
A Study on Multispectral Image and Video
Fusion with some Applications

Thesis submitted by

GANGAPURE VIJAY NARAYAN

Doctor of Philosophy (Engineering)

Department of Electronics and Telecommunication Engineering

FACULTY COUNCIL OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY
KOLKATA, INDIA

2017

http://http://www.jaduniv.edu.in/




JADAVPUR UNIVERSITY
KOLKATA- 700 032, INDIA

INDEX NO. 295/14/E

1. Title of the thesis:

“A Study on Multispectral Image and Video Fusion with some Applications”

2. Name, Designation & Institution of the Supervisor:

Dr. Ananda Shankar Chowdhury
Associate Professor
Department of Electronics and Telecommunication Engineering
Jadavpur University, Kolkata- 700 032, India

i



3. List of publication:

(In International Journals)

(i) Vijay N. Gangapure, Sudipta Banerjee, Ananda S. Chowdhury: Steerable local frequency
based multispectral multifocus image fusion. Information Fusion, Elsevier, 23: 99-115
(2015)

(ii) Vijay N. Gangapure, S. Nanda, A.S. Chowdhury: Superpixel based Causal Multisensor
Video Fusion, IEEE Transactions on Circuits and Systems for Video Technology (2017). [in
press, DOI: 10.1109/TCSVT.2017.2662743]

(In International Conferences)

(iii) Vijay N. Gangapure, Susmit Nanda, Ananda S. Chowdhury, Xiaoyi Jiang: "Causal Video
Segmentation Using Superseeds and Graph Matching", Graph based Representation in Pat-
tern Recognition (GbRPR 2015), 10th IAPR International Workshop, Springer LNCS 9069,
Beijing China, May 13-15 (2015), 282-291.

(iv) Sudipta Banerjee, Vijay N. Gangapure, Ananda S. Chowdhury: "Multispectral Multifocus
Image Fusion with Guided Steerable Frequency and Improved Saliency", 9th Indian Con-
ference Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2014),
IISc Bangalore India, December 14-18 (2014), 9:1-9:8.

(v) Vijay N. Gangapure, R. Sarkar, A.S. Chowdhury: "2.5D Palmprint Recognition using Sig-
nal level Fusion and Graph based Matching", Ninth International Conference on Advances
in Pattern Recognition (ICAPR), ISI Bangalore, India, December 27-30 (2017). (accepted)

4. List of patents: NIL

5. List of Presentations in National/International:

(i) Presented a paper entitled “Multispectral Multifocus Image Fusion with Guided Steerable
Frequency and Improved Saliency,Indian Conference on Computer Vision, Graphics and
Image Processing (ICVGIP 2014)"’, December 14-18, 2014, IISc Bangalore, India.

(ii) Presented a paper entitled “Causal Video Segmentation Using Superseeds and Graph Match-
ing"’, 10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition
(GbR 2015), May 13-15, 2014, NLPR, Institute of Automation. Chinese Academy of Sciences
(CASIA) , Beijing, China.

(iii) To be presented a paper entitled "2.5D Palmprint Recognition using Signal level Fusion and
Graph based Matching", Ninth International Conference on Advances in Pattern Recogni-
tion (ICAPR), December 27-30, 2017, ISI Bangalore, India.

ii



CERTIFICATE

This is to certify that the thesis entitled “A Study on Multispectral Image and Video

Fusion with some Applications” submitted by Shri. Gangapure Vijay Narayan, who

got his name registered on 21/04/2014 [D-7/E/331/14] for award of Ph.D. (Engg.) degree

of Jadavpur University is absolutely based upon his own work under the supervision of Dr.

Ananda Shankar Chowdhury, and that neither his thesis nor any part of the thesis has

been submitted for any degree/ diploma or any other academic award anywhere before.

Dr. Ananda Shankar Chowdhury

Signature of the Supervisor
and date with office seal





Abstract

In this thesis, we address different challenges in multispectral image and video fu-
sion. Our first problem is on multispectral multifocus image fusion. A novel focus
measure, based on steerable local frequency,is proposed.The proposed measure is
shown to perform uniformly well across different spectra like visible, near infra-red
and thermal. We further enhance the quality of the multispectral multifocus fusion
by guided filtering and a graph based saliency model. The second problem is on
causal multispectral video fusion. In this connection, we first solve the problem of
causal video segmentation. An efficient causal video segmentation method is pro-
posed using superseeds and graph matching. We then design a novel superpixel
based causal multispectral video fusion method suitable for real-time surveillance
applications. As a part of this solution, superpixel based spatio-temporal saliency
model as well as superpixel based multiple fusion rules are developed. For the
third problem, we consider an application of fusion in the domain of multi-biometric
recognition. Here, we perform a signal level fusion of 2D and 3Dpalmprint data and
apply a graph based recognition strategy. The proposed solution is shown to yield
high recognition accuracy.
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Chapter 1

Introduction

This chapter provides an outline of multispectral multifocus image and multispec-
tral video fusion with a fusion application in multimodal biometry. In section 1.1,
we take the overview of the research work. In section 1.2 we discuss the motivation
behind the work undertaken. Section 1.3 presents the key contributions. In section
1.4, we provide an overview of how the rest of this thesis is organized.

1.1 Overview

Image and video fusion remains a challenging problem in the area of image/video
analysis and computer vision. It has widespread applications in diverse fields like
medicine, surveillance, military and law enforcement, remote sensing, biometrics,
manufacturing, intelligent robots [1–5]. The main objective of any image/video fu-
sion algorithm is to design highly accurate and computationally efficient strategy to
combine information from two or a more source images/frames of a scene to produce
more informative fused image. The fused image/frame can be further exploited for
extraction of useful information. The image and video fusion can also be referred to
as static and dynamic image fusion.

General requirements of image or video fusion algorithms are as follows [6].

1. The relevant information from source images to be fused should not be lost in
the fused one.

2. Fusion process itself should not introduce any kind of artifacts, inconsistencies
that may distract the purpose.

3. The fused image sequence should be temporally stable and consistent.
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4. Fusion process should be shift and rotation invariant.

Depending on the application requirement we can choose the level of information

representation at which fusion process actually take place. Sorted in ascending order

of abstraction we have- Signal or pixel level fusion (low level), Feature level fusion (mid

level) and Symbolic or Decision level fusion (high level). Actual image fusion process

may occur in spatial or transform domain [7].

Images or videos to be fused may not be aligned or may have some relative trans-

lation, rotation, scale, and other geometric transformations in relation to each other,

or not on the same coordinate system. So image to image registration is necessary by

which we transform such images into one coordinate system or align with respect to

each other. In image fusion it is presumed that the images to be fused are registered.

1.1.1 Image fusion

The source images to be fused can be captured under differently varying conditions.

Accordingly, we have different types of fusion schemes like- Multiview fusion, Multi-

temporal fusion, Multifocus fusion, Multispectral fusion, Multimodal fusion.

• Multiview image fusion: The objective of multiview image fusion is to fuse

images of same modality of a scene captured at the same time but from the

different places.This is to just supply complementary information from different

view points to produce more informative fused image of a scene, see Fig. 1.1.

FIGURE 1.1: Multiview fusion: Example.
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• Multitemporal image fusion: In this, images of the same scene usually of the

same modality but taken at different times are fused together to detect changes.

Fig. 1.2 shows such an example of digital subtraction angiography in medicine.

FIGURE 1.2: Multitemporal fusion: Example.

• Multifocus image fusion: Addresses image quality degradation problem in im-

age acquisition system. The overall goal is to bring all the objects in the scene in

focus and the resultant image is called all-in-focus image. Please refer to Fig. 1.3

for an example.

FIGURE 1.3: Multifocus fusion: Example.

• Multimodal/Multispectral image fusion: Here, images of different modalities

e.g. visible, infrared, thermal spectra; CT, MRI, PET. are fused together to de-

crease the amount of data to emphasis band specific information in the fused

video. Fig. 1.4 shows an example of concealed weapon detection by fusion of

visible and infrared spectrum images of scene.

1.1.2 Video fusion

Recently, the image fusion methods are extended to video fusion. Video fusion have

been become very popular for various applications like video surveillance, super

resolution reconstruction, video snapshots or summarization generation, restoration
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FIGURE 1.4: Multimodal/Multispectral fusion: Example.

enhancement. Depending on the number of videos sensors involved in the fusion,

we can classify video fusion in two categories- the Intra video fusion or Inter video

fusion. In case of intra-video fusion the subsequent frames from a single video are

processed using fusion framework to produce enhanced video frame or snapshot or

summarization. While in case of inter-video fusion, multispectral videos of a scene

captured by more than one video sensors are involved. These videos are fused to-

gether to produce more informative video of a scene.

FIGURE 1.5: Video fusion: Applications and Methods scenario

The advancement in multispectral video sensors technology and it’s availability at

low cost have motivated researchers to come up with novel multispectral multisensor

video surveillance systems. Such systems are proved to be very effective and have
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outperformed the single sensor based systems in uncontrolled and adverse condi-

tions like low llumination, shadowing, smoke, dust, unstable background, and cam-

ouflage. The fusion plays a very important role in such multisensor video surveil-

lance systems. Here, the fusion can be employed to combine information from the

multispectral videos of a scene; from different spectra like visible (VIS), infrared (IR)

or thermal infrared (TH-IR); to produce more informative fused video. The produced

fused video can describe a scene more accurately and precisely as compared to any

of the individual modalities. This helps in analysis of further important surveillance

tasks like anomalous event detection [8] and person re-identification [9].

Early video fusion methods, which are just extension of static image fusion algo-

rithms [3, 4, 10, 11], suffer from temporal instability and inconsistencies. Some later

methods [12–14] addressed this problem by utilizing the information from adjacent

past and future frames. Depending on the utilizing information from either from past

or/and future frames, we can classify these methods as- Non-causal (Utilize both past

and future frames) and Causal (Utilize only past frames). For real time surveillance

applications the future frames may not be available at the time of processing of cur-

rent frame.

1.1.3 Some applications of fusion

Fusion provides solution to a wide variety of applications such as:

1) Biomedical imaging: Some examples are- Fusing X-ray computed tomography

(CT) and magnetic resonance (MR) images, computer assisted surgery, spatial regis-

tration of 3-D surface.

2) Biometric authentication: Multimodal biometric systems involving multiple bio-

metric traits like fingerprint, iris, face, 2D and 3D palmprint .

3) Manufacturing: Finds application in electronic circuit and component inspection,

product surface measurement and inspection, non-destructive material inspection,
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manufacture process monitoring, complex machine/device diagnostics and intelli-

gent robots on assembly lines.

4) Military and law enforcement: For detection, tracking, identification of ocean (air,

ground) target or event, concealed weapon detection, battle-field monitoring and

night pilot guidance.

5) Remote sensing: Using various parts of the electro-magnetic spectrum Sensors-

from black-and-white aerial photography to multi-spectral active microwave space-

borne imaging radar.

6) Intelligent robots: Require motion control, based on feedback from the environ-

ment from visual, tactile, force/torque, and other types of sensors, stereo camera

fusion, intelligent viewing control, automatic target recognition and tracking.

Out of the above applications, we focus on multimodal biometrics in the present the-

sis. A general overview of such a multimodal biometric system is presented below.

Fusion can play very important role in biometric authentication systems. Basi-

cally there are two major approaches for biometric authentication- unimodal biometric

systems and multimodal biometrics systems (Multibiometrics). Very recently, multibio-

metric approaches have been become very popular due to its significant advantages

over unimodal systems, like improvement in recognition performance, improving

population coverage, deterring spoof attacks, increasing the degrees of freedom, and

reducing the failure-to-enroll rate [15]. For illustration of multibiometric system, re-

fer to Fig. 1.6 The key to successful multi-biometric system is in an effective fusion

scheme, which is necessary to combine the information presented by multiple traits.

Fusion for the multi-biometric system is relatively new area. The information from

the multiple traits can be integrated at several different levels and we can subdivide

them into two main categories- prior to matching fusion and after matching fusion. In

prior to matching fusion case, the information integration takes place before match-

ing. This category again subdivided into- Sensor level fusion (low level) and feature

level fusion (mid level). In case of after matching fusion, the information integration

takes place after matching. Again this category is subdivided into- Match score level,
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Rank level and Decision level fusion (high level)[16–18]. Biometric systems that in-

tegrate information at an early stage of processing are believed to be more effective

than those systems which perform integration at a later stage [19]. On the contrary,

feature level fusion have also provided better recognition results but suffers from dif-

ficulties to achieve in practice due to unknown relationship between feature spaces

of different modalities and curse of dimensionality. Fusion at decision level is too

rigid since only limited amount of information is available at this level. Integration

at matching score level is normally preferred in many past systems due to ease of ac-

cess and combining matching scores. Thus, innovative combination of fusion could

be used to achieve robust performance.

FIGURE 1.6: Generic Multimodal biometric system.

Today, the multbiometric systems are in developing stage. A very few multi-

biometric systems are practically deployed and in its enrollment stage viz. UIDAI’s

(Unique Identification Authority of India) Aadhaar project, by Government of India,

to provide identification to each resident. The growing security concerns as well as

spoofing attack threats clearly suggests the future prospects of the multbiometric sys-

tems. Most importantly, the effective way in which fusion of the multiple traits takes

place, ultimately decides the performance of these systems. Recent literature shows

the use of various kinds of physiological, medico-chemical, behavioral and soft bio-

metrics (attribute or characteristics or traits) combinations being used in multbiomet-

ric systems. The use of physiological biometrics from various body regions like face,
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hand, ocular are mostly preferred due to their inherent benefits like universality, dis-

tinctiveness, invariance, collectability, performance, acceptability and circumvention

[20]. The use of fingerprint, iris, and face have been become very popular in uni-

modal systems and are being used with other novel traits in multbiometrics systems,

like 2D and 3D palmprint, hand-geometry, hand vein pattern, finger knuckle point,

ear shape, teeth, tongue print, retina. Recently use of 2D and 3D palmprints have

become very popular due to its unique complementary nature and benefits. The

combination of these two traits could be very effective to avoid spoofing attacks.

1.2 Motivation

Multifocus image fusion is a category of fusion that involves images at different fo-

cus levels. The limited depth of field in cameras does not enable capturing of all

objects in a scene at a consistently maintained focus level. Therefore, to obtain a

highly focused image, information from a sequence of defocused images needs to be

integrated together. Focus measure quantifies the amount of information present in

the images. It can be used to determine whether information from a typical source

image is relevant or not [21, 22]. An image having high focus measure contains sig-

nificant information and plays a crucial role in image fusion. So, the effectiveness of

the focus measure to a large extent determines the quality of image fusion. The fo-

cus measure should be robust enough to implement intra-spectral fusion effectively.

Majority of the existing multifocus image fusion methods are in the visual spectrum

only. Very less work is thus far reported in other spectra like near-infrared (NIR) ,

Thermal infrared (TH-IR).

We observed that the performance of many recently proposed focus measures [23]

is variant to the spectral content of the source images to be fused viz. VIS, NIR

and TH-IR. To alleviate this problem one could employ spectrum dependent focus

measures to achieve acceptable performance. This prompted us to the formulation
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of our first problem to work on. So, the objective is to design a novel multispectral

focus measure which performs uniformly and effectively across different spectra and

can objectively determine the focus level of images. Furthermore, the proposed focus

measure should be robust enough to implement intra-spectral fusion effectively.

Majority of inter multispectral video fusion approaches are non-causal and are

transform domain based [12–14, 24, 25]. The transform domain approaches, in spite

of some inherent advantages over spatial domain, suffers from approximation is-

sues in implementation and may be quite expensive if employed at higher scales to

achieve robust performance. On the other hand spatial domain approaches are more

accurate and precise, but suffers from computational inefficiency and thus limiting

its employability for real time applications. To address these problems, in our second

work we propose a solution to causal multispectral video fusion. We present a novel

superpixel based framework for causal multispectral videos fusion (CMVF) in spatial

domain. The proposed approach can be very useful for real time video surveillance

applications.

Currently 2D and 3D palmprint biometrics has become popular due to its ad-

vantages like- high distinctiveness, robustness, and high user-friendliness. The 2D

palmprint acquisition is less robust against illumination changes; contamination on

palm can substantially affect recognition rate; can be easily copied and counterfeited,

so vulnerable to spoofing attacks [26]. We can overcome the challenges 2D palm-

print recognition is facing by the use of 3D palmprint. It is also more difficult to

fake/copy/and counterfeit 3D palmprint as compared to 2D palmprint to spoof the

biometric system [27]. Also, 3D palmprint is always preferred than other 3D biomet-

ric technologies like 3D face and 3D ear [28, 29] due to its certain benefits. Compared

to 3D face, 3D palmprint is not affected by challenges associated with various fa-

cial expressions and is much easier to acquire and more user friendly than 3D ear.

To build more robust and highly secure palmprint recognition system we can take

advantage of the highly discriminative texture rich information from 2D palmprint
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and depth information from 3D palmprint. Biometric systems that integrate infor-

mation at an early stage of processing are believed to be more effective than those

systems which perform integration at a later stage[30]. In literature there are very

few attempts to fuse the 2D and 3D palmprint information in recognition [26, 31–33].

Majority of these approaches are based either on feature or score level fusion. As

per best of our knowledge, up to date there is no work reported which exploited sig-

nal/sensor level fusion of 2D and 3D palmprint data. So, in our third work we plan

to propose a multimodal biometric system based on fusion of 2D, 3D palmprint. The

fused 2.5D palmprint representation can be more informative than the original in-

dividual 2D and 3D palmprints and can be useful in improvement in recognition

performance.

1.3 Contributions

We now state the key contributions of this thesis work.

1. The first problem we addressed is on multispectral multifocus image fusion.

The key contributions of this work are as follows.

• We propose new focus measure based on steerable local frequency (SLF)

based interest point detection. For this we suggest the construction of the

oriented analytic image. The proposed focus measure captures all the sharp

features in different orientations and hence perform well across different

spectra (VIS, NIR, TH).

• We employ the proposed focus measure for intra multispectral multifocus

image fusion. The proposed fusion scheme achieves improved fusion per-

formance across different spectra.

Further, to achieve better fusion performance we propose a solution based on
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guided steerable local frequency and improved Saliency (GSLF-IS). The contri-

butions of this solution are as follows.

• Judicious application of the guided edge preserving filtering in two phases.

In the first phase, the source images to be fused are enhanced using guided

filtering keeping the source images same as the guidance images. In the

second phase, the steerable local frequency maps of the enhanced source

images are further refined using guided filtering. In this case, the enhanced

source images are used as the guidance images.

• Development of an improved model of saliency based on Graph-based vi-

sual saliency (GBVS), Spectral residual saliency (SRA) and Laplacian saliency

(LS).

• The improved saliency map is combined with the guided steerable local

frequency map to generate good fusion results across all spectra.

2. Our second problem is on multisensor causal video fusion from different spec-

tra. To provide solution, we first worked on causal video segmentation. For this

we present a solution using superseeds and local graph matching. The major

contributions of this part of work are:

• A novel method of label propagation based on graph matching.

• Use of superseeds for achieving better segmentation.

• Unlike some of the existing approaches, we do not use any post-processing

steps to achieve superior segmentation performance.

Based on this work, next, we propose a superpixel based causal multisensor

video fusion (CMVF) algorithm. Visible and infrared video pairs are fused using

this algorithm to obtain highly accurate information in a time-efficient manner.

Here, the main contributions are:
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• New superpixel level spatio-temporal saliency models.

• Novel multiple fusion rules for saliency based grouping of superpixels.

• Low execution time making it amenable for real-time surveillance applica-

tions.

Comprehensive comparison with several existing approaches on a number of

publicly available datasets clearly indicate the advantage of our video fusion

method.

3. The third problem is an application of fusion for multi-biometric recognition.

We propose a novel multimodal biometric system based on fusion of aligned 2D

and 3D palmprints. The main contributions of this work are as follows.

• Signal level fusion of 2D and 3D palmprints with local standard deviation

based novel fusion rule to produce more informative 2.5D palmprint data.

• Use of graph based template generation and matching framework.

The Comprehensive comparison with very recent score and feature level fusion

based approaches shows the superiority of the proposed system.

1.4 Thesis Organization

The rest of the thesis is organized in the following manner:

In Chapter 2, in first part, we discuss the steerable local frequency (GSLF) based

solution for multispectral focus measure and its application n multifocus image fu-

sion. In the second part we present extension to enhance performance. Here, innova-

tive use of guided filtering and improved saliency model is discussed. The detailed

experimentation analysis with datasets and performance metrics are also given in

subsequent sections.
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In chapter 3, we provide a novel superpixel based framework for casual multispec-

tral/multisensor video fusion. We divide the discussion into two parts. In the first

part, we provide a novel causal video segmentation solution using superseeds and

graph matching for semantic segmentation of the input visible spectrum video. In

the second part, we provide very details of the proposed multispectral video fusion.

The efficient superpixel based spatial and temporal saliency detection models and

fusion rules to achieve final fusion are discussed in details. The chapter ends with

very comprehensive experimentation analysis and comparisons. The details of used

datasets and performance metrics used can also be found.

In chapter 4, we provide a solution to multimodal biometric system based on 2D,

3D palmprints. We took detail overview of biometric systems based on 2D, 3D and

2D+3D palmprints. In the next parts we provide the details of the proposed frame-

work. First the preprocessing of 2D and 3D palmprints and signal level fusion to

produce 2.5D palmprint data is discussed. Next, graph based template generation

and matching is discussed in detail. Finally, the chapter ends with experimental

results section containing details about dataset used, performance metrics , compar-

isons and analysis.

Finally, Chapter 5 concludes the work presented in this thesis, and provides some

directions for future research.
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Chapter 2

Multispectral Multifocus Image Fusion

The objective of multifocus image fusion is to integrate source images of a scene
captured at different focal lengths to produce all-in-focus image. The primary step
in any multifocus image fusion to determine the focus quality of source images to
be fused. In this chapter, first, we propose a novel steerable local frequency based
focus measure which is robust to spectral content of source images to be fused. Sec-
ondly, based on this focus measure we propose an efficient multispectral multifocus
image fusion scheme. Further, we enhance the fusion performance by introducing
the innovative use of improved saliency model and guided filtering. The proposed
approaches fulfills the need of uniform multispectral focus measure and as well as
of an efficient multispectral multifocus image fusion scheme.

2.1 Introduction

The multifocus image fusion which entails fusion of relevant information from two

or more source images obtained at different focal points into a composite image of

better quality (all in focus image). Imaging cameras, particularly those with long

focal lengths, usually have only a finite depth of field. In an image captured by those

cameras, only those objects within the depth of field of the camera are focused, while

other objects are blurred. To obtain an image that is in focus everywhere, we need

to fuse the images taken from the same view point under different focal settings.

The aim of multifocus image fusion is to integrate complementary and redundant

information from multiple images to create a composite result that contains a better
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description of the scene than any of the individual source images [21, 22]. In order

to determine, information from which of the source images needs to be integrated

in the fused result, the notion of focus measure or image sharpness or image clarity

comes into play. For example, a certain region in the source image A has higher

focus measure than that of the same region in source image B. So, the fused result,

F will contain information from A. Thus, a good focus measure inherently improves

the fusion performance. So, fundamental step behind any multifocus fusion lies in

the determination of the focus quality of the source images. Furthermore, the fusion

scheme applied based on the focus quality measure determines the quality of the

final fused image.

2.1.1 Focus measures

A focus measure is an objective function of digital images that gives a single value

for each input image as the indicator of its focusing status or sharpness status. The

desirable characteristics any focus measure should have are listed as follows [21, 22]:

• Unimodality: The focus measure should be unimodal i.e. it should have only

one maxima corresponding to the highest level of focus. Unimodality ensures

unambiguous solution during the search for best focused position in the image.

• Monotonicity: On either side of the maxima , a focus measure should be mono-

tonic so that focus measure values should be different for different levels of de-

focus.

• Defocus and Noise Sensitivity: Ideally a focus measure should be sensitive to de-

focus and insensitive to noise.

• Effective Range: It is the defocus range over which a focus measure maintains

its reasonable sensitivity. The broader its effective range, the better is the focus

measure.
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• Computational Efficiency: A focus measure should not be too computationally

complex.

• Variability: A good focus measure should not vary dramatically from one case to

another, that is, it should be “repeatable” over different target scenes and optical

systems.

• Focus measure should be independent of image content.

• Focus measure should be independent of image modality.

Focus measures can be broadly classified in to two categories depending on the

domain in which the focus measure is determined of source image. These are spatial

domain and transform domain focus measures.

Spatial domain focus measures:

As name implies the focus measure is computed in the original spatial domain of

the image under consideration. Spatial domain focus measures are further classified

into four broad categories, such as, derivative based, statistics based, histogram based and

intuition based.

The derivative based algorithms suppose that well-focused images have more high

frequency content than the defocused images. It considers that the neighboring pix-

els in images with high frequency content have large differences in intensity. They

apply convolution masks to an image to obtain the derivatives. The magnitude of the

derivative vectors computed using norms yields the required focus measure value.

However, in computing derivatives, these algorithms are highly sensitive to noise. A

few examples of such focus measures include thresholded absolute gradient, squared

gradient, Brenner gradient, Tenenbaum gradient, energy of Laplacian and sum modi-

fied laplacian. Thresholded absolute gradient [34] sums the absolute value of the first

derivative that is larger than a certain threshold. Squared gradient [34] on the other

hand sums the squared differences, making larger gradients exert more influence.

Brenner gradient [35] computes the first difference between a pixel and its neighbor
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with a horizontal/vertical distance of 2. Tenenbaum gradient, popularly known as

Tenengrad [21, 36], convolves an image with Sobel operators; sums the square of the

gradient vector components. Energy of laplacian (EOL) [37] convolve an image with

one of the laplacian convolution masks to compute the second derivative. The final

output is obtained as the sum of the squares of the convolution results along height

and width of the image. Sum modified laplacian (SML) [38] computes the sum of the

absolute values of the convolution of an image with laplacian operators.

The statistics based algorithms distinguish focused images from defocused im-

ages using variance and correlation. They are generally less sensitive to noise than

derivative-based algorithms. Variance [36, 39] computes variations in gray level

among image pixels. It uses the power function to amplify larger differences from

the mean intensity instead of simply enhancing the high-intensity values. Normal-

ized variance [36, 39] on the other hand normalizes the final output with the mean

intensity, compensating for the differences in average image intensity among differ-

ent images. Auto-correlation algorithm incorporates the auto-correlation among the

different pixels [40, 41].

Histogram based algorithms use histograms H(i) (i.e., the number of pixels with

intensity i in an image) to analyze the distribution and frequency of image intensities.

Range algorithm [42], a focus measure belonging to the above category computes the

difference between the highest and the lowest intensity levels. Entropy algorithm

[42] assumes that focused images contain more information than defocused images.

Thus, image having higher entropy intrinsically has larger focus measure.

Intuitive based focus measures make use of heuristic approaches to derive the fo-

cus measure. Thresholded content [39, 43] sums the pixel intensities above a given

threshold θ to compute the required focus measure. Similarly, thresholded pixel

count [39] counts the number of pixels having intensity below a given threshold.

Image Power [34] obtains the focus measure as the sum of the square of image in-

tensities above a given threshold, θ. Spatial Frequency [44] (SF) is a focus measure
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which can be considered as a derivative based focus measure due to its dependence

on gradients. It indicates the overall activity level in an image f(i, j). The gradi-

ents are computed by measuring the intensity differences between adjacent pixels

along horizontal and vertical lines. The gradients are squared so as to enhance the

contributions of the larger gradients more than those of the smaller gradients.

Transform domain focus measures:

The transform domain focus measures based on wavelet transforms are proposed

such as W1, W2 and W3. Wavelet algorithm W1 [45, 46] uses the Daubechies D6

wavelet. The resultant decomposition of an image consists of four sub-images; LL,

HL, LH, and HH belonging to low-low, high-low, low-high and high-high sub-bands.

The algorithm sums the absolute values in the HL, LH, and HH regions. Wavelet

algorithm W2 [45, 46] computes the sum of the variances in the HL, LH, and HH

regions. The mean values in each region are computed from the absolute values.

Wavelet algorithm W3[45, 46] is same as that of the previous version with the ex-

ception of the mean values in each region, which are computed without using abso-

lute values. Recently proposed locally adaptive laplacian mixture model based focus

measure algorithm [47] examines the statistics of the wavelet coefficients to evaluate

the sharpness measurement. It has been established that the marginal distribution of

the wavelet coefficients in the high frequency bands varies with images having dif-

ferent focus levels. To provide a quantitative measurement of the degree of blur in an

image, a locally adaptive laplacian mixture model is used to formulate the marginal

distribution of wavelet coefficients.

Interest point detector based focus measures

An interest point is a point in an image where certain property changes significantly.

Probably the most frequently considered property is intensity. As a result, interest

points can act as an important tool in defining the features present in an image, such

as blobs, corners, edges. It can be observed that the number of detected interest
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points decreases when the image is blurred/defocused. Thus, it can serve the pur-

pose of determining the focus measure of an image i.e. the number of interest points

detected in a well-focused image will be very higher as compared to other defocused

images [23, 48]. Another important aspect of interest point detectors is that they ex-

ploit the concept of phase congruency, local frequency of an image without being

dependent solely on intensity [49, 50].

2.1.2 Multifocus image fusion

A generic multifocus image fusion is illustrated in Fig. 2.1.

FIGURE 2.1: Generic Multifocus image fusion.

Many multifocus fusion algorithms are available in the literature. These algo-

rithms operate at pixel level or region level, and in spatial as well as transform

domains. Spatial domain pixel level algorithms are popular due to their computa-

tional efficiency [6]. Multiresolution transform based algorithms are preferred nowa-

days due to their robust performance [37]. Within the transform domain, Discrete

Wavelet Transform (DWT) based algorithms, though perform better than the Lapla-

cian Pyramid Transform (LPT), have limited orientation selectivity [51]. More im-

proved multiresolution transform techniques include Stationary Wavelet Transform

(SWT), Curvelet Transform (CVT), Contourlet Transform (CT), Dual Tree Complex

Wavelet Transform (DTCWT) and Non-Subsampled Contourlet Transform (NSCT)

[37, 51]. In [37], Li et al. has evaluated the performance of such multiresolution

transforms for multifocus image fusion in the visual spectrum only. Benes et al. [52]
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proposed a new multifocus image fusion algorithm for thermal images where they

employed pixel level weighted averaging based on modified EOL. But such a linear

combination often fails to preserve the original information in source images leading

to degradation in the fusion performance.

Existing literature clearly suggests that designing a focus measure and applying

it for fusion across different spectra still poses a considerable challenge. In this

work, we propose a novel focus measure using steerable local frequency based in-

terest point detection. A recent work is reported where pixel intensities at different

orientations are considered for obtaining a focus measure [53]. However, phase of a

pixel carry more useful information than intensity [54]. To the best of our knowledge,

this phase information has not been captured in different orientations earlier. In this

work, we make the local frequency of the pixels, the spatial derivative of the local

phase, steerable to obtain a good focus measure. For this purpose, we suggest the

construction of the oriented analytic image. The proposed focus measure captures

all possible sharp features in different orientations and hence performs well across

different spectra. Further, we employ our focus measure for multispectral multifo-

cus image fusion. Detailed experimentation reveal much improved multifocus image

fusion performances across different spectra.

We further enhance the performance of aforementioned multispectral multifocus

fusion method by using novel improved saliency model and guided filtering. We

use guided edge preserving filter in two phases. In the first phase source images

to be fused are enhanced using guided filtering. In the second phase, the obtained

SLF maps of these enhanced source images are further refined using guided filter-

ing, resulting guided steerable local frequency maps (GSLF). Our improved model of

saliency is based on Graph-based visual saliency (GBVS), Spectral residual saliency

(SRA) and Laplacian saliency (LS). This improved saliency map is combined with

the GSLF map to generate good fusion results across all spectra. The results shows

improvement in fusion performance over our previous approach.
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2.2 Related works

This section reviews the select major approaches described in the literature for focus

measures and multifocus image fusion.

2.2.1 Focus measures

In [55], Liu et al. evaluated the performance of eighteen focus measures, e.g., EOG

(Energy of Gradient), SML (Sum of Laplacian), EOL (Energy of Laplacian), TEN

(Tenengrad) etc. for microscopic images from the different categories as discussed

earlier, see section 2.5.2. All these focus measures are based on variations in pixel

intensities only. These methods have several drawbacks, like, the performance vari-

ation with spectral content of the source images, insensitivity to defocus, fluctuation

with noise content and narrow effective range.

To overcome these limitations, recently, Minhas et al. [53] proposed a novel efficient

focus measure. The main objective was to build depth map generation for shape from

focus (SFF) application. The proposed method uses steerable filters for depth map

estimation from the sequence of images acquired at varying focus plane. Further, the

highest gradient information is exploited at the desired orientation is utilized for the

purpose.

In another method Tian and Chen [47] examined statistics of details wavelet coef-

ficients to perform sharpness measurement in the input image. The marginal distri-

bution of the wavelet coefficients is different for images with different focus levels.

So, the degree of focus is measured by exploiting the marginal distribution of the

wavelet coefficients.

Zhao et al. [56] related the degree of gray level surface curvature to the sharpness

of image region. The new parameter, neighbor distance (ND), is proposed as a mea-

sure of pixel’s sharpness/focus. First, the oriented distance(OD) is used to measure

22



Chapter 2. Multispectral Multifocus Image Fusion

the image surface curvature at a particular point. The sum of ODs along different

directions surrounding the pixel in image is called Neighbor Distance(ND).

Aforementioned attempts to measure focus are limited to the visual spectrum only.

In other spectra like thermal and near-infrared, less focus measure works are re-

ported due to unavailability of scene viewing in case of manual focusing, and limited

resolution as well as lack of auto-focus features in the cameras.

Faundez-Zanuy et al. [57] addressed the problem of determining the optimal focus

position in the thermal images, for the first time. For this they used existing five focus

measures such as EOG, TEN, EOL, SML, SF and Crete et al. [58]. The performance of

these measures is analyzed in order to obtain most suitable focus measure for thermal

images. Among these measures, EOG, EOL and SML offered good performance.

Very recently, detection of interest point based focus measure for multispectral im-

ages has gained popularity. Zukal et al. [48], introduced the determination of focus

measure via interest point detection. They proposed focus measure based on three

types of interest point detectors- FAST(Features from Accelerated Segmented Test),

Fast Hessian(FH), Harris Laplace (HL). These measures evaluated against some of

the standard focus measures such as EOG, SML, TEN, SF. The results show that these

focus measures performs better than the standard focus measures for thermal images

but lag behind in the visual and the near-infrared spectra. We observed that the all

these measures are based on intensity [23].

However, some of the interest point detection methods are found to use frequency

and phase congruency [49, 50].

In [52], Benes et al. proposed a new focus measure which is based on EOL (En-

ergy of Laplacian). It is computed as product of average value of EOL in certain

neighborhood multiplied by variance in the same neighborhood.
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2.2.2 Multifocus image fusion

Many multifocus fusion algorithms have been proposed based on some of the above

mentioned focus measures. These algorithms operate at pixel level or region level,

and in spatial as well as transform domains. Multiresolution analysis is widely

adapted technique to perform image fusion. Spatial domain pixel level algorithms

are popular due to their computational efficiency [6]. Multiresolution transform

based algorithms are preferred nowadays due to their robust performance [37]. But

spatial domain processing techniques are normally preferred due to fewer operations

and more suitable for real time applications [57].

Within the transform domain, Discrete Wavelet Transform (DWT) based algorithms,

though perform better than the Laplacian Pyramid Transform (LPT), have limited

orientation selectivity [51]. More improved multiresolution transform techniques in-

clude Stationary Wavelet Transform (SWT), Curvelet Transform (CVT), Contourlet

Transform (CT), Dual Tree Complex Wavelet Transform (DTCWT) and Non-Subsampled

Contourlet Transform (NSCT) [37, 51].

In [37], Li et al. has has given very comprehensive performance comparison of some

multiresolution transforms (DWT, SWT, DTCWT, CVT, CT, NSCT) for multifocus

image fusion, but within visual spectrum only. The multifocus image fusion per-

formance of the DTCWT and NSCT methods partially better in terms of some of the

metrics. While for infrared-visible and medical fusion applications NSCT performs

better.

Tian and Chen [47] proposed a new wavelet based multifocus image fusion method.

To perform sharpness/focus measurement, the statistics of wavelet coefficients are

examined. In the fusion framework, the wavelet transform is applied on each in-

put image. Then the detail and approximation wavelet coefficients are combined

using different pixel level focus measure fusion rule in the transform domain. And

finally the fused image is obtained by applying inverse wavelet transform on the

fused wavelet coefficients. The proposed approach outperforms some of the earlier
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wavelet transform based fusion methods but not tested in other spectra.

Zhao et al. [56] proposed multifocus image fusion scheme based on novel neighbor

distance (ND) based focus measure computation. They choose the multi-resolution

transform based fusion, due to disadvantage of block effect in construction of ND in

spatial domain. For this purpose multiscale ND analysis framework based on ND

filter is proposed. First obtain multiscale low frequency component image and ND

image sequence. Then multiple sets of low frequency and ND components are com-

bined together using choose maximum (CM), Salience/Match measure with thresh-

old or Choose maximum with consistency check. The consistency verification is per-

formed further but is optional. Finally, a fused image is produced by reconstruction

using fused low frequency component and ND image sequence. The performance

of proposed approach is evaluated against some standard transform domain meth-

ods like DWT, FSD (Filter Subtract Decimate hierarchical pyramid), GRP (Gradient

Pyramid), RAP (Ratio of Low pass pyramid), LAP (Laplacian Pyramid), SVT (Sup-

port Value Transform), SWT and NSCT. The propose method have shown very good

performance over all these methods, but applied in visible spectrum only.

Benes et al. in [52], proposed a first of its kind a novel approach for multifocus

image fusion for thermal images. The algorithm involves three major steps- Mea-

surement of activity level, selection of best images for fusion, and combination of

the selected images. In the first step, modified EOL based pixel level activity level

(as measure of focus) measurement is performed on each image in the set. in the

second step, the fixed suitable number of images are selected surrounding the im-

ages having peaks for the activity level. Finally, in the third step, selected images are

combined using simple proposed activity level based pixel weighted average rule

rule. The superiority of the proposed approach for thermal multifocus image fu-

sion is shown intra-comparisons and by highlighting the reduction in error in the

temperature measurement. But such a linear combination often fails to preserve the

original information in source images and may lead to a degradation in the fusion
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performance.

2.3 Theoretical foundations

In this section, we provide the theoretical foundations behind the proposed method.

In particular, analytic image, steerable filters, image saliency models and guided fil-

tering are discussed in details.

2.3.1 Analytic image

The Fourier transform or its variant produces global, phase and magnitude infor-

mation, which lacks spatial localized information. So it can not be used to process

non-stationery signals like images for better localized information representation.

One solution is to use spatial domain localized frequency analysis schemes which

has become an important and powerful tool in signal representation. This gives us

local magnitude and phase information. As Oppenheim had demonstrated through

a series of experiments that the signal phase serves an important role even more than

intensity [54]. The phase conveys more information regarding signal structure than

magnitude, especially in case of images. It is also highly immune to noise and con-

trast distortions which are desirable features in image processing. We can employ

the analytic signal representation as it provides an easy solution for recovering local

phase from the signal [49].

Let us introduce the concept of analytic signal in 1D which can be extended to

higher dimensions [49]. Given a time domain signal s(t) in 1D, its analytic signal is

defined as: The local phase of signal can be computed by representing it analytically

and is known as analytic signal.

sA(t) = s(t)− jsH(t) (2.1)
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where, sH(t) is the Hilbert transform of sA(t). An image can be treated as a 2D

spatial domain signal. Corresponding analytic image can be expressed as:

IA(x, y) = I(x, y)− jIH(x, y) (2.2)

where, IH(x, y) is the Hilbert transformation of I(x, y). Argument of IA(x, y), de-

fined in the spatial domain, is referred to as the local phase of I(x, y). Khan et al.

[49] have used the local frequency of an image to capture the dominant regions in

an image (a dominant region will contain many pixels with high local frequencies).

The local frequency can be determined easily as it is the spatial derivative of local

phase. High value of local frequency at a particular pixel of an image indicates the

presence of interest point at that location. Concept of quadrature pair of filters can

be introduced in this context. Quadrature pair of filters has same frequency response

but differ in phase by an angle of 90o, i.e., in effect they must be Hilbert transforms

of each other [59].

2.3.2 Steerable Gaussian filter

Steerable filters can be defined as a special class of filters in which an arbitrarily

oriented filter can be designed using a linear combination of a set of basis filters [60,

61]. The directional derivative of a 2D Gaussian function is steerable because of its

circular symmetry. In [59], Freeman and Adelson have shown that the first order

x-derivative (Gθ
1) of a Gaussian filter oriented at an arbitrary orientation θ can be

expressed as a linear combination of (G0o

1 ) and (G90o

1 ) in the following manner:

Gθ
1 = cos(θ)G0o

1 + sin(θ)G90o

1 (2.3)

In the above equation, G0o

1 and G90o

1 are the basis filters and the terms cos(θ) and

sin(θ) are the interpolation functions. Thus an image filtered at any orientation can

be expressed as a linear combination of the image convolved with the basis filters
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(convolution operation being linear).

Then, we can write:

R0o

1 = G0o

1 ∗ I (2.4)

R90o

1 = G90o

1 ∗ I (2.5)

Rθ
1 = cos(θ)R0o

1 + sin(θ)R90o

1 (2.6)

In the above equation, Rθo

1 represents the image I filtered using the basis filter at an

arbitrary orientation θ and ∗ denotes the convolution operation.

2.3.3 Image saliency models

Saliency model aims to capture visually attentive regions in an image [62]. A single

approach is incapable of detecting all the salient regions accurately for all images

[63]. However, a synergistic combination of some of the highly performing saliency

methods can lead to a highly informative and accurate saliency map. The proposed

model uses a linear weighted combination of three saliency maps obtained using

Graph-based visual saliency (GBVS), Laplacian saliency (LS) and Spectral residual

saliency (SRA). Now, we briefly discuss about the individual saliency models.

GBVS uses topological structure of the graphs to compute saliency values and em-

ploys Markovian approach in the process [64]. This model comprises of three stages:

extraction of the important feature vectors from the scene, construction of an “acti-

vation map(s)", and, combination of these maps for obtaining a single saliency map.

The construction of activation maps is based on a linear filtering method [65]. Marko-

vian approach is employed to construct the activation map. An elegant dissimilarity

measure is adopted to identify locations having high variations. The dissimilarity of
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M(i, j) and M(p, q) can be mathematically expressed as:

d(i, j) ‖ (p, q) , | log

(
M(i, j)

M(p, q)

)
| (2.7)

The normalized maps are summed over each feature channel to obtain the master

saliency map.

LS uses Laplacian filter to capture the high frequency regions (salient regions) in

the image [66]. It computes the saliency map S, of image I , as the local average of the

absolute value of high-pass image HI obtained using convolution of the input image

I with 3× 3 Laplacian mask using:

S = |HI | ∗ grg ,σg (2.8)

Where, HI = I ∗L and g is a Gaussian low-pass filter of size (2rg + 1).(2rg + 1); rg and

σg have been set to 5.

SRA employs the power of log spectrum for saliency detection [67]. The log spec-

trum representation of an image, L(f) can be expressed in terms of the amplitude of

the Fourier spectrum, A(f) of that image, (f denotes frequency) using:

L(f) = log(A(f)) (2.9)

The algorithm aims at reducing the redundant information in the image. It focuses on

the statistical singularities in the spectrum. The statistical singularities, also defined

as the spectral residual of an image, can be obtained using:

R(f) = L(f)− A(f) (2.10)

In (12), R(f) represents the spectral residual of the image. The spectral residual is

further processed to construct the saliency map in spatial domain by using inverse
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Fourier transform.

2.3.4 Guided filtering

Very recently guided filtering technique [68] has gained prominence in computer

vision applications like edge preserving smoothing, dehazing, feathering and image

matting. Guided filter proposed by He et al. [68, 69] is an edge-preserving smoothing

filter, derived from a local linear model between guidance I and output q. The guided

filter computes the output by taking into account the content of the guidance image

which can be the filtering input itself [70, 71]. Assuming q as a linear transform of I

in window ωk centered at pixel k, q can be expressed for a pixel i as below.

qi = akIi + bk ∀ i ∈ ωk (2.11)

Here, (ak, bk) are linear coefficients assumed to be constant in the window ωk. As

5(q) = a.5(I), the guided filter preserves edges and can be used in applications like

image matting, dehazing and feathering [68]. The linear coefficients are determined

using constraints between filtering input p and q given as:

qi = pi − ni (2.12)

Where, ni refers to unwanted noise components. The linear ridge regression model

is used to optimize the cost function by minimizing the difference between p and q.

The coefficients are given by:

ak =

1
|ω|
∑

i∈ωk Iipi − µkp̄k
σ2
k+ ∈

(2.13)

bk = p̄k − akµk (2.14)
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Here, µk represents the mean of I in window ωk and σ2
k represents the variance of the

image in the same window. |ω| is the number of pixels in the window ωk and p̄k is

the mean of p computed in that window. As a pixel i can be involved in overlapping

windows, the final output should be obtained by taking the average of all possible

values of q.

qi = āiIi + b̄i (2.15)

Where, āi and b̄i are the average value of ak and bk of all windows overlapping i.

2.4 Proposed method

2.4.1 Steerable local frequency based solution

Oppenheim et al. [54] demonstrated the importance of phase in images through a

series of experiments. The standard focus measures are mainly based on intensity.

In this work, we explore the potential of local phase information of the pixels in the

source images for determining the focus measure. Features in an image can be ori-

ented at any angle θ (0o ≤ θ ≤ 180o ) [72]. For each pixel, corresponding responses

from the filter at different orientations need to be compared to get the maximum re-

sponse. Local frequency map obtained from the analytic image does not include any

knowledge of orientation. To capture orientation, we introduce the concept of steer-

able local frequency map. Oriented analytic image is used to build the steerable local

frequency map. Hilbert transform, realized through the quadrature pair of filters

(G4, H4), is used first to obtain the analytic image. Fourth order derivative of Gaus-

sian (G4) offers higher resolution analysis as it has narrow frequency tuning. In [59],

the approximation to the Hilbert transform of G4, denoted by H4, is obtained using

the least squares fit of product of a 5th order polynomial with six basis functions and

a radially symmetric Gaussian function. To obtain the oriented analytic image, we

therefore require a steerable Hilbert kernel. However, since the Hilbert Transform
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itself cannot be made steerable in its present form, we apply the concept of steerable

quadrature pair of filters (Gθ
4, Hθ

4 ). The analytical expression of Gθ
4 is given by:

Gθ
4 = [Ka(θ)G4a+Kb(θ)G4b+Kc(θ)G4c+Kd(θ)G4d+Ke(θ)G4e] (2.16)

where, G4a, G4b, G4c, G4d and G4e constitute the basis set functions and Ka(θ),

Kb(θ), Kc(θ), Kd(θ) and Ke(θ) are the interpolation functions. Similarly, the analytic

expression for and Hθ
4 is given by:

Hθ
4 = [Ka(θ)H4a+Kb(θ)H4b+Kc(θ)H4c+Kd(θ)H4d+Ke(θ)H4e+Kf (θ)H4f ]

(2.17)

here, H4a, H4b, H4c, H4d, H4e and H4f are basis set functions and Ka(θ), Kb(θ),

Kc(θ), Kd(θ), Ke(θ) andKf (θ) are the interpolation functions. The equations for basis

and interpolation functions are given in Appendix A. This steerable quadrature pair

Gθ
4 and Hθ

4 is used to filter the original image I(x, y) to obtain the oriented analytic

image IA,θ(x, y) at an arbitrary orientation θ. So, we can write:

IA,θ(x, y) = IG4,θ(x, y)− jIH4,θ(x, y) (2.18)

IG4,θ(x, y) = I(x, y) ∗Gθ
4 (2.19)

IH4,θ(x, y) = I(x, y) ∗Hθ
4 (2.20)

IG4,θ(x, y) and IH4,θ(x, y) together constitute the steerable quadrature filtered re-

sponse of the original image I(x, y). The steerable local phase φθ(x, y) of the Gaussian
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filtered image can now be obtained using.

φθ(x, y) = abs

[
arc tan

{
IH4,θ(x, y)

IG4,θ(x, y)

}]
(2.21)

To get rid of background noise or distortions, the mean of the steerable local phase

map is subtracted from the phase value at each of the pixels to construct the modified

phase map φ′θ(x, y) [72].

φ
′

θ(x, y) = φθ(x, y)− φθ (2.22)

In the above equation, φθ is mean of the steerable local phase map. Steerable lo-

cal frequency map is obtained using the gradient of the modified local phase in the

following manner:

Freqθ(x, y) =

√[
∂(φ

′
θ(x, y))

∂x

]2

+

[
∂(φ

′
θ(x, y))

∂y

]2

(2.23)

where,

(∂φ
′

θ(x, y)/) = ∂φ
′

θ(x+ 1, y)− ∂φ′θ(x, y) (2.24)

(∂φ
′

θ(x, y)/∂y) = ∂φ
′

θ(x+ 1, y)− ∂φ′θ(x, y) (2.25)

The local frequency maps obtained at different orientations are further max-pooled

to obtain the resultant steerable local frequency map, Freqθmax(x, y).

Freqθmax(x, y) = max[Freqθ1(x, y), F reqθ2(x, y), F reqθ3(x, y), , F reqθ13(x, y)] (2.26)

In the above equation, θ1, θ2, . . . , θ13 denote 13 orientations covering the entire range

[0o, 180o] in steps of 15o. Number of orientations is chosen experimentally and this
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is described later, see section 2.5.3.2. We then choose the best suitable threshold T

experimentally, for thresholding max-pooled local frequency map, Freqθmax , to com-

pute the number of interest points in source image. Selection of the best performing

threshold (T ) is also discussed later, see section 2.5.3.1. Number of interest points n

detected in the source image is given by:

n =
∑
x

∑
y

[Freqθmax(x, y)) ≥ T ] (2.27)

Thus, the proposed focus measure can be normalized in [0, 1] using [23]:

FMproposed =

[
n− nmin

nmax − nmin

]
(2.28)

Here, nmax is the maximum number of interest points and nmin is the minimum

number of interest points detected among all the source images in a set I

We now present Algorithm 1 where various steps to obtain the proposed focus

measure are shown.
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Algorithm 1 Computation of Focus Measure (FM)

Input: I , An image from Visible(VIS), Near-Infrared(NIR) or Thermal(TH) image set.

Output: FMproposed

Initialization: n = 0, [p, q]=size(I)

1: for θ = 0o : 15 : 180o do

2: Obtain 7× 7 Gθ4 and Hθ
4 at θ

3: Obtain IG4,θ and IH4,θ

4: Obtain oriented analytic image, IA,θ(x, y)

5: Obtain steerable local phase map, φθ(x, y)

6: Compute, φ
′

θ(x, y) = φθ(x, y)− φθ

7: Obtain Steerable local frequency, Freqθ(x, y)

8: end for

9: Obtain Freqθmax(x, y)

10: Obtain threshold, T (experimentally)

11: for i=1 : p do

12: for j=1 : q do

13: if Freqθmax(i, j) ≥ T then

14: n = n+ 1

15: end if

16: end for

17: end for

18: Obtain FMproposed

The proposed multifocus image fusion (SLF method) begins with the assumption

that the source images to be fused are pre-registered. The resultant fused image F

contains pixels from the source image having highest max-pooled local frequency

value for that pixel. Further, a 3 × 3 majority filter is applied for consistency ver-

ification [56]. This step ensures that a pixel in the fused image is not allowed to

come from a source image if majority of its neighbors in the two images (fused and

the source) are different. This measure plays an important role in characterizing the

performance of image fusion algorithms.
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We, next, present Algorithm 2 where various steps for proposed SLF based multi-

focus image fusion in VIS and NIR spectra are given.

Algorithm 2 Multifocus Image Fusion (SLF method): For VIS and NIR spectrum

Input: IN , Multifocus source image set of N images

Output: F , All-in-focus image

Initialization: [p, q]=size(IN )

1: for k = 1 : N do

2: Obtain Freqθmax,k for kth image, using Algorithm 1 (Step 1-9)

3: end for

4: for i=1 : p do

5: for j=1 : q do

6: Q=arg max
k=1:N

(Freqθmax,k(i, j))

7: F (i, j) = IQ(i, j)

8: end for

9: end for

10: Perform consistency verification using 3x3 majority filter (Optional)

For thermal multifocus image fusion, we use proposed focus measure as activity

level and formulate weighted average based fusion rule, as in recently reported EOL

based method for thermal spectrum [52]. This is just for fair comparisons with only

first of its kind multifocus thermal image fusion method [52]. The variant of the

algorithm is given in Algorithm 3.
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Algorithm 3 Multifocus Image Fusion (SLF method): For TH spectrum

Input: IN , Multifocus source image set of N images

Output: F , All-in-focus image

Initialization: [p, q]=size(IN )

1: for k = 1 : N do

2: Obtain Freqθmax,k for kth image, using Algorithm 1 (Step 1-9)

3: end for

4: for i=1 : p do

5: for j=1 : q do

6: ωk(i, j) =
Freqθmax,k(i,j)∑N
k=1 Freqθmax,k(i,j)

7: F (i, j) =
∑N
k=1 ωk(i, j) ∗ Ik(i, j)

8: end for

9: end for
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2.4.2 Guided SLF and improved saliency model based solution (GSLF-IS)

We further enhance the performance of our multispectral multifocus image fusion

method by using novel combination of improved saliency model and guided filter-

ing. We propose judiciously application of the guided edge preserving filtering in

two phases. In the first phase, the source images to be fused are enhanced using

guided filtering keeping the source images same as the guidance images. Steerable

local frequency map (SLF) capturing phase/frequency information at different orien-

tations is suggested in section 2.4.1. In the second phase, the steerable local frequency

maps of the enhanced source images are further refined using guided filtering. In this

case, the enhanced source images are used as the guidance images. We further de-

velop an improved model of saliency based on Graph-based visual saliency (GBVS)

[64], Spectral residual saliency (SRA) [67] and Laplacian saliency (LS) [66]. This im-

proved saliency map is combined with the guided steerable local frequency (GSLF)

map to generate good fusion results across all spectra.

FIGURE 2.2: Schematic diagram of GSLF and improved saliency based solution

Fig. 2.2 shows the block diagram of our solution pipeline. The proposed method

starts with guided filtering of the source images which are further processed to yield

improved saliency maps and steerable local frequency (SLF) maps. SLF map is en-

hanced with guided filtering. The composite saliency map is combined with guided

SLF (GSLF) map to yield improved fusion results. The integration aims at incorpo-

rating the combined effect of intensity, phase and orientation. The major components
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governing the above process are discussed in the following subsections.

2.4.2.1 Proposed image saliency model

Saliency model aims to capture visually attentive regions in an image [62]. A single

approach is incapable of detecting all the salient regions accurately for all images

[63]. However, a synergistic combination of some of the highly performing saliency

methods can lead to a highly informative and accurate saliency map. The proposed

model uses a linear weighted combination of three saliency maps obtained using

Graph-based visual saliency (GBVS), Laplacian saliency (LS) and Spectral residual

saliency (SRA).

The integration realizes the full potential of the three individual schemes to obtain

an improved saliency model. Note that GBVS is a robust and computationally effi-

cient scheme owing to the use of graphs [64]. LS uses the Laplacian operator which

uses second order derivative to determine the edges in an image. SRA model offers a

general solution for salient region detection [67]. We construct the final saliency map

of the input image I , SI by taking weighted combination of the three saliency maps,

SGBV S,I , SSRA,I and SLS,I in the following manner:

SI =
3∑

m=1

ωmN(SI,m) (2.29)

In equation (2.29),
∑3

m=1 ωm = 1 , N(SI,m) denotes the mth normalized saliency map

and ωm is its corresponding weight [63]. In the proposed method we use weights

ωGBV S = 0.5, ωLS = 0.3 and ωSRA = 0.2 and construct the final saliency map. These

weights are determined experimentally and kept constant throughout.

An example of improved saliency detection using the proposed model is illustrated

in Fig. 2.3. The test image is shown in Fig 2.3(a). Green polygons in each of the figures

(b), (c) and (d) indicate the dominant salient regions. These images clearly show that

the obtained saliency maps are complementary in nature. So, no single method can
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(a) (b) (c) (d) (e)

FIGURE 2.3: Example of improved Saliency map : (a) Test image (b) GBVS saliency map (c) LS
saliency map (d) SRA saliency map (e) Proposed method. Green polygons indicate dominant salient

regions.

detect all the dominant salient regions. As a marked improvement, figure (e) shows

that the map obtained using the proposed saliency model can successfully capture

all the perceptually salient regions in the test image that also includes edges.

2.4.2.2 Guided steerable local frequency

As stated earlier, we employ guided filter in two stages. In the first stage, the input

images are enhanced. Our objective is to obtain a high quality fused image which is

definitely dependent on the quality of input. So, to obtain improved inputs, we apply

the linear model of guided filter [68]. The guidance image in this case is the input

image itself (I). The filtered output IG at pixel i gives the guided input as shown

below:

IG,i = akIi + bk ∀ i ∈ ωk (2.30)

IG,i = Ii − ni (2.31)

The guided input obtained as a result is used for the construction of SLF and saliency

maps. The second stage attempts at modifying the steerable local frequency maps

using guided filter. The objective here is to improve the maps which will enable

efficient representation of features with increased accuracy. The guided filter accepts

the SLF map as the original filtering input and treats the guided input obtained from

first phase as the guidance image. The filtered output then yields finely tuned feature

map. The mathematical representation describing the process for a pixel i is given
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below:

GSLFIG,i = akIG,i + bk ∀ i ∈ ωk (2.32)

GSLFIG,i = SLFIG,i − ni (2.33)

Here, SLFIG is the original steerable local frequency map of the guided input im-

age IG and GSLFIG is its improved guided version. The same guided input image

IG acts as the guidance image. The reason behind improvement in SLF maps us-

ing guided filter is explained next. Steerable local frequency which primarily uses

Hilbert transform is linearly related to guidance image (Hilbert transformer being a

linear time-invariant filter). The guidance image for our work is the guided input

which preserves the gradients. From equation 2.32 it is apparent that the filtering

output is basically a scaled version of the guidance image displaced by an offset. The

local linear model of the guided filter supports structure-transfer filtering due to its

patch-based model [68]. This unique property enables the transfer of fine structures

present in the guided input to GSLFIG , even if the original filtering input is smooth

in some regions. Thus, an enhanced steerable local frequency map containing sharp

features is obtained.

2.4.2.3 Fusion

Let SIG be the saliency map of the improved input. For each source image, we

combine GSLFIG and SIG by taking their product. The result yields the final map,

MAPFinal, for each of the multifocus source image. So, we can write:

MAPFinal,i = (GSLFIG,i)× (SIG,i) (2.34)

For the VIS and the NIR spectrum, the fused image F contains pixels belonging to the

source image possessing highest corresponding value inMAPFinal for that particular
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pixel i.

Q = arg max
k

(MAPFinal,i,k) (2.35)

Where, k ∈ [1, N ]. Here N is the total number of source images to be fused and Q

is the index of source image having maximum value of MAPFinal for the pixel i. So,

the fused image F is obtained by choosing each pixel i from the most suitable source

image with index Q. So, we can write:

F =
⋃
i

Fi =
⋃
i

IQ,i (2.36)

Further, a 3 × 3 majority filter is applied for consistency verification [56] to ensure

that a pixel in the fused image does not come from a source image different from that

of its majority of neighbors. In case of TH spectrum, we use pixel-level weighted

averaging rule to obtain final fused result F as in [73], to avail better comparison.

Please note that the methods with which we have compared our work in the NIR

and the TH spectra are obtained from applying different fusion strategies. So, in

order to have proper comparisons with these methods from different spectra, we

have to fuse our NIR and TH images accordingly.

2.5 Experimental results

In this section, we first mention the datasets used for various experimentation along

with the performance evaluation measures/metrics. We next discuss how certain

parameters (thresholds) are chosen experimentally. We then show the comparative

performance analysis of the proposed SLF based focus measure in different spec-

tra like VIS, NIR and TH. Next, we demonstrate the improvements in fusion results

using our focus measure. Further, we also demonstrate the enhancement in the per-

formance by introducing the improved saliency model and the use of guided filtering

to enhance the source images to be fused and steerable local frequency maps.

42



Chapter 2. Multispectral Multifocus Image Fusion

2.5.1 Evaluation Dataset

For the evaluation of focus measure performance we use three multispectral datasets,

one each from the visual (VIS), near-infrared (NIR) and thermal (TH) spectrum [23].

Each dataset in turn consists of seven sets of images. Some sample image sets are

shown in Fig. 2.4. For the evaluation of the multifocus image fusion in the visual

spectrum, we use the same image sets as in [37] (see Fig. 2.5). In the near-infrared,

only one image set was found to be suitable from the available NIR dataset [23] (see

Fig. 2.6). We also use a multimodal medical image set to evaluate proposed fusion

method. This consists of CT and MRI modality image set of human brain and the

images are shown in Fig. 2.7. For the thermal spectrum, we experiment with the

reduced set of multifocus thermal image datasets developed by Benes et al. [52]. The

original thermal image database consists of five multifocus image sets with 96 images

in each set. All the sets contain a scene image with two objects but with different

backgrounds, varying temperatures and different object distances. A reduced set

of 10 images for each dataset is derived from the original pool of 96 images using

EOL based activity level measurement [52]. The reduced image sets for the mobile-

interface and the two bulbs are shown in Fig. 2.8 and Fig. 2.9.

2.5.2 Performance measures

The performance evaluation measures are now briefly discussed below. The focus

measure is evaluated based on different criteria such as monotonicity, magnitude of

slope and smoothness. For this we employ the Q (Quality factor) and P (Peak of

focus curve) performance metrics [23].

1. Q (Quality factor): The quality factor is computed from the focus curve. The

focus curve is the plot between image index (N ) and focus measure (FMproposed).
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(a)

(b)

(c)

FIGURE 2.4: Sample images from each multispectral dataset used for focus measure evaluation: (a)
’Loudspeaker’ (VIS), (b) ’Head’ (NIR), (c) ’Circuit’ (TH).

(a) (b)

(c) (d)

FIGURE 2.5: Visual multifocus image datasets used for evaluation of the proposed multifocus image
fusion methods: (a) ’Clock’, (b) ’Desk’, (c) ’Lab’, (d) ’Pepsi’

The formula for Q is given below:

Q =

[
1

Nmax −Nmin + 1

]
(2.37)

Cs[N ] ≥ 0.7079, For Nmin, . . . , N, . . . , Nmax (2.38)
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FIGURE 2.6: Near-infrared (NIR) multifocus image dataset used for evaluation of proposed multifo-
cus image fusion methods: ’keyboard’

FIGURE 2.7: Medical image dataset of Brain for the evaluation of proposed image fusion method.
(a) CT (b) MRI.

FIGURE 2.8: Reduced thermal multifocus image dataset used for the evaluation of proposed multi-
focus image fusion methods: Set 1 (Mobile phone and RS 232 interface).

Cs[N ] in equation 2.38 is the focus curve normalized in the range [0, 1]. Number

of focus curve samples higher than 0.7079 are used to measure the Q factor. A

narrow peak in the focus curve with a high Q-factor is favorable.

2. P (Peak of focus curve): P represents the image having highest focus evaluated

from the focus curve, Cs[N ].
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FIGURE 2.9: Reduced thermal multifocus image dataset used for the evaluation of proposed multi-
focus image fusion methods: Set 2 (Two bulbs).

For the evaluation of multifocus image fusion in the visual and near-infrared spec-

trum, we use MI (Mutual Information), QAB/f and Q0. They are described below:

1. MI (Mutual Information) [74]: MI measures the statistical dependence between

two random variables and the amount of information that one variable contains

about the others. Here, theMI between source imagesA andB and fused image

F is given by:

MI = IAF + IBF (2.39)

In equation 2.39 IAF is the mutual information between the source image A and

the fused image F whereas IBF is the mutual information between the source

image B and the fused image F . A high value of MI indicates better result.

2. QAB/f [75]: This metric reflects the quality of visual information obtained from

the fusion of input images. QAB/f can be defined as:

QAB/f =

∑N
n=1

∑M
m=1(QAF (n,m)wA(n,m) +QBF (n,m)wB(n,m))∑N

n=1

∑M
m=1(wA(n,m) + wB(n,m))

(2.40)

In equation 2.40, A and B denotes the source images and f denotes the final

fused image. QAF and QBF represents amount of edge information preserved

in F from image A and that from image B respectively. wA and wB are weights

derived by convolving Sobel operator with images A and B [75]. QAB/f varies
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in the range [0, 1] where a value of 1 corresponds to the best performance.

3. Q0 [76]: This metric is designed by modeling any image distortion as a com-

bination of three factors, namely, loss of correlation, luminance distortion, and

contrast distortion. The value of Q0 between source images A, B and fused im-

age F is expressed as:

Q0(A,B, F ) =

[
Q0(A,F ) +Q0(B,F )

2

]
(2.41)

where, Q0(A,F ) is defined as :

Q0(A,F ) =

[
σaf
σaσf

· 2af

(a)2 + (f)2
· 2σaσf

(σ2
a + σ2

f )

]
(2.42)

Here, σa and σf are standard deviations of input image A and fused image F ;

σaf denotes the covariance between A and F . The dynamic range of Q0(A,B, F )

is [−1, 1] with best possible value as 1.

Three metrics RMSE (Root Mean Square Error), MAE (Mean Absolute Error)

andCC (Cross Correlation) as in [52], are employed to evaluate the performance

of the proposed fusion method in thermal spectrum and are described below.

4. RMSE: The Root Means Square Error between the fused image F and reference

ground truth image R is given by.

RMSE =

√√√√ 1

NM

N∑
i=1

M∑
j=1

|R(i, j)− F (i, j)|2 (2.43)

Here, NM is size of the image. Lower the value of RMSE, better is the perfor-

mance of fusion.
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5. MAE: The Mean Absolute Error between the fused image F and reference

ground truth image R is given by.

MAE =

√√√√ 1

NM

N∑
i=1

M∑
j=1

|R(i, j)− F (i, j)| (2.44)

Lower the value of MAE, better is the performance of fusion.

6. CC: The Cross Correlation between the fused image F and reference ground

truth image R can be expressed as.

CC =
2
∑N

i=1

∑M
j=1R(i, j)F (i, j)∑N

i=1

∑M
j=1R(i, j)2 +

∑N
i=1

∑M
j=1 F (i, j)2

(2.45)

The dynamic range of CC is [0, 1] with best possible value as 1.

2.5.3 Selection of Threshold and Number of orientations to obtain image level

focus measure

We perform experiments to judiciously select the number of orientations (O) and the

threshold (T ) in the proposed method.

2.5.3.1 Selection of Threshold

We have experimentally obtained the best performing value of threshold parameter

T . For the range of T , we used [min, max] of max-pooled local frequency map. T is

set from the above range based on the performance of the focus curves (Cs[N ]) [55]

in terms of Accuracy, Width at 50% maximum and Number of local maxima. Some

sample focus curves obtained (Cs[N ]) for five different threshold values (T1, T2, T3,

T4, T5) in this range are shown in Fig. 2.10, 2.11 and 2.12. The focus measure curves

reveal an interesting trend. The curves are almost comparable with varying values

of threshold indicating the robustness of the proposed focus measure. However, in
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terms of Accuracy and Width at 50% maximum, the experimentally selected value of

T3 (=0.0607) emerges as an optimal choice for the threshold.

FIGURE 2.10: Specimen focus curves for ’Loudspeaker’ and ’Mixer’ image sets in VIS spectrum for
different threshold values.

FIGURE 2.11: Specimen focus curves for ’Head’ and ’Office desk’ image sets in NIR spectrum for
different threshold values.

FIGURE 2.12: Specimen focus curves for ’Circuit breakers’ and ’Circuit’ image sets in TH spectrum
for different threshold values.

2.5.3.2 Selection of Number of orientations

Features in an image can be oriented at any angle θ within the range 0o to 180o [72].

Selection of number of intervals for orientations influences the detection of oriented

features in the input image. Note that less number of intervals may fail to capture the
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finer oriented features present in the image. On other hand, use of large number of

intervals for orientations can be unreliable (sensitive to noise) in addition to increas-

ing the computational overhead. So, as a trade-off, five intermediate choices O1 (7

orientations in steps of 300), O2 (10 orientations in steps of 200), O3 (13 orientations

in steps of 150), O4 (16 orientations in steps of 120), O5 (19 orientations in steps of 100)

are used with a fixed threshold (T ). The focus measure curves (Cs[N ]) for different

orientations for some sample image sets from visible (VIS), near infra-red (NIR) and

thermal (TH) spectra are shown in Fig. 2.13, 2.14 and 2.15.

These focus measure curves are evaluated in terms of Accuracy, Width at 50% max-

imum and Number of local maxima of the focus curves obtained (Cs[N ]) [55]. In the

visible (VIS) spectrum the performance is uniform with respect to Accuracy but in

terms of Width at 50% maximum O3 yields better performance. As can be seen from

the focus curves in the NIR spectrum, O3 performs better. For example, in case of

’Office Desk’ image set O3 produces peak at image index 7 which is nearest to the

index of image having highest focus from subjective assessment test given in [48]. In

the TH spectrum there are a number of local maxima for each number of orientations

due to limited resolution. But based on Width at 50% maximum and Accuracy it is

clear that O3 performs better. So, we have used O3 (13 orientations in step of 150) for

our work.

FIGURE 2.13: Specimen focus curves for ’Loudspeaker’ and ’Mixer’ image sets in VIS spectrum for
different number of orientations.
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FIGURE 2.14: Specimen focus curves for ’Head’ and ’Office desk’ image sets in NIR spectrum for
different number of orientations.

FIGURE 2.15: Specimen focus curves for ’Circuit breakers’ and ’Circuit’ image sets in TH spectrum
for different number of orientations.

2.5.4 Performance comparison for SLF based multispectral focus measure

We compare our proposed focus measure with other such measures from two cate-

gories, namely, i) the standard intensity driven focus measures and ii) the recently

developed IPD based focus measures. The first category includes Energy of Lapla-

cian (EOL), Sum Modified Laplacian (SML) and Spatial Frequency (SF). From the sec-

ond category we compare with Fast Hessian (FH), Harris-Laplace (HL) and Features

from Accelerated Segment Test (FAST) [23]. The standard focus measures are known

to yield good results. EOL and its modified adaptation SML are high performing

derivative based focus measures. On the other hand IPD based focus measures per-

form relatively well when applied to multispectral images.

We now show focus curves for the proposed focus measure (Cs[N ]) for datasets

from the different spectra. Please see Fig. 2.16 for the focus curves of the ’Loud-

speaker’ and the ’Mixer’ datasets in the visual spectrum, Fig. 2.17 for the focus
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curves of the ’Head’ and the ’Office desk’ datasets in the near-infrared spectrum,

and, Fig. 2.18 for the focus curves of the ’Circuit breakers’ and the ’Circuit’ datasets

in the thermal spectrum. A good focus measure possesses the characteristics of uni-

modality, monotonicity and is sensitive to defocus [23]. Our method exhibits all the

desirable characteristics warranted of a good focus measure. Focus curves evaluated

for the proposed focus measure reach a global maximum and decrease monotonically

as the defocus increases on either side. However, a few false maxima and minima

are observed in the focus curves of thermal images because of poor resolution due

to limited focal length. It is reported in [23] that the interest point detectors perform

dismally in the visual spectrum as compared to the standard focus measures. How-

ever, their performance is improved substantially in other spectra (thermal, near-

infrared). Our interest point based focus measure shows decent performance across

all the spectra. Comparative results for the visual spectra are shown in Table 2.1.

EOL, SML and SF perform well for most of the datasets. Compared to other interest

point detectors, the proposed IPD based focus measure outperforms FAST, FH and

HL in most of the cases. The proposed method is comparable with subjective analy-

sis in terms of the P metric as reported in [23]. Results for the near-infrared spectrum

in Table 2.2 show significant improvements in the performance over other interest

point detector based focus measures as well as standard focus measures. The Key-

board dataset belonging to near-infrared spectrum reveals that the proposed focus

measure yields a Q value of 0.5 whereas the reported Q values of FH, FAST and HL

are 0.25, 0.10, and, 0.1250 respectively. Our Q value is comparable to that of EOL and

is better than SML and SF with reported values as 0.0830 and 0.3333. We outperform

SML, SF in most of the cases. We have outdone FH in all the cases and perform much

better compared to FAST and HL. Comparative analysis reveals that the performance

of the proposed focus measure is best for the thermal images as shown in Table 2.3.

Our detector performs better than SML, SF, FAST and HL and is comparable to EOL

and FH. In the ’Circuit breakers’ dataset, the best performing interest point detec-

tor based focus measure is FH and that from the standard focus measures is EOL,
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each having a Q value of 0.5. The proposed focus measure having Q value of 1.0

easily surpasses both. The superior performance of our focus measure as compared

to the standard interest point detector based focus measures is due to use of phase

information at various orientations.

FIGURE 2.16: Specimen focus curves for ’Loudspeaker’ and ’Mixer’ image sets in visual spectrum.

FIGURE 2.17: Specimen focus curves for ’Head’ and ’Office desk’ image sets in near-infrared spec-
trum.

FIGURE 2.18: Specimen focus curves for ’Circuit breakers’ and ’Circuit’ image sets in thermal spec-
trum.

Average execution time of obtaining the focus measure using the proposed method

is 2 sec. on a desktop PC with 3.4 GHz Intel Core CPU and 8 GB RAM. Our method

tends to be slower compared to some of the other focus measures because we have to
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TABLE 2.1: P and Q factor values of seven sets of images in VIS spectrum.
Sp

ec
tr

um

Object M
et

ri
c

Proposed FH FAST HL EOL SML SF P
method (Subjective)

Guitar P 5 6 5 8 5 5 5 5
Q 0.3333 0.2500 0.2500 0.2000 1.0000 0.5000 0.5000 -

Head P 7 5 8 0 7 7 7 7
phones Q 0.3333 0.1667 0.3333 0.3333 0.5000 0.5000 0.5000 -

Key P 5 4 3 0 5 5 5 5
board Q 0.2000 0.2000 0.1250 0.3333 0.3333 0.2000 0.1667 -

VIS Keys P 3 0 2 7 2 2 2 2
Q 0.3333 0.1667 0.2000 0.2500 0.5000 0.5000 0.5000 -

Loud P 9 5 0 8 8 8 8 8
speaker Q 1.0000 0.3300 0.3333 0.1429 1.0000 1.0000 1.000 -

Mixer P 9 8 5 11 8 8 8 8
Q 0.2500 0.5000 0.3300 0.1250 1.0000 1.0000 0.3300 -

Sunglass P 6 5 6 7 5 5 5 5
Q 0.3333 0.5000 0.1250 0.3333 0.5000 0.2500 0.3333 -

TABLE 2.2: P and Q factor values of seven sets of images in NIR spectrum.

Sp
ec

tr
um

Object M
et

ri
c

Proposed FH FAST HL EOL SML SF P
method (Subjective)

Building P 6 6 20 6 6 6 6 6
Q 0.2000 0.0667 0.5000 0.2500 0.2500 0.2500 0.1667 -

Car P 6 6 4 20 4 4 4 7
Q 0.2500 0.0667 0.2500 0.2500 0.5000 0.2500 0.2500 -

Corridor P 7 4 20 7 7 7 7 7
Q 0.2000 0.1000 0.1000 0.2500 0.3333 0.1429 0.1429 -

NIR Head P 5 4 19 2 4 4 4 4
Q 1.0000 0.3333 0.1667 0.2000 1.0000 1.0000 1.0000 -

Keyboard P 5 4 16 0 4 4 4 4
Q 1.0000 0.3300 0.3333 0.1429 1.0000 1.0000 1.0000 -

Office P 7 6 7 10 6 6 6 6
Desk Q 0.5000 0.2000 0.3333 0.0909 1.0000 1.0000 1.0000 -

Pens P 8 7 18 3 7 7 7 7
Q 1.0000 0.2500 0.2500 0.1429 1.0000 1.0000 1.0000 -

compute the local frequency map at thirteen different orientations. However, please

note that Minhas et al. in [53] have reported an average execution time for their

orientation-based focus measure to be 3.5 sec. for the same window size of 7 × 7 as

ours.
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TABLE 2.3: P and Q factor values of seven sets of images in TH spectrum.

Sp
ec

tr
um

Object M
et

ri
c

Proposed FH FAST HL EOL SML SF P
method (Subjective)

Circuit P 19 17 20 18 17 17 17 17
Breakers Q 1.0000 0.5000 0.0769 0.2500 0.5000 0.0400 0.0476 -

Building P 25 25 3 23 12 12 25 25
Q 1.0000 0.5000 0.0500 0.2000 0.1000 0.0476 1.0000 -

Circuit P 7 6 26 5 4 26 5 5
Q 0.3333 0.3333 0.0900 0.1250 0.3333 0.0370 0.3333 -

TH Engine P 15 15 0 16 14 14 17 14
Q 0.2500 0.5000 0.2000 0.2000 0.3333 0.0370 0.1429 -

Printer P 25 17 0 16 0 0 0 18
Q 0.2000 0.3333 0.0909 0.2000 0.3333 0.0435 0.0500 -

Server P 20 21 3 18 20 6 20 20
Q 0.3333 0.3333 0.1000 0.1667 1.0000 0.0435 1.0000 -

Tube P 6 19 0 20 0 2 0 20
Q 0.1670 0.0500 0.0625 0.1429 0.1667 0.0714 0.0526 -
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2.5.5 Performance analysis for SLF based fusion (First method)

In regards to multifocus fusion of images in the visual spectrum, we compare our

method with the highly accurate multiresolution transform domain methods such as

Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Curvelet

Transform (CVT), Contourlet Transform (CT), Dual Tree Complex Wavelet Transform

(DTCWT) and Non-Subsampled Contourlet Transform (NSCT) [37, 51, 77]. Since our

fusion method is essentially based on interest point detection, we also compare our

method with best performing Fast Hessian (FH) based fusion scheme from the same

category [23]. For thermal fusion, we choose a recently reported EOL based method

[52] for comparison. In addition, we also compare with FH based fusion scheme.

Overall, we provide an extensive comparison with several recent and well-known

spatial and transform domain based fusion methods.

Table 2.4 shows that the performances are improved with the inclusion of consis-

tency verification (CV ) for the proposed method. Fig. 2.19 qualitatively demon-

strates the same results. Since only one image set pertaining to medical database is

available, we just specify the result of the proposed method without any compari-

son. Next, in Table 2.5, we show that our method performs better compared to all

the multiresolution transform based methods [37], in terms of a much higher MI ,

slightly higher Q0 and comparable with QAB/f (only marginally lower). Compari-

son to FH based fusion scheme reveals an improvement in terms of MI and QAB/f

values.

In VIS spectrum, for perceptual quality evaluation of fused images, we incorporate

fused images obtained using FH, DWT and DTCWT methods (see Fig. 2.20-2.22).

DWT is a basic method and performs moderately well while DTCWT is highly effi-

cient [37]. The quality of fused images obtained using FH method are found to be

inferior compared to our method. Some artifacts in form of halo effect are observed

in case of DWT based fusion (shown using a red square in Fig 2.21). So, we can
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infer that the proposed method supersedes DWT based fusion. The perceptual qual-

ity of fused images obtained by DTCWT method is however comparable with the

proposed method. But quantitatively in terms of metrics MI and Q0 the proposed

fusion method surpasses the DTCWT, while it is comparable in case of QAB/f . In

the NIR spectrum, the visual quality of fused images obtained using the proposed

method is comparable with that of the FH based method and is better than that of

DWT and DTCWT based methods (see Fig. 2.23). For fusion in the thermal spectrum,

the proposed scheme performs significantly better in comparison with the pixel-level

weighted averaging method [52] and FH based scheme by yielding lower RMSE for

all the five datasets. These results are specified in Table 2.6. In addition, we show the

values obtained for CC and MAE in Table 2.7 which are quite promising. The fused

results presented in Fig. 2.24 and 2.25 clearly indicate that the fusion scheme based

on our focus measure gives high quality output.

TABLE 2.4: Fusion results of the proposed SLF based method: MI , QAB/f and Q0 values with and
without Consistency Verification (CV).

Images MI QAB/f Q0

Without With Without With Without With
CV CV CV CV CV CV

Multifocus (VIS spectrum):
Clock 8.5045 8.5563 0.6179 0.6701 0.9783 0.9785
Desk 7.9716 8.0246 0.5979 0.6697 0.9585 0.9586
Lab 8.3728 8.4551 0.6160 0.6838 0.9758 0.9759
Pepsi 8.2292 8.2621 0.6344 0.6838 0.9810 0.9810

Multifocus (NIR spectrum):
Keyboard 7.9217 7.9342 0.6561 0.6853 0.9907 0.9908

Medical:
CT-MR 7.0279 7.0278 0.6677 0.6870 0.5010 0.5028

TABLE 2.5: Multifocus image fusion by the proposed SLF based method: Performance comparison
with (a) FH IPD based method, and (b) Best results of multi-resolution based fusion methods.

Spectrum Method MI QAB/f Q0

VIS spectrum Proposed SLF method 8.3245 0.6768 0.9735
FH 8.2493 0.5804 0.9746
DWT 2.4126 0.6866 0.7206
SWT 2.4510 0.7140 0.7555
DTCWT 2.4814 0.7231 0.7650
CVT 2.4387 0.7075 0.7421
CT 2.3978 0.6700 0.7076
NSCT 2.4804 0.7219 0.7799

NIR Spectrum Proposed SLF method 7.9342 0.6853 0.9908
FH 8.0198 0.7105 0.9912
DWT 5.9485 0.5135 0.9061
DTCWT 7.3575 0.7082 0.9902
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 2.19: Fused images obtained by the proposed SLF based method in the VIS spectrum for
four datasets performed without consistency verification (FI) and with consistency verification (FI-
CV). (a) ’Clock’ FI , (b) ’Clock’ FI-CV ; (c) ’Desk’ FI, (d) ’Desk’ FI-CV; (e) ’Lab’ FI, (f) ’Lab’ FI-CV; (g)

’Pepsi’ FI, (h) ’Pepsi’ FI-CV.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 2.20: Fused images obtained using the Fast Hessian (FH) IPD based method in the VIS
spectrum for four datasets performed without consistency verification (FI) and with consistency
verification (FI-CV). (a) ’Clock’ FI , (b) ’Clock’ FI-CV ; (c) ’Desk’ FI, (d) ’Desk’ FI-CV; (e) ’Lab’ FI, (f)

’Lab’ FI-CV; (g) ’Pepsi’ FI, (h) ’Pepsi’ FI-CV.

(a) (b) (c) (d)

FIGURE 2.21: Fused images obtained by DWT method in the VIS spectrum for four datasets. (a)
’Clock’, (b) ’Desk’, (c) ’Lab’, (d) ’Pepsi’.
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(a) (b) (c) (d)

FIGURE 2.22: Fused images obtained by DTCWT method in the VIS spectrum for four datasets. (a)
’Clock’, (b) ’Desk’, (c) ’Lab’, (d) ’Pepsi’.

(a) (b)

(c) (d)

(e) (f)

FIGURE 2.23: Fused images obtained by the proposed SLF based method in NIR spectrum per-
formed without consistency verification (FI) and with consistency verification (FI-CV). (a) proposed
method FI (b) proposed method FI-CV , (c) FH IPD based method FI , (d) FH IPD based method

FI-CV (e) DWT method (f) DTCWT method.
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TABLE 2.6: TH multifocus image fusion with reduced dataset by the proposed SLF based method:
RMSE.

Image set Pixel level Weighted FH Proposed
averaging method on method SLF method
EOL AL Fusion [52]

Mobile-RS232 0.1803 0.0183 0.0172
Bulbs set 1 0.1999 0.0307 0.0184
Bulbs set 2 0.1342 0.0293 0.0160
Bulbs set 3 0.2648 0.0541 0.0313
Bulbs set 4 0.3307 0.0589 0.0368

TABLE 2.7: TH multifocus image fusion with reduced dataset by the proposed SLF based method:
CC and MAE.

Image set FH method Proposed SLF method
CC MAE CC MAE

Mobile-RS232 0.9933 0.0077 0.9944 0.0078
Bulbs set 1 0.9942 0.0097 0.9979 0.0075
Bulbs set 2 0.9891 0.0167 0.9969 0.0097
Bulbs set 3 0.9832 0.0250 0.9946 0.0210
Bulbs set 4 0.9821 0.0348 0.9932 0.0309
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 2.24: Ground truth (GT) and fused images (FI) obtained using the proposed SLF method in
the TH spectrum for five datasets. (a) Mobile_RS232 GT, (b) Mobile_RS232 FI; (c) Bulbs Set 1 GT, (d)
Bulbs Set 1 FI; (e) Bulbs Set 2 GT, (f) Bulbs Set 2 FI; (g) Bulbs Set 3 GT, (h) Bulbs Set 3 FI; (i) Bulbs Set

4 GT, (j) Bulbs Set 4 FI.
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(a) (b)

(c) (d)

(e)

FIGURE 2.25: Fused images obtained using the Fast Hessian (FH) IPD based method in the TH
spectrum for five datasets. (a) Mobile_RS232 , (b) Bulbs Set 1 ; (c) Bulbs Set 2, (d) Bulbs Set 3; (e)

Bulbs Set 4.

(a) (b)

FIGURE 2.26: Fusion of CT and MRI modality images obtained by the proposed SLF based method:
(a) Without consistency verification (FI), (b) With consistency verification (FI-CV).
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2.5.6 Performance analysis for GSLF and improved saliency model based fusion

(GSLF-IS/Second method)

In the VIS and NIR spectra, we compare our results with some spatial as well as some

transform domain based approaches [37] as in previous section 2.5.5. Fast Hessian

(FH) being one of the best in the interest point detection (IPD) based category, is also

chosen for comparison. We also compare the results with our previous steerable lo-

cal frequency (SLF) based method results, see section 2.5.5. Results of the proposed

method in the VIS spectrum at an intermediate stage, i.e., after only guided filtering

of SLF and without saliency (GSLF) are also incorporated. We use the recently re-

ported EOL based method [52] in addition to FH and SLF method for comparisons

in the TH spectrum. Table 2.8 shows quantitative results of the proposed method

in the VIS and NIR spectra. Corresponding fused results are shown in Fig. 6 and

7. Perceptual quality of the fused images is superior as it shows no inconsistencies

or artifacts in the form of halo effects, illumination changes and contrast reduction.

Table 2.9 shows the quantitative comparison of our method with other methods. In

the VIS spectrum, the proposed method performs better than all the multiresolu-

tion based methods and the SLF as well as the GSLF with significant improvement

in MI , QAB/f and Q0. In comparison to the FH IPD based method, the proposed

method supersedes in terms of MI , QAB/f and marginally looses in terms of Q0. In

the NIR spectrum, the proposed method shows consistently good performance over

the SLF, FH, DWT and DTCWT methods. The quantitative results in TH spectrum

are shown in Table 2.10 and 2.11. The proposed fusion method outperforms the pixel

level weighted averaging with EOL activity level based fusion method [52] with high

margin in terms of RMSE. Our method also shows an improvement over the SLF and

FH IPD based methods in terms of RMSE, CC and MAE. The proposed method

yielded better results as compared to its competitors due to the use of guided fil-

ter, steerable local frequency maps and the improved saliency maps. Fig. 2.29 (a-e)

shows the fused resultant images in the TH spectrum for five image sets (Set1-Set5).
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TABLE 2.8: Fusion results of the GSLF and improved saliency based method (GSLF-IS) in VIS and
NIR spectra: MI , QAB/f and Q0 values with Consistency Verification (CV).

Images MI QAB/f Q0

VIS spectrum
Clock 8.7171 0.7405 0.9786
Desk 8.3108 0.7313 0.9588
Lab 8.5689 0.7437 0.9761
Pepsi 8.8772 0.7849 0.9812

NIR spectrum
Keyboard 8.1360 0.7580 0.9980

TABLE 2.9: Multifocus image fusion results of GSLF and improved saliency based method (GSLF-IS):
Performance comparison in VIS and NIR spectra

Spectrum Method MI QAB/f Q0

VIS spectrum GSLF-IS method 8.6185 0.7501 0.9737
GSLF 8.5930 0.7496 0.9737
SLF method 8.3245 0.6768 0.9735
FH 8.2493 0.5804 0.9746
DWT 2.4126 0.6866 0.7206
SWT 2.4510 0.7140 0.7555
DTCWT 2.4814 0.7231 0.7650
CVT 2.4387 0.7075 0.7421
CT 2.3978 0.6700 0.7076
NSCT 2.4804 0.7219 0.7799

Near-infrared (NIR) GSLF-IS method 8.1360 0.7580 0.9980
spectrum SLF method 7.9342 0.6853 0.9908

FH 8.0198 0.7105 0.9912
DWT 5.9485 0.5135 0.9061
DTCWT 7.3575 0.7082 0.9902

Visual inspection of the fused images in comparison with the ground truth clearly

demonstrates the superior performance of the proposed fusion method.

(a) (b) (c) (d)

FIGURE 2.27: Fused images obtained using the GSLF and improved saliency based method (GSLF-
IS) in the VIS spectrum for four datasets with consistency verification (CV): (a) Clock, (b) Desk, (c)

Lab, (d) Pepsi.
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TABLE 2.10: TH multifocus image fusion with reduced dataset by the proposed GSLF-IS method:
RMSE.

Image Set Pixel level Weighted FH SLF method GSLF-IS method
averaging based on
EOL AL Fusion [15]

Mobile-RS232 0.1803 0.0183 0.0172 0.0159
Bulbs set 1 0.1999 0.0307 0.0184 0.0150
Bulbs set 2 0.1342 0.0293 0.0160 0.0118
Bulbs set 3 0.2648 0.0541 0.0313 0.0210
Bulbs set 0.3307 0.0589 0.0368 0.0265

TABLE 2.11: TH multifocus image fusion with reduced dataset by the proposed GSLF-IS method:
CC and MAE.

Image set FH SLF method GSLF-IS method
CC MAE CC MAE CC MAE

Mobile-RS232 0.9933 0.0077 0.9944 0.0078 0.9951 0.0075
Bulbs set 1 0.9942 0.0097 0.9979 0.0075 0.9986 0.0063
Bulbs set 2 0.9891 0.0167 0.9969 0.0097 0.9983 0.0072
Bulbs set 3 0.9832 0.0250 0.9946 0.0210 0.9976 0.0146
Bulbs set 4 0.9821 0.0348 0.9932 0.0309 0.9965 0.0219

FIGURE 2.28: Fused images obtained by the GSLF-IS based method in the NIR spectrum: Keyboard
set.
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(a) (b) (c)

(d) (e)

FIGURE 2.29: Fused images obtained using the GSLF-IS based method in the TH spectrum: (a)
Mobile phone and RS232 Set; (b) Bulbs Set 1; (c) Bulbs Set 2; (d) Bulbs Set 3; (e) Bulbs Set 4.
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2.6 Discussions

In our first work, we present a new focus measure based on steerable local frequency

based interest point detection. The proposed focus measure is shown to perform well

in different spectra. Better performance of the proposed focus measure is due to the

use of orientation selective local frequency in the source images. We further demon-

strated that the proposed focus measure improves mutispectral multifocus fusion. In

the visual spectrum, our fusion scheme outperforms some of the robust and efficient

multiresolution transform based methods in addition to some IPD based approaches.

In the near-infrared spectrum the proposed fusion method offers a decent perfor-

mance in comparison with the spatial and transform domain based approaches. In

the thermal spectrum, the results show significant improvement over previously re-

ported results.

To achieve very consistence and better fusion performance, in the next work, we

make innovative use of guided filtering and an improved saliency model. Superior

fusion results are achieved by combining guided steerable local frequency maps with

the saliency maps over all spectra.
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Chapter 3

Multispectral Causal Video Fusion

In this chapter, in first part, we discuss a novel proposed framework for semantic
segmentation of causal video using superseeds and graph matching. Which per-
forms well compared to recently reported works. In the second part, we discuss the
proposed superpixel based causal multispectral video fusion algorithm suitable for
real-time surveillance tasks. Here we make use of the techniques we developed in
causal video segmentation in the first part. We develop new superpixel level spa-
tial and temporal saliency models. Novel superpixel level multiple fusion rules are
also designed to obtain the fused output. Comprehensive comparisons with several
existing works clearly indicate the benefit of our solution.

3.1 Introduction

Video surveillance systems have become extremely important due to increasing se-

curity concerns. Single modality (spectrum) surveillance systems [78] work well in

controlled conditions for civilian, military, and, remote sensing applications. How-

ever, these systems often fail in cases of low illumination, shadowing, smoke, dust,

unstable background, and camouflage. Recent developments in sensor technologies

have led to the popularity of multispectral surveillance systems which can perform

better in such adverse situations. The multispectral surveillance systems make use of

fusion of videos from different spectra like visible and infrared. The fused video can

describe a scene more accurately and precisely as compared to any of the individual

modalities [79] applied in isolation. Any multispectral video fusion system should
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have the following characteristics [3] - (i) it should preserve all relevant information

of the input video pairs, (ii) it should not introduce any artifacts and inconsisten-

cies (false information); (iii) it should be temporally stable and consistent; and (iv)

it should be shift-invariant. In addition, the algorithm should have a very low ex-

ecution time in order to be used for any real-time application. The fused video can

be further analyzed for various important surveillance tasks like anomalous event

detection [8, 80] and person re-identification [9], fire detection [81], video copy detec-

tion [82] and video search [83].

Early multispectral video fusion methods essentially followed an independent frame

by frame fusion approach [3, 4, 10, 11]. Such strategies suffer from temporal instabil-

ity and inconsistencies. To overcome this problem, some of the later methods utilized

the information from the adjacent past and future frames to fuse the current frame

[12–14]. However, for real-time applications, the future frames may not be available

in the system at the time of processing the current frame. Such a system is termed

as a causal system. So, in causal video fusion, one can only make use of the past

frames to fuse the current frame. Majority of the video fusion approaches reported

in the literature are non-causal in nature. Hence, the main motivation behind this

work is to propose a causal video fusion algorithm which can be applied for real-

time video surveillance applications. Majority of non-causal video fusion methods

are transform domain based [12–14, 24, 25]. The transform domain approaches suffer

from inherent information loss due to approximation issues in implementation. Fur-

thermore, these methods could sometimes be computationally quite expensive due

to the use of higher scales, necessary to achieve robust performance. Spatial domain

processing is often more accurate [84]. However, conventional pixel level spatial

domain processing of high volume data could seriously restrict its use for real-time

applications.

It has been observed that the high fusion performance can be achieved if we first

identify spatial and temporal information and then merge these using appropriate
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fusion strategies. So, as a first step, to segment video frames into meaningful re-

gions, we propose a novel causal video segmentation using superseeds and graph

matching. We first employ Simple Linear Iterative Clustering (SLIC) for the extrac-

tion of superpixels from video frames in a causal manner. A set of superseeds is cho-

sen from the superpixels in each frame using color and texture based spatial affinity

measure. Temporal coherence is ensured through propagation of labels of the su-

perseeds across each pair of adjacent frames. A graph matching procedure based on

comparison of the eigenvalues of graph Laplacians is employed for label propaga-

tion. Watershed algorithm is applied finally to label the remaining pixels to achieve

final segmentation.

In the second step, we propose a novel superpixel based framework for causal mul-

tispectral (visible and infrared/thermal infrared) video fusion (CMVF) which can be

very useful for real-time video surveillance applications. Major step of the proposed

framework is to segment input video frames into four types of regions- uniform,

spatially salient, temporally salient and spatio-temporally salient regions which is

based on our causal video segmentation algorithm. The proposed approach consists

of three stages- pre-processing, saliency detection and fusion. In the pre-processing

stage, we extract superpixels from the visible (VIS) and infrared or thermal infrared

(IR) video frames. In the second stage, we obtain spatial and temporal saliency maps

for these frames at the superpixel level. To build spatial saliency maps, we use su-

perpixel level color and texture information. Temporal saliency detection is based

on superpixel level direct frame difference (SDFD) and local region graph matching

between current and previous frame. In the third and final stage, we propose super-

pixel level fusion rules.
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3.2 Related works

We first mention some of the early works for multispectral video fusion based on

extension of multisensor image fusion. In [3], Rockinger suggested fusion of VIS

and TH-IR spectrum videos for object detection and tracking for surveillance appli-

cations. Bennet et al. [10] developed a scheme for enhancing underexposed visible

spectrum video by fusing it with co-registered simultaneously captured video from

Short wave IR or Near IR for video enhancement. Denman et al. [4] demonstrated

how the fusion of simultaneously captured multiple modality (multi-spectra) videos

can enhance the performance of surveillance systems. Rasmussen et al. [11] demon-

strated, how fusion of VIS and IR videos helps wilderness search and rescue groups.

In [24], Dixon presented an analogy between the multispectral video fusion in vis-

ible and infrared domain with the visual system of rattlesnakes. In [85], Torabi et

al. proposed an integrated framework for TH-IR and visible image registration, fu-

sion and tracking for video surveillance applications. Recently, Pillai and Swamy

[86] proposed a frame by frame real-time video fusion algorithm for camouflaged

target detection. Note that the above works suffer from temporal instability and in-

consistencies as they followed a frame by frame approach and exploited only spatial

information. In addition, we observed that execution time of [86] is still somewhat

high for real-time applications.

Now, we discuss some video fusion approaches which make use of temporal in-

formation. Zhang et al. in [12] proposed a framework for multispectral video fu-

sion based on the motion selective multiscale analysis tool using 3D surfacelet trans-

form. However, the method does not work well on the videos with highly dynamic

background. In a second work [13], they proposed an algorithm based on spatial-

temporal saliency detection with 3D uniform Curvelet transform (3D-UDCT). This

method, though more robust than the previous method, suffers from poor execution

time. So, in [14], they proposed another video fusion algorithm based on the 3D sur-

facelet (3D-ST) transform and higher order singular value decomposition (HOSVD).
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This method suppresses unwanted scene noise and has a very low execution time.

In another recent work, Xu et al. [25] proposed a method for fusing videos from the

visible and the IR spectra based on motion compensated wavelet transform. Note

that all these transform domain methods essentially work in a non-causal manner,

i.e., while processing the current frame, they made use of both the past and future

frames. In addition, the transform domain approaches suffer from inherent informa-

tion loss due to approximation issues in implementation.

To the best of our knowledge, there is no causal multispectral video fusion algo-

rithm available till date. We propose a spatial domain superpixel level causal multi-

spectral multispectral video fusion algorithm. The main contributions of this work

are highlighted below:

1. Superpixel level accurate spatio-temporal saliency detection. The spatial saliency

detection is based on a combination of color and texture measures. Tempo-

ral saliency detection is achieved from superpixel level direct frame difference

(SDFD) and local region graph matching.

2. Superpixels are grouped into four different categories based on their saliency

values. Appropriate fusion rules are designed at the superpixel level yielding a

highly accurate fused video.

3. Extremely fast execution time making the method a highly suitable candidate

for real-time surveillance applications. This has been possible due to superpixel

level processing.

3.3 Superpixel Extraction

Superpixel extraction significantly reduces computational complexity in video seg-

mentation algorithms [87, 88]. We use the SLIC algorithm [89] for the extraction of

73



Chapter 3. Multispectral Causal Video Fusion

superpixels in each frame of a causal video. So, we can write:

It,SLIC = SLIC(It, k) (3.1)

where It is the current frame and It,SLIC is the frame with extracted superpixels. The

inputs to SLIC are the current frame It and the desired number of superpixels k. The

CIELAB color space is used for clustering color images. In an initialization step, k

initial cluster centers Ci, i = 1, ..., k are sampled on a regular grid with spacing S

pixels. Hence, we can write:

Ci = [li, ai, bi, xi, yi]
T (3.2)

S =

√
N

k
(3.3)

where N is the number of pixels in the image. The seed centers Ci are moved to

locations with lowest gradient position in 3 × 3 neighborhood. Then, each pixel i is

associated with the nearest cluster center. Limiting the size of search region to 2S×2S

around the center significantly reduces the computation compared to the k-means

clustering. A new distance measureD which is a combination of color distance (dc) in

CIELAB space and spatial distance (ds) is used for that purpose. The update step then

adjusts each cluster center to be the mean [l, a, b, x, y]T vector of all the pixels of that

cluster. For our work. we find 10 iterations to be sufficient to reach the convergence.
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3.4 Proposed Causal Video Segmentation

Video segmentation [90–92] aims at grouping pixels into meaningful spatio-temporal

regions that exhibits coherence in appearance and motion. The problem of video seg-

mentation [93–95] becomes extremely challenging due to size of the input, camera

motion, occlusions, non-rigid object motion, and uneven illumination. Video seg-

mentation techniques can be classified into non-causal (off-line) and causal (on-line)

categories. While non-causal segmentation techniques make use of both the past and

future video frames, causal segmentation approaches rely only on the past frames.

For some recently reported causal video segmentation works, please see [87, 88, 96,

97]. Some of these algorithms employ superpixels to reduce computational com-

plexity and to achieve powerful within-frame representation [87, 88]. The method in

[97] does not guarantee temporal consistency. Miksik et al. [96] performs semantic

segmentation using optical flow to ensure temporal consistency. But, complexity of

pixel-level optical flow computation poses a serious constraint for its use in real-time

applications. Couprie et al. [87] proposed an efficient causal graph-based video seg-

mentation method using minimum spanning tree. However, the method uses some

heuristics in both the pre and post processing stages. We propose a novel frame-

work for semantic segmentation of causal video using superseeds and local graph

matching [98].

The proposed framework is illustrated in Fig. 3.1 as shown below.

SLIC [89] is applied for the generation of superpixels in each frame of a causal

video. As a part of the initialization step, we apply the DBSCAN [99] (Density Based

Spatial Clustering of Applications with Noise) method with some modifications re-

sulting from our spatial consistency measure to achieve the final segmentation of the

first frame. Some representative superpixels are then chosen using the above spatial

affinity measure. We deem the centers of such superpixels as superseeds. Labels of

these superseeds are propagated to the current frame from the previous frame by
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FIGURE 3.1: Schematic: Proposed causal video segmentation.

using local graph matching. Entries and exits are also handled efficiently to achieve

temporal consistency. Watershed is applied to label the remaining pixels (other than

the superseeds) to achieve complete segmentation of the current frame.

3.4.1 Spatial saliency measure

A hexagonal neighborhood graphG = (V,E) is constructed with the extracted super-

pixels as the nodes using hexagonal grid as suggested by http://www.csse.uwa.

edu.au/pk/research/matlabfns/Spatial/slic.m. This is shown in Fig. 3.2.

The spatial affinity between two superpixels Si and Sj is captured by the edge weights

ωij . Color and texture information are used to compute these edge weights. For the

color information, intersection (minimum) between cumulative color histograms of

two superpixels under consideration is employed as a measure. This is given by:

cij = N [Hist(Si) ∩Hist(Sj)] (3.4)

Here,Hist(·) represents the cumulative color histogram of a superpixel. N is the nor-

malization constant, set equal to 1/max(cij). The larger the value of cij , the higher is

the color affinity between the superpixels Si and Sj . For the texture information mea-

sure, we use a gray-scale local binary pattern (LBP) [100] based measure. The LBPP,R
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number characterizes the local image structure and can be computed as follows:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (3.5)

where p are the pixel within a circular neighborhood of radius R of the center pixel

c. And gp and gc represents corresponding pixel intensities. We have taken P=8 and

R=1 for our problem. The function s is given by:

s(x) =

 1 if x ≥ 0

0 otherwise
(3.6)

The above LBP number is computed for every pixel in a superpixel. We can write

STi, as a texture measure of the superpixel Si, given by a joint vector:

STi =

|Si|⋃
n=1

LBPP,R,n (3.7)

where n is a pixel in Si. Similarly we can have STj for the superpixel Sj . The nor-

malized texture affinity measure tij between two superpixels Si and Sj is given by:

tij = 1− WH(STi
⊕

STj)

max∀i,j[WH(STi
⊕

STj)]
(3.8)

Where STj is truncated to the length of STi and WH is the Hamming weight function

on binary vectors. Larger value of tij indicates higher texture affinity. Finally, we

present the proposed spatial affinity measure between the superpixels Si and Sj as:

ωij = cij × tij (3.9)

Note that ωij ∈ [0 1].
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FIGURE 3.2: Superpixel neighborhood graph

3.4.2 Label propagation using graph similarity

We now mention the various steps linked with propagation of labels from the previ-

ous frame to the current frame. These steps are discussed below:

3.4.2.1 Selection of superseeds

In the initialization step, only the first frame is segmented by the modified DBSCAN

[99] using the above spatial affinity measure. Each segment consists of multiple su-

perpixels and we discard those segments which have less than two superpixels. The

geometric centers of the remaining segments are extracted and treated as superseeds.

3.4.2.2 Local graph matching

Local region graphs are constructed surrounding each superseed in the previous

frame and surrounding corresponding pixels (having same spatial locations as that

of the superseeds in the previous frame)in the current frame. This is illustrated in

Fig. 3.3. These two graphs are compared to propagate the label from the previous

frame to the current frame. LetG1(V 1, E1) corresponds to the local region graph sur-
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FIGURE 3.3: Local graph similarity matching

rounding a superseed in the previous frame. Similarly, let G2(V 2, E2) corresponds

to the local region graph surrounding the pixel with same spatial location (as that of

the superseed in the previous frame) in the current frame. We use graph Laplacian’s

eigenvalue-based score for matching [101]. Let A1 and A2 be the adjacency matrices,

D1 and D2 be the diagonal matrices and L1 and L2 be the Laplacian matrices of the

graphs G1 and G2 respectively. Then, we can write:

L1 = D1− A1 (3.10)

L2 = D2− A2 (3.11)

We use the similarity matching score SimG1,G2 between G1 and G2 by computing the

top k eigenvalues of Laplacians L1 and L2, that contain 90% of energy, as given by:

SimG1,G2 =
k∑
i=1

(λ1i − λ2i)
2 (3.12)

where k is chosen as shown below:

min
j

(∑k
i=1 λji∑n
i=1 λji

> 0.9

)
(3.13)
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Low values of SimG1,G2 indicate that the graphs are very similar and vice-versa.

3.4.2.3 Temporal Consistency and Label Propagation

If the matching score (see equation 3.12) is less than an experimentally chosen thresh-

old (T1), then the two co-located regions under consideration have temporal coher-

ence. So, we simply copy the label of the superseed of the previous frame to the next

frame. If this score is higher, then there is no such temporal consistency between the

two corresponding regions. This may occur due to an exit or a new entry in the cur-

rent frame. To further differentiate between these two situations, we check the spatial

affinity (ωij) of the superpixel in the current frame with its neighbors in the local re-

gion graph. If the spatial affinity is more than an experimentally chosen threshold

(T2), it signifies an exit and no new label is required in that case. If the spatial affinity

is less, it signifies an entry and we assign a new label to the superpixel in the current

frame. In this manner, we ensure temporal coherence between each successive pair

of frames under different situations (with or without entry and/or exit).

3.4.3 Watershed for final segmentation

We next employ the sequential unordered watershed algorithm with respect to topo-

graphical distance function [102], derived from the shortest path algorithm, to label

the remaining pixels in the current frame to achieve the final segmentation. The ba-

sics of watershed transform following [102, 103] is included for the sake of complete-

ness. Let f be a gray value of the morphologically processed input frame(image).

The lower slope LS(p) at pixel p is defined as the maximal slope linking p to any of

its neighbors of lower altitude. Thus,

LS(p) = max
q∈NG(p)∪{q}

(
f(p)− f(q)

d(p, q)

)
(3.14)
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where NG(p) is the set of neighbors of pixel p on the grid graph G = (V,E) built on f

and d(p, q) is the distance associated with the edge (p, q). The cost of walking from a

pixel p to its neighboring pixel q is defined as:

cost(p, q) =


LS(p) · d(p, q) if f(p) > f(q)

LS(q) · d(p, q) if f(p) < f(q)

1
2

(LS(p) + LS(q)) · d(p, q) if f(p) = f(q)

(3.15)

The topographical distance along a path π between p and q is defined as:

T πf (p, q) =
l−1∑
i=0

d(pi, pi+1) · cost(pi, pi+1) (3.16)

The topographical distance between p and q is the minimum of the topographical

distances along all paths between p and q and is defined as:

Tf (p, q) = min
π∈[p−→q]

T πf (p, q) (3.17)

Let (mi)i∈I be the collection of minima (markers) of f . The catchment basins CB(mi)

of f correspond to a minimum mi is defined as the basin of the lower completion of

f :

CB(mi) = {p ∈ D | ∀j ∈ I\{i} : f ∗(mi) + Tf∗(p,mi) < f ∗(mj) + Tf∗(p,mj)} (3.18)

where f ∗ is the lower completion of f . The watershed of f with 2D grid D are the

points which do not belong to any catchment basin and is defined in the following

manner:

Wshed(f) = D ∩ (∪i∈I · CB(mi))
c (3.19)

The superseeds generated in the earlier stage of our solution pipeline act as the mark-

ers (regional minima). Thus construction of the catchment basins (segments) of the

frame becomes a problem of finding a path of minimal cost between each pixel and a
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marker (regional minima). Note that for the second frame onwards, the watershed-

based final segmentation provides the labels of the superpixels in the current frame.

We then propagate the labels of the superseeds in the current frame to the next frame

using the graph matching technique.

3.4.4 Experimental results

We have implemented the proposed method in MATLAB R2013b environment on a

desktop PC with 3.4GHz Intel Core i7 CPU with 8GB RAM. SLIC for superpixels

extraction is used from [89] and DBSCAN from [99]. The average execution time of

the proposed method is 3.5 sec. out of which SLIC itself takes 3 sec. The values of the

thresholds T1 and T2 are experimentally chosen as 0.45 and 0.50.

3.4.4.1 Performance measures

To evaluate the performance, we use the overall pixel accuracy (OP ) [104] metric.

The OP measures the proportion of correctly labeled pixels. We can compute OP as

follows.

OP =

∑L
i=1Cii∑L
i=1 Gi

(3.20)

Where C is confusion matrix and Gi =
∑L

j=1 Cij , is the total number of pixels labeled

with i. L is number of classes.

3.4.4.2 Evaluation Dataset

Experiments are carried out over two different types of datasets, one acquired with

a static camera (NYU depth dataset) [105] and the other acquired with a moving

camera (NYU Scene Dataset) [87, 96].
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3.4.4.3 Performance comparison for causal video segmentation

To demonstrate the robustness of our method in terms of spatial consistency we

compare our results with that of [87] and [97] in Fig. 3.4. For our experiment, we

use 500 superpixels (an experimentally chosen value) for each frame. In case of the

NYU scene dataset, the results are shown in Table 3.1. In this table, we compare our

method with the results of frame by frame method, [96] and [87]. Table 3.1 clearly

demonstrates the OP of our method (85.63) is superior as compared to that of the

frame by frame (71.11), [96] (75.31), and [87] (76.27). We also show in Table 3.1 that

the the modified DBSCAN (OP: 85.63) yield better results than the standard DBSCAN

(OP: 78.26). In fig. 3.5, we present the comparison of our semantic segmentation with

the ground truth and with that of [87] for five intermediate frames 55 - 59 of the NYU

Scene dataset. The labeled images are overlaid on the original frames for better repre-

sentation. The results clearly show that our output frames resemble the ground truth

much better as compared to that of [87]. The quantitative results in terms of overall

pixel accuracy (OP) for the NYU Depth dataset are presented in Table 3.2. We exper-

iment with four videos from the NYU Depth dataset, namely, Dining room, Living

room, Classroom and Office. Our proposed method (using modified DBSCAN) with

an average OP of 72.32 surpasses both the frame-by-frame approach with an OP of

60.5 and that of [87] with an average OP of 61.6.

Original Frame Mean Shift [97] Couprie et al. [87] Our Results

FIGURE 3.4: Comparison of spatially consistent segments on different frames of Two women dataset
[97] with independent segmentation.
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(a) Respective ground truth labels overlaid with individual frames

(b) Semantic segmentation using [87]

(c) Semantic segmentation using our method

FIGURE 3.5: Comparison of temporally consistent semantic video segmentation on frames 55 - 59 of
NYU Scene dataset.

TABLE 3.1: OP values for the semantic segmentation task on the NYU Scene dataset.

frame by frame Miksik et al. [96] Couprie et al. [87] Proposed method
DBSCAN [99] modified

for initial DBSCAN for
frame initial frame

Accuracy 71.11 75.31 76.27 78.26 85.63

TABLE 3.2: OP for the semantic segmentation task on the NYU Depth dataset.

Dataset Frame by Couprie Proposed Method
frame et al. [87] With Modified DBSCAN

Dining room 63.8 58.5 78.80
Living room 65.4 72.1 83.28
Classroom 56.5 58.3 65.55
Office 56.3 57.4 61.63

Mean : 60.5 61.6 72.32
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3.4.5 Discussions

In this work as an initial step towards providing solution to multispectral video fu-

sion, we present a solution for the problem of causal video segmentation using su-

perseeds and local graph matching. The superseeds are selected from the superpix-

els extracted using the SLIC algorithm. The labels of the superseeds are propagated

using local graph matching. Finally, watershed algorithm is used to obtain the com-

plete segmentation. In future, we will work on improving the execution time of our

method. We will also explore how the segmentation accuracy can be further im-

proved.
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3.5 Proposed Causal Multispectral Video Fusion

The multispectral videos to be fused are assumed to be registered in space and time.

Our three-step solution pipeline begins with a two-part video pre-processing step.

In the first part of the pre-processing, the superpixels are extracted from the cur-

rent frame in both the spectra (VIS, IR/TH-IR (henceforth will be denoted IR)) using

SLIC [89]. Next, we identify superpixels which can potentially be in motion. Su-

perpixel level spatial and temporal saliency maps are obtained in the second step of

the pipeline. In the third and final step, superpixels are categorized based on their

saliency values and four different fusion rules are developed. Fig. 3.6 shows the

proposed framework.

FIGURE 3.6: Framework: Proposed Causal multispectral Video Fusion.

3.5.1 Video pre-processing

The well-known SLIC [89] algorithm is used for the extraction of the superpixels in

each frame of VIS and IR videos. Superpixel segmentation is given by:

St = SLIC(t, k) (3.21)
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Here, St denotes the superpixels extracted from the current frame t and k denotes the

desired number of superpixels. To find the superpixels which can potentially be in

motion, we employ superpixel level direct frame difference (SDFD) expressed as:

SDFDSi,t = g(Si,t)− g(Si∗,t−1) (3.22)

Here, g(Si,t) and g(Si∗,t−1) respectively denote the mean intensities of Si,t, the ith su-

perpixel in the current frame t and Si∗,t−1, the co-located superpixel (i∗) in the previ-

ous frame (t − 1). The term SDFDSi,t represents the difference in the two intensity

values for the superpixel Si,t and is compared with an experimentally chosen thresh-

old (T1). The superpixels, for which SDFDSi,t are larger than T1, are deemed to be

in motion (marked by motion labels φSi,t with value 1). So, we can build a binary

motion map:

ΦSi,t =

 1 if SDFDSi,t ≥ T1

0 else
(3.23)

The binary motion map for the frame ft can be expressed as Φt = ∪ni=1ΦSi,t , where n

is the actual number of superpixels in the frame ft.

3.5.2 Saliency models for Video

Saliency detection in an image or video aims at extracting regions which capture

greater attention of human vision system as compared to other portions [106]. There

exist many pixel based saliency models in spatial [107, 108] as well as in frequency

domains [13, 106]. Recently, Liu et al. [109] proposed a superpixel level spatio-

temporal saliency detection algorithm. Although, this method outperforms several

state-of-the-art saliency models in terms of accuracy, it suffers from low computa-

tional efficiency due to the use of pixel level optical flow algorithm for superpixel

motion estimation. We propose here a computationally efficient superpixel based

causal spatio-temporal saliency model.
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3.5.2.1 Spatial saliency detection

We use superpixel level texture and color measures for spatial saliency. CIELAB

space is used to obtain color measure due to its perceptual uniformity [89]. The

relationship of a given superpixel Si,t with its first order neighborhood superpixels

is explored to obtain its color measure ΥSi,t . So, we write:

ΥSi,t =
1

N

N∑
j=1

‖LabSi,t − LabSj,t‖2 (3.24)

Here, Sj,t is a first-order neighboring superpixel and N is the total number of first-

order neighboring superpixels of Si,t. The term LabSi,t denotes the Lab vector with L

representing luminance and a, b representing chroma components. Note that the IR

spectrum contains only the luminance information.

The texture measure is based on the superpixel level local binary pattern (SLBP)

[100]. The SLBP number characterizes the local structure and can be computed as

follows:

SLBPP,R(Sc) =
P∑
p=1

θ(g(Sp)− g(Sc))2
p (3.25)

where P denotes the number of superpixels within a circular neighborhood of radius

R centering superpixel Sc. The terms g(Sc) and g(Sp) respectively represent mean

intensities of the center superpixel Sc and a neighborhood superpixel Sp. We fixR = 1

for this work. The function θ is given by:

θ(x) =

 1 if x ≥ 0

0 otherwise
(3.26)

We use ΓSi,t to denote the texture measure of the superpixel Si,t and this is given by:

ΓSi,t =
1

N

N∑
j=1

WH (SLBPP,R(Si,t)⊕ SLBPP,R(Sj,t)) (3.27)
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WH is the Hamming weight function on each SLBP and ⊕ stands for the logical XOR

operation. The spatial saliency of the superpixel Si,t is expressed as:

ΨSi,t = ΥSi,t ∗ ΓSi,t (3.28)

The spatial saliency map for the frame ft can be expressed as Ψt = ∪ni=1ΨSi,t . We now

present Algorithm 4 to obtain Ψt.

Algorithm 4 Spatial Saliency Detection

Input: St, φt, Ψt−1, n

Output: Ψt

Initialization: ΨSi,t ← ΨSi∗,t−1
, i = 1, · · · , n

1: for i = 1 to n do

2: if (φSi,t == 1) then

3: Obtain ΥSi,t

4: Obtain ΓSi,t

5: ΨSi,t ← ΥSi,t ∗ ΓSi,t

6: end if

7: end for

8: Ψt = ∪ni=1ΨSi,t

Please note that the spatial saliency map of the current frame (ΨSi,t) is initialized

with the spatial saliency map of the previous frame (ΨSi∗,t−1
). So, we essentially build

the spatial saliency maps for different frames in a causal manner.

3.5.2.2 Temporal saliency detection

In our proposed model, we obtain temporal saliency for only those superpixels in the

current frame which have non-zero motion. A temporal matching scheme is applied

between these superpixels in the current frame with the co-located superpixels in

the previous frame using local region graphs. A dissimilarity score based on the
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FIGURE 3.7: Local region graph matching.

eigenvalues of graph laplacians are employed for determining temporal saliency. The

details of the proposed temporal saliency detection strategy are given below.

3.5.2.2.1 Local region graph construction: Local region graphsGSi,t(v, e) andGSi∗,t−1
(v, e)

are constructed surrounding the superpixels i in motion in the current frame t and

at the co-located superpixels i∗ in the previous frame (t− 1). Neighboring superpix-

els of Si,t and Si∗,t−1 form the respective vertex sets. In each of the graphs GSi,t(v, e)

and GSi∗,t−1
(v, e), edges are now constructed between the center vertex and all neigh-

bor vertices plus between each pair of neighbor vertices. The local region graphs

are illustrated in figure 3.7. Spatial affinity between any two superpixels is obtained

as a product of color and texture affinities between them. This value is assigned

as the corresponding edge weight. The color affinity C(Sm, Sn) and texture affinity

T (Sm, Sn) between superpixels Sm and Sn in a graph are given by:

C(Sm, Sn) = ‖LabSm − LabSn‖2 (3.29)

T (Sm, Sn) = WH (SLBPP,R(Sm)⊕ SLBPP,R(Sn)) (3.30)

So, the edge weight between the two superpixels/vertices Sm and Sn is expressed as:

ωSm,Sn = C(Sm, Sn) ∗ T (Sm, Sn) (3.31)
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3.5.2.2.2 Local region graph matching [101]: We use the spectral graph theory based ap-

proach for the local region graph matching. The adjacency matrix of a weighted

graph captures the edge weights. The degree matrix represents the number of edges

connected to each vertex and is hence diagonal in nature. Let A1, A2 be the weighted

adjacency matrices, D1, D2 be the diagonal degree matrices, and L1, L2 be the Lapla-

cian matrices of the graphs GSi,t(v, e) and GSi∗,t−1
(v, e) respectively. Then, the Lapla-

cian matrices are given by:

L1 = D1 − A1

L2 = D2 − A2

(3.32)

Dissimilarity score β between the two graphs GSi,t(v, e) and GSi∗,t−1
(v, e) is given

by the differences of top K eigenvalues (λ11 · · ·λ1K) of L1 and (λ21 · · ·λ2K) of L2. So,

we can write:

β(GSi,t(v, e), GSi∗,t−1
(v, e)) =

K∑
k=1

(λ1k − λ2k)
2 (3.33)

Top K eigenvalues are the ones which contain 90% of the energy. Hence, K is deter-

mined using the following equation:

min
q∈[1,2],p

(∑K
p=1 λqp∑M
p=1 λqp

> 0.9

)
(3.34)

In the above equation, M represents the total number of eigenvalues. A high value

of β indicates that the graphs are highly dissimilar. The local graph matching is

graphically illustrated in Fig. 3.7.

3.5.2.2.3 Building temporal saliency map: The dissimilarity value β between the two

region graphs centering two co-located superpixels is compared with an experimen-

tally chosen threshold T2. If the dissimilarity value is less than T2, then co-located

superpixel (Si∗)’s temporal saliency value from the previous frame (t− 1) is deemed
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as the temporal saliency value of the superpixel (Si) in the current frame t. Other-

wise, the dissimilarity value itself is assigned as the saliency value of the superpixel

under consideration. The temporal saliency map for the frame ft can be expressed as

Ωt = ∪ni=1ΩSi,t . We now present Algorithm 5 to obtain Ωt.

Algorithm 5 Temporal Saliency Detection

Input: St, φt, Ωt−1, n

Output: Ωt

Initialization: ΩSi,t ← 0, i = 1 · · ·n

1: for i = 1 to n do

2: if (φSi,t == 1) then

3: Build GSi,t(v, e)

4: Build GSi∗,t−1
(v, e)

5: Obtain β(GSi,t(v, e), GSi∗,t−1
(v, e))

6: if β(GSi,t(v, e), GSi∗,t−1
(v, e)) < T2 then

7: ΩSi,t ← ΩSi∗,t−1

8: else

9: ΩSi,t ← β(GSi,t(v, e), GSi∗,t−1
(v, e))

10: end if

11: end if

12: end for

13: Ωt = ∪ni=1ΩSi,t

Please note that to derive the temporal saliency map of the current frame, our ap-

proach makes use of temporal saliency map of previous frame. Temporal saliency

values of the superpixels in motion in the current frame are initialized with the co-

located superpixel’s temporal saliency values from the previous frame. So, we also

develop the temporal saliency maps in a causal manner.
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3.5.3 Rules for video fusion

Depending on the spatial and temporal saliency values of the current frame in the

VIS and IR spectra, we divide the superpixels in the two spectra into four groups,

namely, Uniform, Spatially salient, Temporally salient, and Spatio-temporally salient. For

the sake of brevity, we omit the subscript t from the symbols denoting superpixels,

spatial saliency map and temporal saliency map as by default only the current frame

will be referred. On a similar note, we add the subscripts VIS and IR to denote these

quantities in two different spectra. We now discuss below how the superpixels are

categorized into four groups.

1. Uniform Superpixels: In both the spectra, the temporal saliency values of the su-

perpixels are zero and the spatial saliency values are below the mean.

2. Spatially salient Superpixels: In both the spectra, the temporal saliency values of

the superpixels are zero and in at least one spectrum the spatial saliency value

is above the mean.

3. Temporally salient Superpixels: In at least one spectrum, the temporal saliency

value of the superpixels is non-zero and in both the spectra the spatial saliency

values are below the mean.

4. Spatio-temporally salient Superpixels: In at least one spectrum, the temporal saliency

value of the superpixels is non-zero and in at least one spectrum the spatial

saliency value is above the mean.

Separate fusion rules are applied for superpixels in the above four categories to

obtain the finally fused video. These fusion rules are now described below.
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3.5.3.1 Fusion rule for uniform superpixels

The superpixels classified as uniform represent homogeneous background regions

in a scene. In many transform domain and spatial domain fusion methods weighted

average fusion rule is adopted to fuse such regions. Accordingly, we propose the

following superpixel level energy modulated fusion rule:

F (Sji ) =
ESi,V IS

ESi,V IS + ESi,IR
∗ f(Sji,V IS) +

ESi,IR
ESi,V IS + ESi,IR

∗ f(Sji,IR) (3.35)

Here, F (Sji ) represents the intensity of the jth pixel in the ith superpixel Si in the

current fused frame. The terms f(Sji,V IS) and f(Sji,IR) denote the intensities of the

same pixel in VIS and IR spectrum respectively. Similarly, ESi,V IS is the normalized

energy of the superpixel Si in VIS spectrum and ESi,IR is the normalized energy of

the same superpixel in the IR spectrum. The expression for the normalized energy is

given by:

ESi =
(g(Si))

2

max
i

[g(Si))2]
(3.36)

Where, g(Si) is the mean intensity of the superpixel Si.

3.5.3.2 Fusion rule for spatially salient superpixels

When a superpixel is identified as spatially salient, we use the spatial saliency value

in the fusion process. Normalized energy is used in conjunction to ensure robustness.

Energy modulated spatial saliency fusion rule is thus formulated in the following
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manner:

F (Sji ) =
(ESi,V IS + ΨSi,V IS)

(ESi,T + ΨSi,T )
∗ f(Sji,V IS) +

(ESi,IR + ΨSi,IR)

(ESi,T + ΨSi,T )
∗ f(Sji,IR) (3.37)

Where,

ESi,T=
ESi,V IS+ESi,IR

max
i

[ESi,V IS+ESi,IR ]
, ΨSi,T=

ΨSi,V IS+ΨSi,IR
max
i

[ΨSi,V IS+ΨSi,IR ]
.

Here, ΨSi,V IS and ΨSi,IR are the spatial saliency values of the superpixel Si in the

current VIS and IR spectrum frame. The terms ESi,T and ΨSi,T respectively denote

total energy and total spatial saliency of a pixel by taking into consideration both the

spectra.

3.5.3.3 Fusion rule for temporally salient superpixels

When a superpixel is identified as temporally salient, we make use of the temporal

saliency value in the fusion process. Normalized energy is used in conjunction, as

in previous cases, to ensure robustness. Energy modulated temporal saliency fusion

rule is thus formulated in the following manner:

F (Sji ) =
(ESi,V IS + ΩSi,V IS)

(ESi,T + ΩSi,T )
∗ f(Sji,V IS) +

(ESi,IR + ΩSi,IR)

(ESi,T + ΩSi,T )
∗ f(Sji,IR) (3.38)

Where,

ΩSi,T =
ΩSi,V IS+ΩSi,IR

max
i

[ΩSi,V IS+ΩSi,IR ]
.

Here, ΩSi,V IS and ΩSi,IR denote the temporal saliency values of the superpixel Si in

the current VIS and IR spectrum frame respectively. The term ΩSi,T represents total

temporal saliency of a pixel from both the spectra.
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Algorithm 6 Video fusion

Input: ΨSi,V IS , ΨSi,IR, ΩSi,V IS , ΩSi,IR, n.

Output: F : Fused frame.

1: for i = 1 to n do

2: Obtain Ψ
′

V IS , mean spatial saliency in VIS spectrum

3: Obtain Ψ
′

IR, mean spatial saliency in IR spectrum

4: if ((ΩSi,V IS == 0) && (ΩSi,IR == 0)) then

5: if ((ΨSi,V IS < Ψ
′

V IS) && (ΨSi,IR < Ψ
′

IR)) then

6: Apply fusion rule 1 using eqn. 3.35

7: else

8: Apply fusion rule 2 using eqn. 3.37

9: end if

10: else

11: if ((ΨSi,V IS < Ψ
′

V IS) && (ΨSi,IR < Ψ
′

IR)) then

12: Apply fusion rule 3 using eqn. 3.38

13: else

14: Apply fusion rule 4 using eqn. 3.39

15: end if

16: end if

17: end for

18: Return F

3.5.3.4 Fusion rule for spatio-temporally salient superpixels

Finally, we frame fusion rules for spatio-temporally salient superpixels. Since a su-

perpixel in this case is both spatially and temporally salient in nature, we obtain

the spatio-temporal values in each spectrum by combining the spatial and temporal

saliency values. Then, we employ energy modulated spatio-temporal saliency values

as a part of the fusion rule in the following manner:

F (Sji ) =
(ESi,V IS + ΛSi,V IS)

(ESi,T + ΛSi,T )
∗ f(Sji,V IS) +

(ESi,IR + ΛSi,IR)

(ESi,T + ΛSi,T )
∗ f(Sji,IR) (3.39)
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Where,

ΛSi,V IS=
ΨSi,V IS+ΩSi,V IS

max
i

[ΨSi,V IS+ΩSi,V IS ]

ΛSi,IR=
ΨSi,IR+ΩSi,IR

max
i

[ΨSi,IR+ΩSi,IR ]

ΛSi,T=
ΛSi,V IS+ΛSi,IR

max
i

[ΛSi,V IS+ΛSi,IR ]

Here, ΛSi,V IS and ΛSi,IR are the spatio-temporal saliency values of the superpixel Si

in VIS and IR spectrum. The term ΛSi,T represents total spatio-temporal saliency of

a pixel from both the spectra. We now present algorithm 6 to obtain the fused video

frame F .

3.5.4 Time-Complexity Analysis

The complexity of the pre-processing step to extract superpixels is O(N) [89], where

N is the number of pixels in a video frame. Let n be the number of superpixels.

Then, superpixel level SDFD generation is done in O(n). The complexity of spatial

saliency detection requires color and texture measures. The color measure can be

obtained in O(kn), where k is the maximum number of the first order neighboring

superpixels. The texture measure is based on superpixel level LBP (SLBP) which

has O(n2) complexity [110]. So, the total complexity of spatial saliency detection is

O(n2) + O(kn) = O(n2) as (k << n). The complexity of temporal saliency detec-

tion involves local region graph construction and matching. Let m be the number of

superpixels in motion. Complexity of constructing m Laplacian matrices is O(mk2)

and complexity of obtaining their eigenvalues is O(mk3). So, the complexity of the

temporal saliency detection is O(mk3). The fusion rules on the superpixels can be

applied in linear time with a complexity of O(n). So, the frame level time-complexity

of our pipeline is O(n) +O(n2) +O(kn) +O(mk2) +O(mk3) +O(n) = O(n2).
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3.5.5 Experimental results

3.5.5.1 Evaluation Dataset, Comparisons and Performance measures

Experiments are carried out on five publicly available multispectral (VIS and IR)

video dataset, namely, Video pairs 1-5. Video pair 1 consists of pair (VIS and IR)

of 1651 frames, whereas video pair 2 and 3 consists of 750 and 600 pairs of frames

respectively [111]. All these videos are acquired by fixed outdoor thermal Sensor

(Raytheon PalmIR 250D, 25 mm lens) and Color Sensor (Sony TRV87 Handycam)

with 240 × 320 pixels resolution and sampling rate of 30 Hz. Video pair 4 with 8702

pair of frames is acquired during night time and contains natural noise [112] with

240 × 320 pixels resolution and sampling rate of 25 Hz. Video pair 5, popularly

known as Bristol Eden Project Multi-Sensor Data Set 3 [113] is acquired by moving

cameras with 480 × 576 pixels resolution and sampling rate of 25 Hz. It consists of

100 registered VIS and IR spectrum frames.

We also include experiments done with four more publicly available multispectral

video datasets (Video pair 6,7,8 and 9) [114] containing 250 to 2300 frames of size

658×491. The aquisition of these videos is performed using commercial camera from

FluxData Inc. (the FD-1665-MS) with varying frame rates which depends on overall

scene illumination, i.e., 5 frames/sec (for dark one) to 15 frames/sec (for bright one).

Please note that we could only show comparisons with the alternate saliency model

of [109] on these datasets. This is because the results of other fusion methods for

these datasets are not available. All the experiments are performed on a PC with

Intel Core i7 processor having 3.4 GHz speed and 8 GB RAM.

The proposed CMVF algorithm is compared with recent multisensor multispectral

video fusion methods like ST-Maximum, ST-Matching, ST-Liang-HOSVD, ST-PCNN,

ST-Structure-Tensor and ST-HOSVD1 as reported in [14]. Furthermore, comparisons

are also included with methods based on DWT, DT-CWT, 3D-DWT, 3D-DTCWT, 3D-

UDCT-salience, MCWT as can be found in [25]. We also compare our work with a
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recently reported video fusion algorithm for real-time target detection [86]. To show

the robustness of our framework and to justify our choice of SLIC for superpixels ex-

traction, we also compare our SLIC superpixels based framework (CMVF) with that

of Lazy Random Walk (LRW) [115] superpixels based framework (LRW-CMVF). In

addition, we evaluate our work with a recently proposed superpixel based spatio-

temporal saliency model [109]. For the objective evaluation of video fusion perfor-

mance we use five metrics- IE(Information entropy), Qm, DQG, IFD_MI and tc (per

frame execution time in sec.). Higher value of IE is desirable. The measure Qm [116]

signifies how much of the salient information contained in each of the input videos

has been transferred into the fused video without introducing any distortions or ar-

tifacts. Qm varies in the range [0, 1] where a value of 1 corresponds to the best fusion

performance. Dynamic fusion quality index, DQG [117] is an extension of gradient

information preservation between the input and the fused frames. It is based on

preservation of spatial information estimates obtained from the current frame and

temporal information preservation estimates obtained from the previous and subse-

quent frames. The metric DQAB/f also refers to the same Dynamic fusion quality

index metric proposed in [117]. The dynamic range of DQG [25] or DQAB/f [14] is

[0, 1] and high value signifies better performance. IFD_MI [3] metric is used to de-

note the temporal stability of a fused video. A temporally stable and consistent video

fusion method is marked by a high value of IFD_MI .

3.5.5.2 Selection of k, T1, T2

There are three parameters in our proposed pipeline, which we have selected exper-

imentally. The first parameter is the number of superpixels, k, used as an input to

SLIC. In Fig. 3.8, we show the variations of the sum of the averages of the three ob-

jective measures (IE, Qm, DQG/DQAB/f ) with k for video pairs 1 − 5. The curves

saturate after 1700 superpixels for the video pairs 1, 2, 3, 4 with a 240 × 320 resolu-

tion. However, for the video pair 5 with a higher resolution of 480 × 576, the same
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curve saturate at 2200. So, for video pairs 1-4 we set k = 1700, while for video pair

5 we set k = 2200. The second parameter T1 is used to threshold the SDFD map to

determine candidate superpixels which can be in motion. The third parameter is the

threshold T2 used for obtaining the temporal saliency map. In Fig. 3.9, we show a

surface plot showing variations of the sum of the averages of the same three objective

measures (IE, Qm, DQG/DQAB/f ) with T1 and T2. From the figure, we find that the

best performance is obtained with T2=0.10 and T1=0.15.

FIGURE 3.8: Estimation of number of superpixels, k.

3.5.5.3 Effectiveness of fusion rules

We now demonstrate the effectiveness of the four fusion rules using Fig. 3.10. Here

the experiments are performed by turning on only one fusion rule at a time for

all the superpixels. The average values of the four objective measures (IE, Qm,

DQG/DQ
AB/f , IFDMI) are shown with the independent activation of fusion rules

and the full combination. The curves clearly demonstrate IE and IFDMI improves

significantly when all four fusion rules are fired. For, DQG/DQ
AB/f and IFDMI , the

improvement is marginal. So, overall, we can surely say that firing of all four fusion

rules are necessary to improve the performance.
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FIGURE 3.9: Estimation for threshold values: T1 and T2.

FIGURE 3.10: Improvement achieved by combination of the proposed fusion rules. Here Uniform,
SS, TS, STS and ALL represents fusion rules for Uniform, Spatially salient, Temporally salient, Spatio-

temporally salient superpixels and all fusion rules respectively.

3.5.5.4 Performance comparison for causal video fusion

Comparison with other video fusion methods:

We first provide a qualitative comparison among the different competing methods.

Fig. 3.12 shows fused frames by the CMVF, LRW-CMVF, and some transform domain
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FIGURE 3.11: Sample video pair frames (VIS and IR): (a, f) Video pair 1, (b, g) Video pair 2, (c, h)
Video pair 3, (d, i) Video pair 4, (e, j) Video pair 5 (EDEN).

ST-Maximum ST-Matching ST-Liang ST-PCNN ST-Struct-Tensor ST-HOSVD1 LRW-CMVF CMVF

FIGURE 3.12: Fused frames obtained using different methods [14]: Row 1- Fused frame number 634
from Video Pair 1, Row 2- Fused frame number 98 from Video Pair 2. Row 3- Fused frame number

242 from Video Pair 3.

methods reported in [14]. The results of our algorithm compare well on Video pair

1 and are certainly better on Video pairs 2 and 3. This is highlighted by using the

red rectangles over certain regions in the fused frame. The moving object (human)

in the highlighted regions suffer from halo effect (bordering) in case of the transform

domain methods as compared to the proposed method. Furthermore, the minute

details in the background of the object are also missing for the other methods. From

the visual inspection, it is clear that the quality of fused frames from CMVF and

LRW-CMVF are comparable.The improvement in our method stems from the use of

precise spatial and temporal saliency detection and novel region based fusion rules.

Fig. 3.14 shows the intermediate outputs at different stages of our proposed fusion

pipeline on six adjacent frames from Video pair 3. We next provide fused results on
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three consecutive frames from Video pair 4 (frames- 1096-1-1099) and Video pair 5

(frames- 50-1-53) in Fig. 3.15. Qualitatively the fused results for Video pair 4 show

the robustness of the proposed method against natural noise. Fig. 3.15 also illustrates

the background details for the fused frames in Video pair 5 are not affected by the

dynamic background produced due to explicit ego motion. The foreground moving

object is also clearly visible without any artifacts like halo effects.

Table 3.3 shows quantitative comparisons of CMVF, LRW-CMVF and the methods

reported in [14] on Video pairs 1, 2 and 3. The performance of the proposed method

is comparable in terms of IE. In terms of Qm and DQG our method surpasses others

by a considerable margin. The improvement in Qm is a clear indication of very less

inconsistencies and instabilities in the fused video as obtained using our method.

Improvement inDQG validates the high accuracy of transferring the spatio-temporal

gradient information from input videos to the fused one. The performance of LRW-

CMVF and CMVF are quite comparable in terms of the performance metrics (except

for superpixel extraction times). See Table 3.4 for quantitative comparison with other

transform domain methods reported in [25] on Video pairs 3, 4 and 5. Once again,

the IE values are quite comparable. There is consistent improvement in DQAB/f

and IFD_MI which corroborate the robustness of our method. In Table 3.5, we

provide quantitative comparison with a recently reported frame-by-frame real-time

video fusion algorithm for target detection application [86]. The experimental results

are available only on Video pair 5. In terms of the evaluation metrics QAB/f and IE

the results are very comparable.

Comparison with an alternative saliency model:

As stated earlier, Liu et al. [109] have recently proposed a superpixel based spatio-

temporal saliency model. We first derive the spatio-temporal saliency maps using

the codes made available by the authors. Then, we use these spatio-temporal maps

for generating the fused frames. In Fig. 3.16, we have shown fused frames obtained

using the proposed saliency model and that of from the saliency model described
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

FIGURE 3.13: Magnified part of fused frame from Video pair 2 (row 1) and 3 (row 2), see Fig. 3.12: (a,
h) ST-Maximum, (b, i) ST-Matching, (c, j) ST-Liang-HOSVD, (d, k) ST-PCNN, (e, l) ST-struct-tensor,

(f, m) ST-HOSVD1, (g, n) Proposed method.

TABLE 3.3: Video fusion quantitative results: Performance comparison of CMVF, LRW-CMVF with
results reported in [14] on Video pairs 1, 2 and 3.

Dataset Metric ST-Maximum ST-Matching ST-Liang ST-PCNN ST-Structure ST-HOSVD1 LRW CMVF
-HOSVD -Tensor -CMVF

Video IE 7.3847 7.3585 7.3809 7.2045 7.3662 7.3848 7.3330 7.2705
pair 1 Qm 0.6184 0.6235 0.6170 0.6262 0.6291 0.6290 0.6804 0.6984

DQG 0.2974 0.3032 0.2969 0.3048 0.3059 0.3060 0.4262 0.4360
tc (sec.) 2.9549 5.278 211.1204 41.9252 49.1361 2.4700 2.0410 2.0410

Video IE 7.4078 7.3792 7.3951 7.2143 7.3880 7.4128 7.3395 7.3131
pair 2 Qm 0.5973 0.6032 0.5951 0.6061 0.6094 0.6092 0.6717 0.6920

DQG 0.2827 0.2861 0.2813 0.2978 0.2934 0.2908 0.4255 0.4363
tc (sec.) 2.9547 5.2979 212.1545 42.0132 47.1739 2.4809 2.0226 2.0226

Video IE 7.7046 7.6811 7.6994 7.6024 7.6841 7.7065 7.3123 7.5936
pair 3 Qm 0.6802 0.6854 0.6775 0.6975 0.6915 0.6885 0.7331 0.7566

DQG 0.3795 0.3828 0.3713 0.3751 0.3918 0.3901 0.5053 0.5228
tc (sec.) 3.6386 6.5679 267.3234 52.1245 60.7098 3.0264 2.0906 2.0906

TABLE 3.4: Video fusion quantitative results: Performance comparison of CMVF, LRW-CMVF with
results reported in [25] on video pairs 3, 4 and 5.

Dataset Metric DWT DT-CWT 3D-DWT 3D-DTCWT 3D-UDCT salience MCWT LRW-CMVF CMVF

Video pair 3 IE 7.6746 7.6958 7.6785 7.6867 7.6965 7.8409 7.3123 7.5936
DQAB/f 0.2274 0.2643 0.2894 0.3012 0.3105 0.3052 0.5053 0.5228
IFD_MI 0.5729 0.7986 1.0598 1.2045 1.2064 1.2451 3.9339 3.5409

Video pair 4 IE 6.4051 6.2674 6.3344 6.2491 6.3896 6.4784 6.1651 6.2441
DQAB/f 0.3354 0.3377 0.3599 0.3753 0.3902 0.3907 0.6186 0.6289
IFD_MI 1.6349 2.0251 2.9869 2.9556 2.5314 2.2133 4.4755 4.3577

Video pair 5 IE 7.0215 7.027 7.1132 6.8326 7.0479 7.0733 6.8612 7.4024
DQAB/f 0.4027 0.385 0.4004 0.3313 0.4373 0.4413 0.4373 0.5641
IFD_MI 2.7754 2.8942 3.0353 3.4662 3.3514 3.5356 5.1041 5.0610

TABLE 3.5: Video Fusion Quantitative results: Comparison with [86] on Video pair 5.

Frame QAB/f Entropy tc (sec.)
[118] [119] [120] [86] CMVF [118] [119] [120] [86] CMVF [118] [119] [120] [86] CMVF

25 0.4316 0.5257 0.3766 0.4624 0.4550 6.7691 7.1236 0.3766 7.3158 7.0018 36.5 542 224 38 5.3962
50 0.4300 0.5247 0.3791 0.4609 0.4533 6.7331 7.0700 7.0064 7.2600 6.9668
50 0.4449 0.5229 0.4041 0.4336 0.4231 6.8509 6.8509 6.8782 7.1844 6.8292
50 0.456 0.5192 0.4039 0.4419 0.4344 6.7156 6.7156 6.8660 7.2114 6.8347
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FIGURE 3.14: Output at various intermediate stages of the proposed method (CMVF). Row 1: VIS
frames 112-2-122, Row 2: IR frames 113-2-123, Row 3: SDFD maps of VIS frames 112-2-122, Row 4:
SDFD maps of IR frames 113-2-123, Row 5: Ψt of VIS frames 112-2-122, Row 6: Ψt of IR frames 113-
2-123, Row 7: Ωt of VIS frames 112-2-122, Row 8: Ωt of IR frames 113-2-123, Row 9: Corresponding

fused frames.

in [109]. The regions highlighted within green rectangles in the Fig. 3.16 clearly

indicate that the integration of complementary information from the VIS and the IR

spectrum is more accurate for our model, especially in the temporally salient regions.
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FIGURE 3.15: Fused results on Video pair 4 and 5. Row 1: VIS frames of Video pair 4, Row 2: IR
frames of Video pair 4, Row 3: Fused frames of Video pair 4, Row 4: VIS frames of Video pair 5, Row

5: IR frames of Video pair 5, Row 6: Fused frames of Video pair 5.

In addition, the background regions highlighted in yellow rectangles demonstrate

that Liu et al.’s model introduces some artifacts at these locations. We also compare

the two approaches quantitatively on all nine video pairs in Table 3.6. The values of

the three performance metrics, IE, Qm, DQG and tc clearly indicate the superiority

of the proposed saliency model which resulted in better quality fused frames.
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FIGURE 3.16: Comparison between Liu et al. [109] saliency model and proposed saliency model.
Row 1: Fused frames 116-2-122 using proposed saliency model, Row 2: Fused frames 116-2-122

using Liu et al.’s saliency model.

TABLE 3.6: Video fusion performance comparison with the use Liu et al.’s [109] spatio-temporal
saliency model.

Method Dataset IE Qm DQG tc (sec.)
[109] Video pair 1 7.2703 0.6810 0.4080 5.9543

Video pair 2 7.2973 0.6756 0.4250 6.2407
Video pair 3 7.5939 0.7510 0.5105 5.5701
Video pair 4 6.0821 0.6957 0.6508 18.6034
Video pair 5 7.2280 0.7154 0.5279 18.4500
Video pair 6 7.4074 0.8669 0.6603 16.2362
Video pair 7 7.5643 0.8642 0.5709 16.3452
Video pair 8 7.1458 0.8360 0.5536 16.8762
Video pair 9 7.4192 0.7972 0.5402 15.9543
Average 6.8980 0.7507 0.5866 16.3529

CMVF Video pair 1 7.2705 0.6984 0.4360 2.0410
Video pair 2 7.3131 0. 6920 0.4363 2.0226
Video pair 3 7.5936 0.7566 0.5228 2.0906
Video pair 4 6.3365 0.7241 0.6805 14.2080
Video pair 5 7.3802 0.7581 0.5797 14.3410
Video pair 6 7.4101 0.8763 0.6718 12.5351
Video pair 7 7.6014 0.8838 0.6101 12.5248
Video pair 8 7.1529 0.8546 0.5740 12.5211
Video pair 9 7.4201 0.8026 0.5458 12.5301
Average 7.0376 0.7788 0.6416 13.6892

Comparison of execution times:

We exclude the SLIC superpixel extraction time from the total execution time of

the proposed solution pipeline. It is imperative that a faster superpixel segmentation

algorithm would further improve the overall execution time of our method. First,

we show using Table 3.3 our method outperforms all other transform domain meth-

ods including the recently proposed [14] in terms of the average execution time. On
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an average, our method takes only 2.0514 sec. per frame as compared to 2.6595 sec.

by ST-HOSVD1 [14], ST-Maximum (3.1827 sec.), ST-Matching (5.7146 sec.), ST-Lian-

HOSVD (230.1994 sec.), ST-PCNN (45.3543 sec.), ST-Structure-Tensor (52.3399 sec.).

For the video pair 5, the algorithm in [86] takes about 38 sec. per frame to process.

This is superior to NSCT [120] (224 sec.) and HOSVD [119] (542 sec.) and is com-

parable to the Laplacian method [118] which consumes 36.5 sec. As shown in Table

3.5, our method takes only 5.3962 sec. on average to process each frame of the same

dataset. Use of superpixel level processing results in great computational saving over

that of the pixel level. For example, time consumed per frame by pixel level process-

ing for various stages of our framework are: 2.0400 sec. (spatial saliency detection),

37.4700 sec. (temporal saliency detection) and 0.1577 sec. (fusion) resulting in a total

time of 39.6677 sec. In contrast, the total time of superpixel level processing is only

2.0514 sec. We also demonstrate in Table 3.6 that fusion performed with the proposed

superpixel level saliency model is faster (13.6892 sec. vs. 16.3529 sec., excluding SLIC

superpixel extraction time in both the methods) as compared to fusion based on the

alternative superpixel level saliency model of [109]. From the implementations made

available by the respective authors, we found that LRW based superpixel extraction

(226.245 sec./frame on average) is approximately 32 times slower than SLIC (7.0283

sec./frame on average) for the Video pairs 1-4; and is approximately 68 times slower

than SLIC (1162.7600 sec./frame vs. 16.9451 sec./frame on average) for the high res-

olution Video pair 5. This also validates the use of SLIC in our framework.
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3.5.6 Discussions

In this work, we proposed a superpixel level causal multispectral video fusion al-

gorithm. Visible and infrared video pairs are fused using this algorithm to obtain

highly accurate information in a time-efficient manner. Comprehensive comparison

with several existing approaches on a number of publicly available datasets clearly

indicate the advantage of our fusion method. In future, we will examine if superpixel

extraction can be made faster which in turn would further reduce the execution time

of the proposed algorithm. Another direction of future research will be to analyze

the fused video to solve important surveillance tasks like anomalous event detection

[8] and person re-identification [9].
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Chapter 4

Multimodal biometric system using 2D
and 3D Palmprints

Multi-biometric recognition systems have become very popular as a counter mea-
sure for direct spoofing attack. Success of such systems depend heavily on design-
ing effective fusion schemes, which can combine complementary information from
multiple traits. Palmprint has evolved as a popular trait over the years due to non-
intrusiveness, low cost for capture device, and stable structure features. But 2D
and 3D palmprint in isolation can become vulnerable to spoofing attacks. In this
chapter we propose a multimodal biometric system based on a novel combination of
2D and 3D palmprints. We first generate 2.5D palmprint data using standard de-
viation based signal level fusion of 2D and 3D palmprints. A graph based template
matching framework is designed for the purpose of recognition. Comprehensive
comparisons with several existing works indicate the benefit of our solution.

4.1 Introduction

The most convenient and reliable way of identification or verification of persons is

generally based on some physiological or behavioral attributes of the individuals.

These characteristics like face, fingerprint, iris, palmprint, ear, gait, voice, retina are

commonly referred as biometrics or traits or cues [20]. Biometric systems are widely

being used for several security based applications. In recent years, multi-biometric

approaches, which use complementary information from multiple traits, have be-

come very popular as a counter measure for spoofing [15]. These information can be
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integrated at different levels and we can subdivide them into two main categories-

prior to matching/pre-classification fusion and after matching/post-classification fu-

sion. In prior to matching/pre-classification case, information fusion takes place be-

fore matching and can be obtained at signal level (low level) and at feature level (mid

level). In case of after-matching/post-classification, information fusion takes place

after matching at score level, rank level and decision level fusion (high level) [16–18,

30]. Biometric systems that integrate information at an early stage of processing are

believed to be more effective than those systems which perform integration at a later

stage [19]. Feature level fusion suffers from unknown relationship between feature

spaces of different modalities and curse of dimensionality. Fusion at decision level

is often too rigid since only limited amount of information is available at this level.

Overall, the level at which fusion is performed plays a crucial role in the robustness

of the system.

Palmprint has evolved as a popular biometric trait due to its non-intrusiveness,

low cost for capture device, and stable features. For works on 2D palmprint based

recognition, one can see [121–131]. Majority of these works used PolyU palmprint

database with a resolution of 100 PPI [132]. At such a low resolution, ridges and

valleys cannot be observed and matching is mainly based on texture information in

form of principal lines (flexion creases), and major and minor wrinkles (secondary

creases). However, 2D palmprint is not very robust to illumination changes and con-

tamination on palms and can be quite vulnerable to spoofing attacks[26]. The human

palmprint is not plain but essentially three dimensional (3D) in nature. Utilizing the

3D palmprint information can improve the recognition performance. Range images

acquired by 3D sensor contain palmprint surface shape information [27]. 3D palm-

print is preferred over other 3D biometric traits like 3D face [133–135] and 3D ear

[28, 29]. 3D palmprint is not affected by various facial expressions and is much eas-

ier to acquire and more user-friendly than 3D ear. To build more robust and highly

112



Chapter 4. Multimodal biometric system using 2D and 3D Palmprints

secure palmprint recognition system we can take advantage of the highly discrimi-

native texture rich information from 2D palmprint and depth information from 3D

palmprint. Only a few works have been reported on fusion of the 2D and the 3D

palmprint information [26, 31–33]. Majority of these approaches are based either on

feature or score level fusion. To the best of our knowledge, there is no work reported

on signal/sensor level fusion of 2D and 3D palmprint data.

In this work we propose a multimodal biometric system based on fusion of 2D

and 3D palmprints. First, we fuse the aligned regions of interest (ROI) of 2D and 3D

palmprints to produce 2.5D palmprint data. The coarse texture information from 2D

and the fine texture and depth information from 3D are integrated in the 2.5D data

using standard deviation based fusion rule. The fused 2.5D palmprint representation

is proved to be more informative than the original individual 2D and 3D palmprints.

In the second stage, we use graph based template matching framework to derive the

matching scores between the test sample and the gallery samples.

4.2 Related works

We first start discussing 2D palmprint based methods. 2D palmprint based recogni-

tion techniques are classified into four categories: line based [124, 128, 129], subspace

based [122, 125], Statistics based [121, 126, 127, 131] and Coding based [123, 130]. In

[124], Sun et al. proposed a novel palmprint representation method based on orthog-

onal line ordinal features. Huang et al. [128] proposed a novel palmprint verification

approach based on principal lines and Radon transform. In [129], Jia et al. proposed a

novel robust line orientation code for palmprint verification to achieve higher recog-

nition rate and faster processing speed. Wu et al. in [122] proposed a novel method

called Fisherpalms based on linear projection using Fisher’s linear discriminant. In

[125], Connie et al. tested and compared various linear subspace projection tech-

niques like PCA, FDA and ICA. In [121] Li et al. proposed palmprint recognition in
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frequency domain using Fourier transform. Shang et al. [126] proposed radial basis

probabilistic neural network (RBPNN) based palmprint recognition system. In [131],

Wei et al. proposed new descriptor of palmprint named histogram of oriented lines

(HOL) to overcome certain disadvantages of subspace based systems like- high sen-

sitivity to the illumination, translation, and rotation variances in image recognition.

In [130], Feng et al. proposed Hashing based fast palmprint identification for large-

scale databases. Very detailed survey of various 2D palmprint recognition systems

and use of fusion with other traits can be found in [136].

Relatively less works are reported on 3D palmprint based recognition [31, 137, 138].

Majority of these works have explored MCI (Mean Curvature Image) and GCI (Gaus-

sian Curvature Image) for matching and classification. [31] Zhang et al. exploited 3D

structural depth information from the range data of palmprint. In [137], Ni et al. pro-

posed a novel 3D palmprint recognition using Dempster-Shafer fusion theory. Same

GCI and MCI based features are extracted and used for the purpose. The fusion of

these features is proposed by belief function determined by the Dempster-Shafer (D-

S) fusion theory. In [138], Li et al. presents a very simple and efficient scheme for

3D palmprint recognition using the line and orientation features extracted from the

enhanced mean curvature image (MCI).

We now discuss some works on fusion of 2D and 3D palmprint data. In [26], Zhang

et al. proposed robust and accurate multilevel 2D and 3D palmprint based authenti-

cation system. They used the surface curvature based 3D features and Gabor feature

based competitive coding scheme for representing 2D features. They have shown

that match score level fusion causes the improvement in recognition performance as

compared to that of 2D and 3D features in isolation. In [32], Li et al. used features

at shape level, line level and texture level. Shape level features are taken from the

3D palmprint, line level features and fine texture features are collected from both the

2D and 3D palmprints. The texture information is used for palmprint discrimina-

tion and the shape and line features are used for refining and alignment purpose. A
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novel matching scheme is proposed to efficiently use features at three different lev-

els for accurate palmprint verification. In [33], Meraoumia et al. have proposed an

efficient multi-biometric system based on 2D and 3D palmprint. Rotation invariant

variance based features are extracted and compressed using PCA from both modal-

ities. Further, the feature vector of each palmprint is modeled by Hidden Markov

Model (HMM). Finally, the log-likelihood matching score level fusion is used to inte-

grate the individual scores of 2D and 3D palmprint recognition.

To the best of our knowledge, there is no work on signal/sensor level fusion of 2D

and 3D palmprint data reported in the literature. The two main contributions of this

work are now highlighted below:

1. Signal level fusion scheme to fuse 2D and 3D palmprints to produce more infro-

mative 2.5D palmprint, and

2. Novel Graph based template generation and matching scheme on 2.5D palm-

print data

4.3 Proposed method

Fig. 4.1 shows the block diagram of our multi-biometric recognition system. The

three major components of the proposed system are: (i) Guided filtering based en-

hancement (pre-processing), (ii) Signal level fusion of 2D and 3D palmprint data and

(iii) Graph based recognition. We now discuss these major components in greater

details.

4.3.1 Guided Filter based Enhancement

Guided filter [139, 140] is an edge-preserving smoothing filter, derived from a lo-

cal linear model between guidance I and output q. The guided filter computes the
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FIGURE 4.1: Schematic diagram of the proposed method

output by taking into account the content of the guidance image which can be the

filtering input itself [70, 71]. Assuming q as a linear transform of I in window ωk

centered at pixel k, q can be expressed for a pixel i as shown below.

qi = akIi + bk ∀ i ∈ ωk (4.1)

Here, (ak, bk) are linear coefficients assumed to be constant in the window ωk. As

5(q) = a. 5 (I), the guided filter preserves edges [140]. The linear coefficients are

determined using constraints between filtering input p and q given as:

qi = pi − ni (4.2)

Where, ni refers to unwanted noise components. We seek a solution that minimizes

the difference between q(output) and p(input) while maintaining the linear model

equation 4.1. Specifically, we minimize the following cost function in the window ωk:
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E(ak, bk) =
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k) (4.3)

Where ε is regularization parameter penalizing large ak. Above equation is linear

regression model and its solution is given by.

ak =

1
|ω|
∑

i∈ωk Iipi − µkp̄k
σ2
k+ ∈

(4.4)

bk = p̄k − akµk (4.5)

Here, µk represents the mean of I in window ωk and σ2
k represents the variance of the

image in the same window. |ω| is the number of pixels in the window ωk and p̄k is

the mean of p computed in that window. As a pixel i can be involved in overlapping

windows, the final output should be obtained by taking the average of all possible

values of q.

qi = āiIi + b̄i (4.6)

Where, āi and b̄i are the average value of ak and bk of all windows overlapping i. We

employ guided filtering for overall enhancement of the aligned regions of interest

(ROI) of 2D and 3D palmprints using the following equations:

IE2D = (I2D − IGF2D ) ∗ 5 + IGF2D (4.7)

IE3D = (I3D − IGF3D ) ∗ 5 + IGF3D (4.8)

Here I2D and I3D are sample 2D and 3D palmprint images; IGF2D and IGF2D are guided

filtered 2D and 3D palmprint images with guidance as same images and; IE2D and IE3D

are enhanced 2D and 3D palmprints. The constant 5 used in the above equations is

experimentally derived.
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4.3.2 Signal level fusion of enhanced 2D and 3D palmprints

The signal or pixel level fusion is always preferred over feature and score level and

other fusion techniques [19]. In signal level fusion, the pixel in fused image is pro-

duced by weighted linear combination of corresponding pixels in source images to

be fused. The pixel level local standard deviation (SD) is a measure of local variance

in intensity (in case of 2D palmprint) or depth (in case of 3D palmprint). The local

variance is a measure of the local textural information. Hence, more the local SD,

more will be the weight assigned while fusion of corresponding pixels from 2D and

3D palmprints. In particular, we set the weights as function of corresponding nor-

malized local SD in the neighborhood of pixels to be fused. Thus, we adaptively fuse

enhanced 2D (IE2D) and 3D (IE3D) palmprints to produce 2.5 D palmprint data. The

coarse texture information from 2D and fine texture information and depth informa-

tion from 3D are integrated in the fused 2.5D palmprint data. The adaptive fusion

achieved is as follows.

I2.5D(i, j) =


σ2D(i,j)

σ2D(i,j)+σ3D(i,j)
∗ IE2D(i, j)+

σ3D(i,j)
σ2D(i,j)+σ3D(i,j)

∗ IE3D(i, j)
(4.9)

Here σ2D(i, j) is the weight determined by computing local standard deviation con-

sidering all the first order 8-neighborhood pixels of the pixel at location (i, j) in case

of 2D palmprint. Similarly, we determine σ3D(i, j) considering all the first order 8-

neighborhood pixels for a pixel at location (i, j) in case of 3D palmprint. The adap-

tive nature of weights used for fusing 2D and 3D enhanced palmprints is illustrated

in Fig. 4.2. The fused 2.5D palmprint image is a result of successful integration of

complementary information contained in 2D and 3D data. This is graphically illus-

trated by using mesh plots in Fig. 4.3. Fig. 4.3 (c) shows the fused 2.5D palmprint

with approximately marked palmprint depth profile modulated by coarser texture

information from 2D.
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(a) (b)

FIGURE 4.2: Illustration: Adaptive nature of coefficient selection based on local standard deviation.
(a) Coefficients/weights map adapted for 2D palmprint, (b) Coefficients/weights map adapted for

3D palmprint. (Subject 8-Sample 1)

(a) (b)

(c)

FIGURE 4.3: Illustration: Information integration into 2.5D palmprint shown using mesh plots. (a)
2D palmprint, (b) 3D palmprint, (c) 2.5D fused palmprint.
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4.3.3 Graph based Matching

We propose a novel graph based template generation on each 2.5D sample. Graphs

are very commonly used for the abstract representation of complex data with robust

performance. The necessary details are described below.

4.3.3.1 Graph Construction

First, we divide 128×128 pixels of 2.5D palmprint image into uniform blocks of sizes

8 × 8. From each of these blocks 2D texture Haralick features and 3D surface type

features are extracted. An undirected weighted graph with four connected neighbor-

hood is constructed from 2.5D data. Each 8 × 8 block is deemed as a vertex of the

graph. The differences in the feature values between adjacent vertices are assigned

as the corresponding edge weights. As we show in the next subsection, each fea-

ture vector contains 13 Haralick features and 1 surface primitive based on Mean and

Gaussian curvatures. This type of graph construction makes the processing quite fast

as we only handle graphs with relatively small sizes (256 vertices in the current block

based model vs. 16384 vertices if pixels were used as graph vertices). Furthermore,

we can also make use of aggregate behavior of all 64 pixels in a block to extract more

robust features.

4.3.3.2 Block based Feature extraction

Haralick textures [141] is well-known statistical method for quantifying textures and

gives information about the image region such as homogenity, contrast, boundaries,

and complexity. This approach has been widely applied in the biomedical imaging

analysis [142] and is quite successful. Haralick texture features are computed from

the Gray Level Co-occurrence Matrix (GLCM) of an image. The GLCM of given

image is a square matrix of dimension Ng × Ng, where Ng is the number of gray

levels in the image. Element (i, j) in GLCM is computed by counting the number of
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times pixel with value i is adjacent to a pixel with value j and dividing entire matrix

by the total number of such comparisons made. Each entry of GLCM is therefore

considered to be the probability that a pixel with value i will be found adjacent to

a pixel of value j. In our framework, the input is individual blocks of uniformly

segmented 2.5D So, the GLCM of a given block can be written as:

G =



p(1, 1) p(1, 2) . . . p(1, Ng)

p(2, 1) p(2, 2) . . . p(2, Ng)

. . . . . .

. . . . . .

. . . . . .

p(1, 1) p(Ng, 2) . . . p(Ng, Ng)


(4.10)

Here, adjacency can be defined in either of the four directions: horizontal, vertical,

left diagonal and right diagonal. Thirteen Haralick’s texture features statistics are

then computed from each of these directional GLCMs. By averaging these statistics

over four different directional GLCMs, rotation invariance is ensured. Let p(i, j) is

the (i, j)th element in G. Then, we can have:

• Angular second moment (ASM ):

ASM =
∑
i

∑
j

p(i, j)2 (4.11)

• Contrast (C):

C =

Ng−1∑
n=0

n2

(
Ng∑
i=1

Ng∑
j=1

p(i, j)

)
(4.12)

Where, |i− j| = n.

• Correlation (CR):

CR =

∑
i

∑
j p(i, j)− µxµy
σxσy

(4.13)
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Where, µx, µy, σx and σy are means and standard deviations of px and py, the

partial probability functions on p(i, j).

• Variance (V ):

V =
∑
i

∑
j

(i− µ)2p(i, j) (4.14)

• Inverse Difference Moment (IDM ):

IDM =
∑
i

∑
j

1

1 + (i− j)2
p(i, j) (4.15)

• Sum Average (SA):

SA =

2Ng∑
i=2

iPx+y(i) (4.16)

Where x and y are the coordinates (row and column) of an entry in the GLCM

and Px+y(i) is the probability of GLCM coordinates summing x+ y.

• Sum Variance (SV):

SV =

2Ng∑
i=2

(i− SE)2Px+y(i) (4.17)

• Sum Entropy (SE):

SE = −
2Ng∑
i=2

Px+y(i)log(Px+y(i)) (4.18)

• Entropy (E):

E = −
∑
i

∑
j

p(i, j)log(p(i, j)) (4.19)

• Difference Entropy(DE):

DE = −
Ng−1∑
i=0

Px−y(i)log(Px−y(i)) (4.20)
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• Difference Variance (DV )

DV = −
Ng−1∑
i=0

i2Px−y(i) (4.21)

• Information measure of Correlation 1 (IFC1)

IFC1 =
HXY −HXY 1

max(HX,HY )
(4.22)

• Information measure of Correlation 2 (IFC2)

IFC2 = (1− e[−2(HXY 2−HXY )]
1
2 ) (4.23)

Where, HXY = −
∑

i

∑
j p(i, j)log(p(i, j)), HX , HY are the entropies of Px and

Py.

HXY 1 = −
∑

i

∑
j p(i, j)logPx(i)Py(i),

HXY 2 = −
∑

i

∑
j Px(i)Py(i)logPx(i)Py(i)

We also extract 3D depth features from 2.5D palmprint. Each point on the depth

map can be classified into one of the eight surface primitive type (ST) [143]. Let the

3D surface of 2.5D palmprint is represented by I2.5D(i, j, f(i, j)). The mean curvature

image (MCI) H ; and the Gaussian curvatures image (GCI) K of the 2.5D palmprint

can be computed as follows [144].

H =
(1 + f 2

x)fyy + (1 + f 2
y )fxx − 2fxfyfxy

2(1 + f 2
x + f 2

y )
3
2

(4.24)

K =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
(4.25)

where fx, fy are the first-order and fxx, fyy and fxy are the second-order partial

123



Chapter 4. Multimodal biometric system using 2D and 3D Palmprints

derivatives. There are eight fundamental viewpoint independent surface types (STs)

that can be characterized using only the sign of the mean curvature (H) and Gaus-

sian curvature (K) [143]. So, total nine STs can be defined as listed in Table 4.1. These

include eight fundamental STs and one special case for H = 0 and K > 0. Each point

in the 2.5D plamprint can be classified into one of the nine STs and is accordingly

labeled from 1 to 9. The surface type (ST) of each pixel in 8 × 8 pixel block is deter-

mined using the above procedure. Then, we define the ST of an individual block as

the ST of maximum number of its constituent pixels. Finally, we combine both Haral-

ick’s feature vector (13 features) and ST features (1 feature) to form a 14-dimensional

feature vector for each block.

TABLE 4.1: Surface types Labels defined by signs of surface curvatures.

K > 0 K = 0 K < 0
H < 0 Peak(ST=1) Ridge(ST=2) Saddle Ridge(ST=3)
H = 0 None (ST=4) Flat(ST=5) Minimal Surface(ST=6)
H > 0 Pit(ST=7) Valley(ST=8) Saddle Valley(ST=9)

4.3.3.3 Template matching

During verification, we compare the query template with the gallery templates by

comparing the corresponding graphs. There exist several measures of graph similar-

ity [101]. In the present work, we use Frobenius norm of the difference of the two

adjacency matrices, a simple yet accurate measure, to determine how similar two

graphs are. Let G12.5D and G22.5D are the graph templates of two samples to be com-

pared with AG12.5D and AG22.5D as their corresponding adjacency matrices. The graph

similarity score can then be written as:

β(G12.5D, G22.5D) =

√√√√ n∑
i=1

n∑
j=1

|AG12.5D(i, j)− AG22.5D(i, j)|2 (4.26)

The subject of the sample template with which the query sample template yields

minimum β is deemed as the identity of the query sample.
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4.4 Experimental results

We perform experiments on 2D and 3D PolyU palmprint database [132]. This database

contains region of interest (ROI) extracted from 8,000 samples of 400 different subject

palms of 200 volunteers. 2D and 3D palmprints of each subject are registered. Among

the volunteers, 136 were male and the other 64 were female. 20 samples from each of

these palms were collected in two separate sessions, where 10 samples were captured

in each session, respectively. The average time interval between the two sessions is

one month. In order to evaluate the performance of the proposed system, we use 200

subject samples collected in the first session as training set in Enrollment stage and

corresponding subject samples collected in the second session as the testing set in

Identification stage. For the evaluation of the proposed multi-biometric system, we

use Equal Error Rate (EER) and Recognition accuracy as the performance metrics. To

evaluate the fusion performance, we use Entropy(E), Standard Deviation(SD) and

SIndex.

4.4.1 Quality improvement in 2.5D palmprint

In the preprocessing stage of our pipeline we enhance the 2D and 3D palmprints by

using guided filtering with same palmprint images as guidance. The enhancement

in terms of contrast, illumination, principal and wrinkle lines features due to the

guided filtering can be observed in Fig. 4.4 (c) and (d). Improvement in sharpness,

denoising with texture and depth information preservation as a result of signal level

fusion is shown in Fig. 4.4 (e). We also show the mesh plots of 2D, 3D and 2.5D fused

palmprint data to illustrate the information integration (Fig. 4.3 (a-c)). Improvement

in 2.5D data stems from successful integration of coarser texture information of 2D

and finer texture information and depth information of 3D palmprint data. Table 4.2

quantitatively corroborates our claim that 2.5D data has indeed better information

content over that of 2D and 3D.

125



Chapter 4. Multimodal biometric system using 2D and 3D Palmprints

(a) (b)

(c) (d)

(e)

FIGURE 4.4: Illustration: Improvement in quality of palmprints using guided filtering and 2.5D
palmprint: (a),(b) Original 2D and 3D palmprints, (c),(d)- Guided filtered 2D and 3D palmprints, (e)

Fused 2.5D palmprint.
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TABLE 4.2: Average improvement in 2.5D palmprint over 2D and 3D palmprints: In terms of Entropy
E, Standard Deviation (SD), SIndex.

E SD SIndex

2D Palmprint 6.0094 0.0714 3.9992
3D Palmprint 1.8143 3.0693 0.3953
2.5D Palmprint 7.0483 0.1285 3.7652

4.4.2 EER and Recognition accuracy

We use 10 samples (P = 10) from each of 200 subjects (N = 200) acquired in the

first session for the training purpose. To obtain the verification accuracy in terms

of EER, each sample (2D and 3D palmprint) is matched with all the samples in the

database, resulting in (
P

2) ∗ N=9000 genuine and (
N∗P
2 )=1990000 imposter matching

scores. Fig. 4.5 shows the Genuine and Imposter normalized frequencies versus the

matching score plots. The threshold of the Decision Module was selected at a tradeoff

between the false acceptance rate (FAR) and the false rejection rate (FRR). This can

be achieved by setting the threshold to the operating point (189.46) at which Genuine

and Imposter distributions cross each-other as shown in Fig. 4.5. The performance

of the proposed method is compared with some existing 2D and 3D palmprint based

recognition systems [26, 31, 32]. As shown in Table 4.3 the EER of the proposed

system is clearly below (better) than most of the methods in [26, 31, 32]. It is just

marginally above (worse than) the score level fusion of [26]. But, in [26] authors have

used pixel level Gabor features which has proved to be computationally complex

due to its non-orthogonality and use of number of orientations in the analysis [145].

We also conduct an experiment to derive the recognition accuracy of our system.

The recognition accuracy is the percentage of correctly identified Genuine and Im-

posters by the system. Here, we use 10 samples of all 100 subjects acquired from the

second session as probe samples. In [26, 31], the identification accuracy is not re-

ported. Our proposed system gives identification accuracy of 98%. This value is su-

perior than the identification accuracies of 90.69% obtained using only ST feature and

97.38% obtained using only Haralick features. These results clearly justify our choice
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of features which in turn points to the merit of constructing a block based graph

construction and a 2.5D palmprint data in the first place. Fig. 4.6 shows Receiver

Operating Characteristic (ROC) curves of the proposed recognition system and the

best performing methods from [31] like- 2D only, 3D only (MW), 2D+3D SVM score

level fusion and 2D+3D feature level fusion are plotted. To have fair comparison,

we have enlarged the region of interest of ROC curves enclosed in ellipse and given

in Fig. 4.7. The figures clearly demonstrate that the proposed 2.5D palmprint based

recognition system achieves higher accuracy.

FIGURE 4.5: Selection of optimum Threshold for Decision module

TABLE 4.3: Performance in terms of EER

Recognition System EER

2D [26] 0.0621
3D [26] 0.9914
Multi-level 2D+3D [26] 0.0022
2D+3D SVM Score level fusion [31] 0.0680
2D+3D feature level fusion[31] 0.0590
Joint 2D and 3D matching [32] 0.0250
(2D+3D) method in [146] 0.5600
Proposed method with only ST features 0.0707
Proposed method with only Haralick features 0.0213
Proposed method (with Haralick + ST features) 0.0179
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centering

FIGURE 4.6: ROC curves of Proposed, 2D palmprint, 3D palmprint, 2D+3D SVM score level fusion,
2D+3D feature level fusion [31].

centering

FIGURE 4.7: Enlargement of region of interest of ROC curves shown in Fig. 4.6.

4.5 Discussions

In this third work we proposed a mult-biometric system based on 2D and 3D palm-

print traits. Comprehensive comparisons with several similar approaches on PolyU

palmprint database [132] clearly show the superiority of the proposed recognition

system. We attribute the improvement to our signal level fusion and graph based
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matching scheme. In future, we plan to propose more robust feature extraction from

2.5D data for further improvement in the recognition performance. Another option

for further research could be the incorporation of additional traits like IRIS with 2.5D

palmprint to make the system more robust and accurate.
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Chapter 5

Conclusions and Future Directions

In the first section of this chapter, we conclude our work with highlighting the key
contributions made. Certain potential future directions of research are presented in
the second part of the chapter.

5.1 Concluding Remarks

The goal of multispectral image or video fusion is to combine complementary infor-

mation from multiple sources to provide a more informative, complete and accurate

representation. It has very widespread applications in diverse fields like medicine,

surveillance, military and law enforcement, remote sensing, biometrics, manufactur-

ing, intelligent robots. Over the last decade the advancement in multispectral sensor

technology and availability of high processing power at very affordable cost moti-

vated the researchers in the computer vision community to contribute in this area.

In this thesis we have focused on the problem of multispectral image and video

fusion with an application in biometry using classical image processing and graph-

theoretic solutions. In Chapter 2, we addressed a problem on multispectral image fu-

sion. We present a new focus measure based on steerable local frequency (SLF). The

proposed focus measure is shown to perform well in different spectra. Better perfor-

mance of the proposed focus measure is due to the use of orientation selective local

frequency in the source images. We further demonstrated that the proposed focus
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measure improves mutispectral multifocus fusion. In the visual spectrum, our fu-

sion scheme outperforms some of the robust and efficient multiresolution transform

based methods in addition to some IPD based approaches. In the near-infrared spec-

trum the proposed fusion method offers a decent performance in comparison with

the spatial and transform domain based approaches. In the thermal spectrum, the

results show significant improvement over previously reported results. Further, to

achieve better fusion performance we proposed a solution based on guided steerable

frequency and improved Saliency (GSLF-IS). Superior fusion results are achieved by

combining guided steerable local frequency (GSLF) maps with the improved saliency

(IS) maps over all spectra.

In the Chapter 3, we worked on multispectral causal video fusion. First, we pro-

posed causal video segmentation method using superseeds and graph matching. The

proposed causal video segmentation algorithm surpasses all the existing methods.

In the next part we proposed a novel superpixel based causal multisensor video fu-

sion method (CMVF). Here we propose an efficient superpixel level spatio-temporal

saliency model as well as superpixel level fusion rules. Comprehensive comparison

with several existing approaches on a number of publicly available datasets clearly

indicate the advantage of our fusion method.

In Chapter 4, we provide an application of fusion for multi-biometric recognition.

We present a solution on multimodal biometric authentication based on fusion of

2D and 3D palmprints. Comparisons with very recent score and feature level fusion

based approaches shows the superiority of the proposed system. We attribute the

improvement to our signal/low level fusion and novel graph based template gener-

ation and matching scheme.
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5.2 Future directions

Image and video fusion area has tremendous potential and prospect for the near

future. New advancements in multispectral sensor technology and availability of

high processing power at very affordable cost are motivating the computer vision

community to contribute constantly in this area. In this thesis, we have proposed

novel solutions for multispectral image and video fusion.

In future, we plan to extend pixel based fusion to region or object level for further

enhancement of multispecral multifocus image fusion. Also importance measures

based on intensity/color information need to be exploited to obtain a better focus

measure which in turn would also improve the fusion results. In case of multispec-

tral video fusion problem we will examine if superpixel extraction can be made faster

which in turn would further reduce the execution time of the proposed causal video

fusion algorithm. Another direction of future research will be to analyze the fused

video to solve important surveillance tasks like anomalous event detection [8] and

person re-identification [9]. We also plan to work on extraction of more robust fea-

tures from 2.5D palmprint data for improvement in the recognition accuracy of our

proposed multi-biometric system. Here, another option for further research could be

use of another trait like IRIS with 2.5D palmprint to make the system more robust

and accurate.
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Appendix A

Basis and interpolation functions of
steerable quadrature pair

We have included Tables I and II from [59] which were used for the computation of

the oriented analytic image.

TABLE A.1: X-Y seperable basis set and interpolation functions for fourth derivatives of gaussian.

G4a = 1.246(0.75− 3x2 + x4)e−(x2+y2) Ka(θ) = cos4(θ)

G4b = 1.246(−1.5x+ x3)(y)e−(x2+y2) Kb(θ) = −4 cos3(θ) sin(θ)

G4c = 1.246(x2 − 0.5)(y2 − 0.5)e−(x2+y2) Kc(θ) = 6 cos 2(θ) sin2(θ)

G4d = 1.246(−1.5y + y3)(x)e−(x2+y2) Kd(θ) = −4 cos(θ) sin3(θ)

G4e = 1.246(0.75− 3y2 + y4)e−(x2+y2) Ke(θ) = sin4(θ)

TABLE A.2: X-Y seperable basis set and interpolation functions fit for hilbert transform of fourth
order derivative of gaussian.

H4a = 0.3975(7.189x− 7.501x3 + x5)e−(x2+y2) Ka(θ) = cos5(θ)

H4b = 0.3975(1.438− 4.501x2 + x4)(y)e−(x2+y2) Kb(θ) = −5 cos4(θ) sin(θ)

H4c = 0.3975(x3 − 2.225x)(y2 − 0.6638)e−(x2+y2) Kc(θ) = 10 cos 3(θ) sin2(θ)

H4d = 0.3975(y3 − 2.225y)(x2 − 0.6638)e−(x2+y2) Kd(θ) = −10 cos2(θ) sin3(θ)

H4e = 0.3975(1.438− 4.501y2 − y4)(x)e−(x2+y2) Ke(θ) = 5 cos(θ) sin4(θ)

H4e = 0.3975(7.189y − 7.501y3 − y5)e−(x2+y2) Ke(θ) = − sin5(θ)
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