- (b) Define the "Alexandorff's one point compactification (X^*, i_x) of a topological space (X, τ) . Prove that the compactification is Hausdorff iff. (X, τ) is locally compact Hausdorff. 5
- (c) Among all Haurdorff compactifications of a Tychonoff space, show that Stone-Cech compactification is the largest (or maximal) such compactification.
- 4. (a) If every open cover of a topological space X has a closed locally finite refinement then prove that X is paracompact.7
 - (b) Prove that every Hausforff paracompact space is regular. 5
 - (c) Prove that a complete totally bounded metric space is compact. 4
- 5. (a) Prove that R^w (countable product of R) endowed with the product topology is merizable. 7
 - (b) State and prove Stone-Weirshass theorem. 1+8
- 6. (a) Prove that every completely regular space is uniformizable. 8
 - (b) Show that a uniform space having a countable base is pseudometrizable. 5
 - (c) Let (X, v) be a uniform space and let $\hat{\mathfrak{T}}$ be a Cauchy filter in X. If x_0 is a cluster point of $\hat{\mathfrak{T}}$ then prove that $\hat{\mathfrak{T}}$ converges to x_0 .

— X ——

MASTER OF SCIENCE EXAMINATION, 2019

(2nd Year, 1st Semester)

MATHEMATICS

Advanced Topology

Unit - 3.1

Time : Two hours

Full Marks : 50

Answer *q.no. 1* and any *three* from the rest.

- 1. Define total boundedness and give an example of a metric space which is not totally bounded. 2
- 2. (a) Prove that x_0 is a cluster point of a net $\{s_n : n \in D\}$ iff. there is a subnet $\{t_\alpha : \alpha \in E\}$ of $\{s_n : n \in D\}$ which converges to x_0 . 7
 - (b) Prove that $f:(X,\tau) \uparrow (y,\tau')$ is continuous at $x_0 \in X$ iff for every net $\{s_n : n \in D\}$ in X converging to $x_0, \{f(s_n) : n \in D\}$ is convergent to $f(x_0)$. 5
 - (c) For an ultrafilter $\hat{\mathfrak{T}}$, show that if $A \cup B \in \hat{\mathfrak{T}}$, then either $A \in \hat{\mathfrak{T}}$ or $B \in \hat{\mathfrak{T}}$.
- (a) Prove that in a locally compact Hausdorff topological space, every point has a local neighbourhood base consisting of closed compact neighborhoods.

(Turn over)