Ex/UNIT-4.1-2/2019

MASTER OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester)

MATHEMATICS

UNIT - 4.1

ADVANCED FUNCTIONAL ANALYSIS

Time : Two hours

Full Marks: 50

Answer question No. 1 and *any three* from the rest.

- Is the topological vector space boundedness equivalent to metric boundedness for a metrizable topological vector space? Justify your answer.
- 2. a) In a topological vector space X, for any $A \subset X$ prove that $\overline{A} = \bigcap (A + V)$, where V runs over all utds of θ . 3
 - b) Define a Balanced subset of a topological vector space X. If B is balanced then show that \vec{B} is also so and if also $\theta \in B^{\circ}$ then B° is also balanced. 5
 - c) Let X be a complex topological vector space, Y be a subspace of X, n be a positive integer and dim Y = n. Then prove that (i) every isomorphism of C^n onto Y is a homeomorphism and (ii) Y is closed. 8
- a) Prove that every locally compact topological vector space has finite dimension.

[Turn over

- b) If X is a topological vector space with a countable local base then show that there is a metric d on X such that d is compatible with the topology of X, the open balls centered at are balanced and d is invariant.
 9
- 4. I. When a linear map Δ: X → Y, where X and Y are topological vector spaces, called bounded? For a linear map Δ prove that (a) → (b) → (c), where
 - a) Δ is continuous
 - b) Δ is bounded
 - c) If $x_n \rightarrow \theta_x$, then $\{\Delta x_n : n = 1, 2, \dots\}$ is bounded. 5
 - II. If X is metrizable then show that $(c) \rightarrow (a)$. 3
 - III. Let A be a convex absorbing set in a topological vector space X. Then show that
 - i) $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$
 - ii) $\mu_A(tx) = t\mu_A(x)$ if $t \ge 0$
 - iii) μ_A is a seminorm is A is balanced.
 - iv) If $B = \{x : \mu_A(x) < 1\}$ and $C = \{x : \mu_A(x) \le 1\}$ then $B \subset A \subset C$ and $\mu_B = \mu_A = \mu_C$.

- 5. a) Suppose Y is a subspace of a topological vector space X and Y is an F-space in the topology inherited from X. Then prove that Y is a closed subspace of X.
 7
 - b) Prove that a topological vector space X is normable iff its origin has a convex bounded neighborhood.
 4
 - c) Let X and Y be topological vector spaces, $\{\Delta_n\}$ is a sequence of continuous linear maps of X into Y. If C is the set of all $x \in X$ for which $\{\Delta_n x\}$ is a Cauchy sequence in Y and C is of 2nd category then prove that C = X. 5
- 6. a) Let A and B be disjoint nonemply convex sets in a locally convex topological vector space X where A is compact and B is closed. Then prove that there is a $\Delta \in X^*$, $r_1, r_2 \in R$ such that

$$\operatorname{Re}\Delta(\mathbf{x}) < \mathbf{r}_{1} < \mathbf{r}_{2} < \operatorname{Re}\Delta\mathbf{y}$$
$$\forall \mathbf{x} \in \mathbf{A} \text{ and } \forall \mathbf{y} \in \mathbf{B}.$$

b) If f is a continuous linear functional on a subspace M of a locally convex space X then prove that there exists $\Delta \in X^*$ such that $\Delta = f$ on M. 8