)

ICFA 10 41.2 7.5

ICA-DE 13 44.2 9.5

ICAAI 16 45.7 12.1

FA 18 48.3 13.7

ICA 22 52.0 16.4

245

been used here too to determine the relative merits of ICFA over other algorithms.Table 5.4
substantiates that ICFA outperforms the remaining four algorithms with respect to all the
three metrics.

Fig. 5.14 Final configuration of the world-map after experiment using Khepera-II mobile robots

5.8 Conclusion
The most intriguing issue of the present chapter is the unique formulation of a multi-robot
stick-carrying problem in the framework of an evolutionary optimization problem. The
integrity of the work lies in online optimization of the trajectory of the stick (carried by the
robots) in a sequence of local steps from the predefined starting position to a given goal
position without collision with obstacles in the workspace. The stick-carrying optimization
problem is then solved using the proposed hybrid evolutionary optimization algorithm.

The chapter also introduced a novel approach for efficiently employing both ICA and FA to
develop a hybrid algorithm with an aim to utilize the composite benefits of the explorative and
exploitative capabilities of both ancestor algorithms. The potential of local exploitation is
captured by the colonizing behavior of countries (representing candidate solutions)
surrounding the respective imperialist (representing the local optima in the search space) of the
traditional ICA. Alternatively, the global explorative proficiency of FA is signified by the self-
organizing behavior of fireflies (representing candidate solutions) based on their light intensity
(symbolizing the fitness) profile. The merit of the proposed hybridization policy lies in
devising two interesting stratagems to realize the communal benefits of the two ancestor
algorithms: 1) integration of the light intensity (fitness) induced motion dynamics of fireflies in
the traditional ICA, and 2) modulation of step size for random motion of fireflies based on the

246

best position in the search space (discovered so far). The chapter also recommends a new
policy of evaluating the threshold value for union of colonies (set of candidate solutions) based
on search space dimensions.

The incorporation of firefly motion dynamics of the traditional FA in the traditional ICA is
significant due to its efficacy of distributing the information of the promising regions in the
search space among the fireflies (candidate solutions) through the brighter ones (quality
solutions with better fitness). The strategy thus allows each country (candidate solution) of
ICA to improve its socio-political characteristics by following the more powerful countries
(quality solutions with better fitness) in the colony, not only being guided by the respective
imperialist country (local optima). Hence, it evades the possibility of the search strategy to get
stuck at local optima.

The second strategy provides a unique estimate of step size for random movement of
fireflies based on their position in the search space relative to the so far best position. It
differs from the conventional approach, which considers equal step size for random
movement of all fireflies irrespective of their fitness, thereby offering a poor convergence rate
in most of the real world applications. In the proposed alternative approach, the step size for
random motion is decreased for a brighter firefly (quality solution with better fitness) to
confine its search process in close proximity of the best position discovered so far. It thus
assists in the local exploitation of quality solutions. Contrarily, the fireflies far away from the
best location in the search space are assigned with a large value of step size to inspire them in
global exploration.

The experimental study undertaken reveals the effectiveness of the proposed hybrid
algorithm in counterbalancing the trade-off between the global exploration and the local
exploitation. It is capable of maintaining large population variance to ensure population
diversity at earlier explorative phase of ICFA, while confining the search process in the local
neighborhoods at later exploitative phase by preserving low population diversity. We have
then undertaken a comparative study of the proposed ICFA algorithm with thirteen state-of-
the-art hybrid/traditional evolutionary/swarm algorithms. The efficacy of all the fourteen
contender algorithms is scrutinized with respect to the test suit of 25 CEC 2005 benchmark
functions. The relative performance of all the algorithms has been compared based on the
solution quality and the convergence time. The quality performance of ICFA is substantiated
by the reported simulation results. The experimental study clearly reveals that ICFA
outperforms its competitor algorithms with respect to the computational accuracy and the run-
time complexity required for convergence, irrespective of settings of problem dimension.

Three non-parametric tests including the Friedman test, the Iman-Davenport statistic, and
the Bonferroni–Dunn post hoc analysis, are used to validate the statistical significance of the

247

results. The results of both the Friedman and the Iman-Davenport tests affirm the rejection of
the null hypothesis, concerned with the equivalent performance of all the contender
algorithms. Moreover, ICFA emerges as the winner achieving the highest average Friedman
rank. The outcome of the Bonferroni-Dunn test further reveals that, apart from ICA-DE and
ICAAI, the remaining eleven algorithms are outperformed by ICFA in a statistically
significant manner.

Finally, the proposed ICFA is employed to handle the multi-robot stick-carrying problem.
The experiments undertaken reveal that the ICFA-based program here too outperforms all its
competitors with respect to two parameters AUTD and ATPD. The experiments performed
with Khepera-II mobile robots also indicate that ICFA outperforms other realizations in real
environment, thereby justifying the merit of the proposed algorithm.

A potential extension of the proposed multi-robot stick-carrying problem is to consider
noise contaminating the sensory measurements of the robots. In real world problems, the
sensory data of the robots are often found to be contaminated with noise due to sensor aging
or noisy ambience or faulty measurement procedure. The application of traditional/hybrid
evolutionary/swarm optimization algorithms may fail to solve such practical multi-robot
coordination problems. The existing algorithms are biased towards the selection of candidate
solutions with better fitness measures over evolutionary generations. However, this
conventional fitness based selection of candidate solutions may lead the search process
towards sub-optimal or deceptive regions in the search space in the presence of noise. Hence,
new robust selection strategy needs to be incorporated in the traditional/hybrid
evolutionary/swarm algorithms to cope with the uncertainty involved in the noisy sensory
data of the robots. Although the quality performance of ICFA is evident on different
complicated fitness landscapes, there is still scope to further amend its effectiveness to
capture the global optima in the real world multi-modal objective surface. It can be
accomplished by the online tuning of the algorithm control parameters to learn the objective
space characteristics using, for instance, machine-learning methods.

5.9 Summary
Chapter 5 hybridizes the Firefly Algorithm and the Imperialist Competitive Algorithm. The
above explained hybridization results in the Imperialist Competitive Firefly Algorithm, which
is employed to determine the time-optimal trajectory of a stick, being carried by two robots,
from a given starting position to a predefined goal position amidst static obstacles in a robot
world-map. The motion dynamics of fireflies of the Firefly Algorithm is embedded into the
socio-political evolution-based meta-heuristic Imperialist Competitive Algorithm. Also the
trade-off between the exploration and exploitation is balanced by modifying the random walk
strategy based on the position of the candidate solutions in the search space. The superiority

248

of the proposed Imperialist Competitive Firefly Algorithm is studied considering run-time and
accureacy as the performance metrics. Finally, the proposed algorithm has been verified in
real-time multi-robot stick-carrying problem.

5.10 Appendix 5.1
In order to compare the speeds of different competitive algorithms listed under section 5.6.1,
we record the number of FEs the algorithm takes to reach below a predefined cut-off value of
the objective function for the minimization problem. A lower number of FEs corresponds to a
faster algorithm. Table 5.A.1 details the number of runs (out of 25) that successfully locate the
optimum solution (within the given tolerance) as well as the success performance attained by
the algorithms to converge within the prescribed threshold value. Table 5.A.1. A designates
that the number of runs that converge below a pre-specified threshold value is also greater for
ICFA over most of the benchmark problems considered here. This indicates the higher
robustness of the algorithm as compared to its other thirteen contestants.

Table 5.A.1 NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN

PARENTHESIS (SUCCESS PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (#

OF SUCCESSFUL RUNS)) FOR f01 TO f25
Functions Tolerance ICFA ICA-DE ICAAI

Memetic

ICA
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f01 1.00e-18
25

(2.42e+03)

25

(2.72e+03)

25

(1.06e+04)

24

(1.34e+04)

24

(2.09e+04)

24

(2.72e+04)

23

(4.03e+04)

23

(4.58e+04)

22

(5.13e+04)

21

(5.53e+04)

21

(5.54e+04)

21

(5.65e+04)

21

(6.14e+04)

20

(6.31e+04)

f02 2.00e-14
24

(4.02e+03)

24

(5.31e+03)

23

(2.40e+04)

23

(2.57e+04)

22

(2.88e+04)

22

(3.23e+04)

22

(3.48e+04)

21

(3.75e+04)

21

(4.16e+04)

21

(4.49e+04)

21

(4.75e+04)

20

(5.50e+04)

19

(5.55e+04)

18

(5.72e+04)

f03 4.00e-02
25

(4.25e+03)

24

(6.53e+03)

24

(1.02e+04)

24

(1.03e+04)

24

(1.03e+04)

24

(1.80e+04)

23

(2.66e+04)

23

(2.77e+04)

22

(2.87e+04)

21

(3.44e+04)

21

(4.93e+04)

21

(5.08e+04)

21

(1.85e+05)

21

(5.82e+04)

f04 2.00e-04
25

(2.18e+03)

24

(2.24e+03)

24

(1.08e+04)

24

(1.36e+04)

24

(1.74e+04)

23

(1.96e+04)

23

(2.83e+04)

23

(3.36e+04)

21

(4.19e+04)

21

(4.36e+04)

20

(5.77e+04)

19

(5.80e+04)

19

(5.83e+04)

18

(6.16e+04)

f05 1.00e-10
25

(1.75e+02)

25

(2.06e+02)

24

(1.10e+03)

24

(1.77e+03)

23

(2.29e+03)

23

(2.99e+03)

23

(3.04e+03)

23

(3.74e+03)

22

(3.85e+03)

22

(4.20e+03)

21

(5.27e+03)

21

(5.85e+03)

21

(7.56e+03)

21

(6.29e+03)

f06 4.00e-02
25

(3.23e+03)

24

(3.64e+03)

23

(1.81e+04)

23

(2.50e+04)

22

(2.98e+04)

22

(3.58 e+04)

22

(3.93e+04)

21

(4.79e+04)

21

(5.50e+04)

21

(6.10e+04)

20

(6.47e+04)

20

(6.50e+04)

19

(8.60e+04)

19

(6.60e+04)

f07 3.00e-05
25

(5.22e+02)

24

(5.26e+02)

24

(1.63e+03)

24

(1.89e+03)

23

(2.80e+03)

23

(3.00e+03)

23

(3.10e+03)

22

(3.65e+03)

22

(3.87e+03)

21

(4.42e+03)

21

(5.21e+03)

20

(5.83e+03)

19

(6.36e+03)

18

(8.83e+03)

f08 2.00e-01
25

(7.60e+03)

25

(8.09e+03)

25

(1.84e+04)

25

(2.13e+04)

25

(2.73e+04)

23

(3.71e+04)

23

(4.37e+04)

22

(4.48e+04)

22

(4.89e+04)

21

(4.90e+04)

20

(4.97e+04)

20

(5.18e+04)

19

(5.61e+04)

19

(5.21e+04)

f09 2.00e-02
24

(1.90e+02)

24

(2.49e+02)

23

(1.04e+03)

23

(2.02e+03)

22

(3.49e+03)

22

(3.60e+03)

21

(4.73e+03)

21

(4.75e+03)

20

(4.87e+03)

20

(5.48e+03)

20

(6.20e+03)

19

(6.31e+03)

19

(6.62e+03)

19

(6.83e+03)

f10 3.00e-03
24

(3.19e+02)

24

(3.36e+02)

24

(1.15e+03)

24

(1.60e+03)

23

(2.34e+03)

23

(2.43e+03)

22

(3.81e+03)

21

(4.76e+03)

21

(5.66e+03)

20

(5.75e+03)

19

(1.29e+04)

19

(2.30e+04)

18

(4.68e+04)

19

(2.47e+04)

f11 1.00e-10
25

(3.09e+03)

25

(4.79e+03)

25

(1.18e+04)

25

(1.44e+04)

24

(2.06e+04)

24

(3.09e+04)

23

(3.29e+04)

23

(3.72e+04)

23

(3.88e+04)

21

(4.43e+04)

20

(4.61e+04)

20

(4.86e+04)

20

(6.20e+04)

20

(7.05e+04)

f12 8.00e-02
25

(1.61e+03)

25

(1.81e+03)

25

(1.80e+04)

24

(2.10e+04)

24

(2.36e+04)

23

(3.28e+04)

22

(3.46e+04)

22

(4.09e+04)

22

(4.80e+04)

21

(5.12e+04)

21

(5.21e+04)

21

(5.22e+04)

20

(5.66e+04)

20

(5.80e+04)

f13 9.00e-02
25

(8.00e+03)

25

(8.05e+03)

23

(1.42e+04)

22

1.72e+04)

21

(2.51e+04)

21

(2.75e+04)

20

(3.56e+04)

20

(3.60e+04)

20

(3.65e+04)

19

(3.81e+04)

19

(4.37e+04)

19

(4.76e+04)

19

(5.84e+04)

19

(5.97e+04)

249

Functions Tolerance ICFA ICA-DE ICAAI
Memetic

ICA
ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f14 7.00e-04
25

(4.62e+02)

25

(5.93e+02)

24

(1.75e+03)

24

(2.76e+03)

24

(2.78e+03)

23

(3.07e+03)

23

(3.08e-+03)

23

(3.13e+03)

22

(3.43e+03)

22

(3.65e+03)

21

(3.83e+03)

20

(4.46e+03)

20

(4.69e+03)

18

(5.25e+03)

f15 7.00e-01
25

(6.00e+02)

25

(7.43e+02)

25

(1.60e+03)

25

(1.92e+03)

24

(1.10e+04)

24

(1.21e+04)

24

(1.99e+04)

23

(3.49e+04)

22

(4.31e+04)

22

(4.55e+04)

22

(4.91e+04)

21

(5.72e+04)

21

(5.81e+04)

21

(6.56e+04)

f16 9.00e-03
24

(2.45e+03)

24

(3.62e+03)

23

(1.67e+03)

23

(1.78e+03)

22

(1.27e+04)

22

(4.18+04)

21

(4.27e+04)

21

(4.91e+04)

21

(5.11e+04)

20

(5.18e+04)

20

(5.68e+04)

20

(5.70e+04)

19

(5.78e+04)

19

(7.02e+04)

f17 1.00e-01
25

(1.36e+03)

25

(1.49e+03)

23

(3.32e+03)

23

(3.42e+03)

22

(3.82e+03)

21

(4.08e+03)

21

(4.24e+03)

21

(5.22e+03)

21

(5.32e+03)

20

(5.49e+03)

20

(5.71e+04)

19

(6.01e+04)

19

(6.80e+04)

19

(7.04e+04)

f18 2.00e-01
25

(2.53e+03)

25

(2.53e+03)

24

(1.18e+04)

24

(1.28e+04)

24

(1.97e+04)

23

(2.19e+04)

21

(2.55e+04)

20

(3.33e+04)

20

(4.09e+04)

19

(5.57e+04)

18

(6.21e+04)

18

(6.53e+04)

18

(7.50e+04)

17

(8.76e+04)

f19 3.00e-02
24

(7.53e+03)

24

(9.86e+03)

24

(1.92e+04)

23

(1.09e+04)

23

(1.91e+04)

23

(2.27e+05)

22

(2.51e+05)

21

(3.04e+05)

20

(3.40e+05)

20

(3.89e+05)

20

(4.89e+05)

19

(5.15e+05)

19

(5.82e+05)

18

(6.92e+05)

f20 2.00e+00
25

(8.40e+03)

24

(9.09e+03)

23

(1.79e+04)

22

(1.99e+04)

22

(2.36e+04)

22

(2.37e+04)

21

(2.64e+04)

21

(4.23e+04)

20

(5.24e+04)

19

(5.72e+04)

19

(5.95e+04)

19

(6.28e+04)

19

(6.49e+04)

18

(6.80e+04)

f21 4.00e+01
25

(4.19e+03)

25

(5.54e+03)

24

(6.87e+03)

24

(8.90e+03)

24

(2.04e+04)

23

(2.37e+04)

22

(3.75e+04)

22

(4.54e+04)

21

(4.64e+04)

21

(5.08e+04)

21

(5.58e+04)

21

(5.80e+04)

21

(7.00e+04)

20

(9.33e+04)

f22 2.00e+00
24

(7.22e+02)

24

(8.52e+02)

24

(8.63e+03)

23

(9.83e+03)

23

(1.00e+04)

22

(1.27e+04)

22

(1.93e+04)

21

(3.51e+04)

21

(4.45e+04)

19

(4.46e+04)

19

(5.07e+04)

19

(1.20e+05)

18

(1.59e+05)

18

(2.79e+05)

f23 7.00e+01
25

(2.00e+02)

24

(2.51e+02)

24

(2.72e+02)

24

(2.95e+02)

23

(3.26e+02)

22

(3.99e+02)

22

(5.18e+02)

21

(5.30e+02)

20

(5.38e+02)

20

(5.50e+02)

20

(5.72e+02)

19

(6.60e+02)

19

(2.72e+03)

18

(4.86e+03)

f24 2.00e+02
24

(5.04e+02)

24

(7.47e+02)

24

(1.52e+03)

23

(1.60e+03)

23

(1.73e+03)

22

(2.89e+03)

22

(3.88e+03)

20

(4.16e+03)

20

(4.62e+03)

20

(5.36e+03)

20

(5.48e+04)

20

(1.92e+04)

20

(2.08e+04)

19

(2.31e+04)

f25 2.00e+02
24

(2.47e+02)

23

(4.93e+02

23

(1.94e+03)

23

(2.24e+03)

22

(3.06e+03)

22

(3.67e+03)

22

(4.45e+03)

22

(5.64e+03)

21

(5.75e+03)

20

(1.60e+04)

19

(1.62e+04)

17

(1.67e+04)

17

(2.76e+04)

17

(3.91e+04)

References
[1] T. Fong, I. Nourbakhsh and K. Dautenhahn, "A survey of socially interactive robots," Robotics

and autonomous systems, vol. 42, no. 3, pp. 143-166, 2003.

[2] R. Luna and K. E. Bekris, "Efficient and complete centralized multi-robot path planning,"

International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, pp. 3268-3275,

2011.

[3] P. Bhattacharya and M. L. Gavrilova, "Roadmap-based path planning-Using the Voronoi diagram

for a clearance-based shortest path," Robotics & Automation Magazine, IEEE, vol. 15, no. 2, pp.

58-66, 2008.

[4] R. Gayle, W. Moss, M. C. Lin and D. Manocha, "Multi-robot coordination using generalized

social potential fields," IEEE International Conference on Robotics and Automation, pp. 106-113,

2009.

[5] S. Yamada and J. Y. Saito, "Adaptive action selection without explicit communication for

multirobot box-pushing," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 31, no.3, pp. 398-404, 2001.

[6] H. Sugie, Y. Inagaki, S. Ono, H. Aisu and T. Unemi, "Placing objects with multiple mobile robots-

mutual help using intention inference," IEEE International Conference on Robotics and

250

Automation, Proceedings, Vol. 2, pp. 2181-2186, 1995.

[7] Y. Yamauchi, S. Ishikawa, N. Uemura and K. Kato, "On cooperative conveyance by two mobile

robots," IEEE International Conference on Industrial Electronics, Control, and Instrumentation,

Proceedings of the IECON'93, pp. 1478-1481, 1993.

[8] C. R. Kube and H. Zhang, "The use of perceptual cues in multi-robot box-pushing," IEEE

International Conference on Robotics and Automation, Proceedings, Vol. 3, pp. 2085-2090, 1996.

[9] P. Rakshit, A. Konar, S. Das, L. C. Jain and A. K. Nagar, "Uncertainty Management in

Differential Evolution Induced Multi-objective Optimization in Presence of Measurement Noise,"

IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. 44, no. 7, pp. 922 - 937, 2014.

[10] P. Das, A. K. Sadhu, R. R. Vyas, A. Konar and D.Bhattacharyya, "Arduino Based Multi-robot

Stick-carrying by Artificial Bee Colony Optimization Algorithm, "Third International Conference

on Computer, Communication, Control and Information Technology (C3IT), IEEE, pp. 1-6, 2015.

 [11] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. on

Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997. http://dx.doi.org/10.1109/4235.585893.

[12] G. K. Pugalendhi, R. Chellasamy, D. Durairaj and T. Aruldoss Albert Victoire, “Hybrid Ant Bee

Algorithm for Fuzzy Expert System Based Sample Classification,” IEEE/ACM Trans. Comput.

Biology Bioinform. vol. 11, no. 2, pp. 347-360, 2014.

 [13] E. A. –Gargari and C. Lucas, "Imperialist competitive algorithm: an algorithm for optimization

inspired by imperialistic competition," IEEE Congress in Evolutionary Computation, CEC, pp.

4661-4667, 2007.

[14] P. Kamkarian and H. Hexmoor, “Exploiting the Imperialist Competition Algorithm to determine

exit door efficacy for public buildings,” in SIMULATION: Transactions of The Society for

Modeling and Simulation International, vol. 89, No. 12, Sage Pub, 2013.

[15] X. S. Yang, "Firefly algorithms for multimodal optimization, Stochastic Algorithms: Foundations

and Applications," SAGA, Lecture Notes in Computer Sciences 5792, pp. 169-178, 2009.

 [16] R. Narimani and A. Narimani, "A New Hybrid Optimization Model Based on Imperialistic

Competition and Differential Evolution Meta- Heuristic and clustering Algorithms," Applied

Mathematics in Engineering, Management and Technology, vol. 1, no. 2, pp. 1–9, 2013.

[17] B. Subudhi and D. Jena, “A differential evolution based neural network approach to nonlinear

system identification,” Applied Soft Computing, vol. 11 no. 1, pp. 861-871, 2011.

 [18] F. Ramezani, S. Lotfi and M. A. Soltani-Sarvestani, "A hybrid evolutionary imperialist

competitive algorithm (HEICA)," Intelligent Information and Database Systems, Springer Berlin

Heidelberg, Part I, LNAI 7196, pp. 359-368, 2012.

 [19] V. Khorani, F. Razavi and A. Ghoncheh, "A New Hybrid Evolutionary Algorithm Based on ICA

and GA: Recursive-ICA-GA,". IC-AI, pp. 131-140, 2010.

 [20] S. Nozarian and M. V. Jahan, "A Novel Memetic Algorithm with Imperialist Competition as

251

Local Search," International Proceedings of Computer Science & Information Technology, 30,

2012.

 [21] J. L. Lin, Y. H. Tsai, C. Y. Yu and M. S. Li, "Interaction Enhanced Imperialist Competitive

Algorithms," Algorithms, vol. 5, no. 4, pp. 433-448, 2012.

 [22] L. D. S. Coelho, L.D. Afonso and P. Alotto, "A modified imperialist competitive algorithm for

optimization in electromagnetic," IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 579-582,

2012.

[23] M. A. Ahmadi, M. Ebadi, A. Shokrollahi and S. M. J. Majidi, "Evolving artificial neural network

and imperialist competitive algorithm for prediction oil flow rate of the reservoir," Applied Soft

Computing, Elsevier, vol. 13, no. 2, pp. 1085-1098, 2013.

[24] S. Talatahari, B. Farahmand Azar, R. Sheikholeslami, and A. H. Gandomi, "Imperialist

competitive algorithm combined with chaos for global optimization," Communications in

Nonlinear Science and Numerical Simulation, Elsevier, vol. 17, no. 3, pp. 1312-1319, 2012.

[25] H. Bahrami, K. Faez and M. Abdechiri, "Imperialist competitive algorithm using chaos theory for

optimization (CICA)," 12th International Conference on Computer Modelling and Simulation

(UKSim), IEEE, pp. 98-103), 2010.

[26] H. Bahrami, M. Abdechiri and M. R. Meybodi, "Imperialist competitive algorithm with adaptive

colonies movement," International Journal of Intelligent Systems and Applications (IJISA), vol. 4,

no. 2, pp. 49-57, 2012.

[27] Y. Zhang, Y. Wang and C. Peng, "Improved imperialist competitive algorithm for constrained

optimization," International Forum on Computer Science-Technology and Applications, IFCSTA,

IEEE,vol. 1, pp. 204-207, 2009.

[28] B. Mohammadi-ivatloo, A. Rabiee, A. Soroudi and M. Ehsan, "Imperialist competitive algorithm

for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44, no. 1, pp.

228-240, 2012.

[29] V. Rashtchi, E. Rahimpour and H. Shahrouzi, "Model reduction of transformer detailed RCLM

model using the imperialist competitive algorithm," IET electric power applications, vol. 6, no. 4,

pp. 233-242, 2012.

[30] V. Khorani, F. Razavi, and V. R. Disfani, "A mathematical model for urban traffic and traffic

optimization using a developed ICA technique," IEEE Trans. on Intelligent Transportation

Systems, vol. 12, no. 4, pp. 1024-1036, 2011.

[31] H. Gorginpour, B. Jandaghi and H. Oraee, "A novel rotor configuration for brushless doubly-fed

induction generators," IET Electric Power Applications, vol. 7no. 2, pp. 106-115, 2013.

[32] H. Gorginpour, H. Oraee Mirzamani and R. McMaho, "Electromagnetic-thermal design

optimization of the brushless doubly-fed induction generator," IEEE Trans. on Industrial

Electronics, vol. 61, no. 4, pp. 1710-1721, 2014.

252

[33] T. Niknam, E.F. Taherian, N. Pourjafarian, A. Rousta, "An efficient hybrid algorithm based on

modified imperialist competitive algorithm and K-means for data clustering," Eng. Appl. Artif.

Intell. vol. 24, no. 2, pp. 306–317, 2011.

[34] H. Mozafari, B. Abdi and A. Ayob, "Optimization of adhesive-bonded fiber glass strip using

imperialist competitive algorithm," Procedia Technology, Elsevier, vol. 1, pp. 194-198, 2012.

[35] A. Kaveh and S. Talatahari, "Optimum design of skeletal structures using imperialist competitive

algorithm," Computers & structures, Elsevier, vol. 88, no. 21, pp. 1220-1229, 2010.

[36] S. Nazari-Shirkouhi, H. Eivazy, R. Ghodsi, K. Rezaie and E. Atashpaz-Gargari, "Solving the

integrated product mix-outsourcing problem using the imperialist competitive algorithm," Expert

Systems with Applications, Elsevier, vol. 37, no. 12, pp. 7615-7626, 2010.

[37] H. Duan, C. Xu, S. Liu and S. Shao, "Template matching using chaotic imperialist competitive

algorithm," Pattern recognition letters, Elsevier, vol. 31, no. 13, pp. 1868-1875, 2010.

[38] M. Sharifi and H. Mojallali, "Design of IIR digital filter using modified chaotic orthogonal

imperialist competitive algorithm," 13th Iranian Conference on Fuzzy Systems (IFSC), IEEE, pp.

1-6, 2013.

[39] M. Bashiri and M. Bagheri, "Using Imperialist Competitive Algorithm in Optimization of

Nonlinear Multiple Responses," International Journal of Industrial Engineering, vol. 24, no. 3, pp.

229-235, 2013.

[40] H. Emami, S. Lotfi, "Graph colouring problem based on discrete imperialist competitive

algorithm," Internat. J. Found. Comput. Sci. Technol., vol. 3, no. 4, pp. 1–12, 2013.

[41] J. L. Lin, C. W. Cho and H. C. "Chuan, Imperialist competitive algorithms with perturbed moves

for global optimization," Applied Mechanics and Materials, vol. 284-287, pp. 3135-3139, 2013.

[42] N. Karimi, M. Zandieh and A. A. Najafi, "Group scheduling in flexible flow shops: a hybridized

approach of imperialist competitive algorithm and electromagnetic-like mechanism," International

Journal of Production Research, vol. 49, no. 16, pp. 4965-4977, 2011.

[43] A. Hamel, H. Mohellebi and M. Feliachi, "Imperialist Competitive Algorithm and Particle

Swarm Optimization Comparison for Eddy Current Non-destructive Evaluation," Przeglad

Elektrotechniczny, vol. 88no. 9 A, pp. 285-289, 2012.

[44] M. Bidar and H. K. Rashidy, "Modified firefly algorithm using fuzzy tuned parameters," 13th

Iranian Conference on Fuzzy Systems (IFSC), IEEE, pp. 1-4, 2013.

[45] K. Chandrasekaran, S.P. Simon, "Optimal deviation based firefly algorithm tuned fuzzy design

for multi-objective UCP," IEEE Trans. Power Syst. vol. 28, no. 1, pp. 460–471, 2013.

[46] L. D.S. Coelho, T. C. Bora, F. Schauenburg and P. Alotto, "A Multiobjective Firefly Approach

Using Beta Probability Distribution for Electromagnetic Optimization Problems," IEEE Trans. on

magnetics, vol. 49, no. 5, pp. 2085-2088, 2013.

[47] S. M. Farahani, A. A. Abshouri, B. Nasiri and M. R. Meybodi, "A Gaussian firefly

253

algorithm, International Journal of Machine Learning and Computing," vol. 1, no. 5, pp. 448-453,

2011.

[48] S. Chetty and A. O. Adewumi, "Comparison Study of Swarm Intelligence Techniques for the

Annual Crop Planning Problem," IEEE Trans. on Evolutionary Computation, vol. 18no. 2, 2014.

[49] A. Abdullah, S. Deris, M. S. Mohamad and S. Z. M. Hashim, "A New Hybrid Firefly Algorithm

for Complex and Nonlinear Problem," Distributed Computing and Artificial Intelligence, Springer,

AISC 151, pp. 673-680, 2012.

[50] H. Banati and M. Bajaj, "Fire Fly Based Feature Selection Approach," IJCSI, vol. 8, issue. 4, no.

2, pp. 473-480, 2011.

[51] M. H. Horng and T. W. Jiang, "The codebook design of image vector quantization based on the

firefly algorithm," ICCCI, Part III, LNAI 6423, pp. 438–447, 2010.

[52] Z. Z. Abidin, M. R. Arshad and U. K. Ngah, "A simulation based fly optimization algorithm for

swarms of mini-autonomous surface vehicles application," Indian Journal of Geo- Marine

Sciences, vol. 40, no. 2, 250-266, 2011.

[53] S.J. Huang, X.Z. Liu, W.F. Su, S.H. Yang, "Application of hybrid firefly algorithm for sheath

loss reduction of underground transmission systems," IEEE Trans. Power Deliv. vol. 28, no. 4, pp.

2085–2092. 2013.

[53] S. J. Huang, X. Z. Liu, W. F. Su and S. H. Yang, "Application of Hybrid Firefly Algorithm for

Sheath Loss Reduction of Underground Transmission Systems," IEEE Trans. on Power Delivery,

vol. 28, no. 4, 2013, pp. 2085-2092, 2013.

[54] K. Durkota, "Implementation of a discrete firefly algorithm for the QAP problem within the sage

framework," Bachelor Thesis, Czech Technical University , 2011.

[55] J. Kwiecień and B. Filipowicz, "Firefly algorithm in optimization of queueing systems," Bulletin

of the Polish Academy of Sciences Technical Sciences,vol. 60, no. 2, pp. 363-368, 2012.

[56] T. Apostolopoulos and A. Vlachos, "Application of the Firefly Algorithm for Solving the

Economic Emissions Load Dispatch Problem," International Journal of Combinatorics, Article ID

523806, 23 pages, 2011.

[57] M. L. Gao, X. H. He, D. S. Luo, J. Jiang, and Q. Z. Teng, "Object tracking using firefly

algorithm," IET Computer Vision, vol. 7, no. 4, pp. 227-237, 2013.

[58] G. K. Jati and Suyanto, "Evolutionary Discrete Firefly Algorithm for Travelling Salesman

Problem," International Conference on Adaptive and Intelligent Systems, LNAI 6943, pp. 393–

403, 2011.

[59] S. K. Pal, C. S. Rai and A. P. Singh, "Comparative study of firefly algorithm and particle swarm

optimization for noisy non-linear optimization problems," International Journal of Intelligent

Systems and Applications, vol. 4, no. 10, pp. 50-57, 2012.

[60] P. Mandal, A. U. Haque, J. Meng, A. K. Srivastava and R. Martinez, "A novel hybrid approach

254

using wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price forecasting,"

IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 1041-1051, 2013.

[61] T. Hassanzadeh, and M. R. Meybodi, "A new hybrid algorithm based on Firefly Algorithm and

cellular learning automata," 20th Iranian Conference on Electrical Engineering (ICEE), IEEE, pp.

628-633, 2012.

[62] B. Nasiri and M. R. Meybodi, "Speciation based firefly algorithm for optimization in dynamic

environments," International Journal Artificial Intelligence, vol. 8, no. 12, pp. 118-132, 2012.

[63] S. M. Farahani, A. A. Abshouri, B. Nasiri and M. R. Meybodi, "Some hybrid models to improve

firefly algorithm performance," International Journal Artificial Intelligence, vol. 8, no. S12, pp.

97-117, 2012.

[64] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger and S. Tiwari, "Problem

Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter

Optimization, Problem definitions and evaluation criteria for the CEC 2005 special session on real-

parameter optimization," KanGAL Report 2005005, 2005.

[65] F. Ramezani and S. Lotfi, "Social-Based Algorithm (SBA)," Applied Soft Computing, Elsevier,

vol. 13, no. 5, pp. 2837-2856, 2013.

[66] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical

Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

[67] J. Chakraborty and A. Konar, "A Distributed Multi –Robot Path Planning Using Particle Swarm

Optimization," 2nd National Conference on Recent Trends in Information Systems, pp. 216-221,

2008.

[68] X. Yan, Y. Zhu, J. Wu and H. Chen, "An Improved Firefly Algorithm with Adaptive Strategies,"

Advanced Science Letters, vol. 16, no.1, pp. 249-254, 2012.

 [69] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L. C. Jain, and A. K. Nagar,

"Realization of an Adaptive Memetic Algorithm Using Differential Evolution and Q-Learning: A

Case Study in Multirobot Path Planning," IEEE Trans. on Systems, Man, and Cybernetics:

Systems, vol. 43, no. 4, pp. 814-831, 2013.

[70] E. Franzi, "Khepera BIOS 5.0 Reference Manual," K-Team, SA, 1998.

[71] K. U. M. Version, "Khepera User Manual 5.02," K-Team, SA, Lausanne, 1999.

Chapter 6
Conclusions and Future Directions

This chapter concludes the thesis. Here novelties, originality of thesis are reclaimed and the
future research directions are indicated.

256

6.1 Conclusions
The thesis identifies a few fundamental problems in multi-robot coordination and proposes
solutions to handle these preoblems by extending the traditional evolutionary algorithm (EA)
and multi-agent Q-learning (MAQL). Chapter 1 provides the preliminaries of Reinforcement
Learning (RL) and EA in view of the multi-robot coordination. Chapter 2 proposes two useful
characteristic properties for exploration of the team-goal and joint action selection in multi-
agent system. The incorporation of the first property with traditional MAQL (TMAQL)
ensures exploration of the team-goal by multi-phased transitions of the agents asynchronously
or synchronously to finally reach the team-goal, and thereby offer high reward values to such
pre-goal state to the goal state transitions. The second property helps in identifying common
preferred joint actions for the entire team, thus avoiding same joint actions at the same states
and thereby enhancing the learning speed of the agents. The Q-table obtained in joint state-
action space using the proposed fast cooperative multi-agent Q-learning (FCMQL) algorithms
have been employed in the multi-agent planning algorithm to autonomously select goal state-
transitions (team-goal) from the pre-goal states based on their high reward values stored in the
Q-table. TMAQL induced planners occasionally fail to reach the team-goal as such state-
transitions which might result in due to follow-up actions of Property 1 in FCMQL are
missing from the Q-table obtained by TMAQL. It is shown in a Theorem, that the expected
convergence time of the proposed FCMQL algorithms is less than the same of TMAQL
algorithms. The complexity analysis reveals the superiority of the proposed FCMQL
algorithms over the TMAQL algorithms.

Chapter 3 proposes a novel Consensus Q-learning (CoQL) algorithm for multi-robot
cooperative planning. The proposed CoQL algorithm addresses the problem of equilibrium
selection among multiple equilibria, by evaluating the consensus (joint action) at the current
joint state. An analysis reveals that a consensus at a joint state is a pure strategy Nash
equilibrium (NE) as well as pure strategy correlated equilibrium (CE). The novelty of the
CoQL lies in the adaption of the joint Q-values at consensus. The superiority of the proposed
CoQL algorithm is verified over the reference algorithms in terms of the average of the
average rewards (AAR) earned by the agents against the learning epoch. In addition,
consensus-based multi-robot cooperative planning algorithm is proposed and its superiority is
verified over reference algorithms, considering path length and torque requirement as the
performance metrics.

Chapter 4 introduces a novel approach to correlated Q-learning (CQL) and subsequent
multi-robot planning. Two models are proposed in chapter 4. The principles adapted in the
proposed models yield a single Q-table in joint state-action space, which contains sufficient
information to plan by employing the proposed multi-agent planning algorithms. The Q-table

257

obtained from model-I and II have less computational cost than the traditional CQL. An
analysis reveals that both time- and space- complexities of proposed learning and planning
algorithms are significantly less to those of the CQL. A further reduction in complexity is
obtained by dropping the infeasible joint state-action pairs from the joint Q-table. Unlike
traditional CQL, in the proposed models computation of the CE is done partly in the learning
and partly in the planning phases, thereby requiring CE computation once. It has been proved
in a Theorem, that the CE obtained by the proposed models is same as that obtained by the
traditional CQL algorithms.

Chapter 5 introduces a novel approach for efficiently employing both imperslistic
competitive algorithm (ICA) and firefly algorithm (FA) to develop a hybrid algorithm with an
aim to utilize the composite benefits of the explorative and exploitative capabilities of both
ancestor algorithms. The potential of local exploitation is captured by the colonizing behavior
of countries (representing candidate solutions) surrounding the respective imperialist
(representing the local optima in the search space) of the traditional ICA. Alternatively, the
global explorative proficiency of FA is signified by the self-organizing behavior of fireflies
(representing candidate solutions) based on their light intensity (symbolizing the fitness)
profile. The merit of the proposed hybridization policy lies in devising two interesting
stratagems to realize the communal benefits of the two ancestor algorithms: 1) integration of
the light intensity (fitness) induced motion dynamics of fireflies in the traditional ICA, and 2)
modulation of step size for random motion of fireflies based on the best position in the search
space (discovered so far). The chapter also recommends a new policy of evaluating the
threshold value for union of colonies (set of candidate solutions) based on search space
dimensions.

Finally, all the proposed learning and planning algorithms are verified first in simulation
and then are implemented for real-time planning using Khepera mobile robots. The proposed
learning-based planning and ICFA is employed to handle the multi-robot object-
transportation tasks. The experiments performed with Khepera mobile robots also indicate
that the proposed algorithms outperform other realizations in real environment, thereby
justifying the merit of the proposed algorithms.

6.2 Future directions
Cooperative robots have wide applications in flexible manufacturing systems (FMS) and
factory automation, where the servicing robots picks up items from the conveyer and places
the items again once the operation on the item by the servicing robot is over. In defense
sector, cooperative robots would find applications in landmine/water mine clearing. In
building construction/repair, robot team is a good choice as the skyscrapers invite high risks

258

for the masons or their assistants. We hope for the best, when a pair of robots might serve as a
surgeon and nurse, where the latter may assist the former in surgery.

The above dreams will be realized in near future by extending the thesis in the following
dimension: i) multi-agent Fuzzy-Q learning, ii) multi-agent reinforcement learning employing
function approximation techniques, iii) multi-agent reinforcement learning for distributed Q-
learning with the flavor of partially observable Markov decision process, iv) optimal
trajectory generation in presence of dynamic obstacles employing PrEference Appraisal
Reinforcement Learning, v) efficient strategies for mixed coordination and vi) deep
reinforcement learning.

