M. Sc. Mathematics Examination, 2019

(1st Year, 2nd Semester)

Mathematics

Ordinary Differential Equations and Special Functions Unit - 2.5

Time : Two hours
Full Marks : 50
The figure in the margin indicate full marks
Symbols have their usual meanings
PART-I (25 marks)
Answer Q.No. 1 and any two from the rest :

1. a) State the existence and uniqueness theorem of the initial value problem of the ordinary differential equation.
b) If $a=a(x), b-b(x)$ and $c=c(x)$ are continuously differentiable functions of x with $\mathrm{a} \neq 0$ and $\mathrm{L}=\mathrm{a} \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}+\mathrm{b} \frac{\mathrm{d}}{\mathrm{dx}}+\mathrm{c}$ is not self-adjoint operator, find $\mu=\mu(x)$ such that $\mu \mathrm{L}$ is self-adjoint.

$$
2+3
$$

2. a) If the homogeneous part of the equation

$$
x^{3} \frac{d^{2} y}{d x^{2}}-x^{2}(2 x+1) \frac{d y}{d x}+x^{2}(x+1) y=2 e^{x}
$$

has a solution of exponential form then find the general solution of the given equatuion.
b) Prove that the differential operator corresponding to the Lagendra equation of order n (real) is self-adjoint. 7+3
3. a) (i) If $v_{1} v_{2}$ are the solutions of the differential equation: $p \frac{d^{2} u}{d x^{2}}+q \frac{d y}{d x}+r u=0$, write the Green's finction for the following boundary value problem: $(\mathrm{x}, \varepsilon)$
$\mathrm{Lu}=\mathrm{p} \frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dx}}+\mathrm{q} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{ru}=\mathrm{f}(\mathrm{x}), 0<\mathrm{x}<1$
Subject to the boundary conditions: $\mathrm{h}_{1} \mathrm{u}(0)+\mathrm{h}_{2} \mathrm{u}^{\prime}(0)=0$ and $\mathrm{H}_{1} \mathrm{u}(\mathrm{l})+\mathrm{H}_{2} \mathrm{u}^{\prime}(\mathrm{l})=0$, where
$\mathrm{h}_{1}^{2}+\mathrm{h}_{2}^{2} \neq 0, \mathrm{H}_{1}^{2}+\mathrm{H}_{2}^{2} \neq 0$ and f is continuous in $[0,1]$ along with the appropriate conditions on $\mathrm{p}=\mathrm{p}(\mathrm{x}), \mathrm{q}=\mathrm{q}(\mathrm{x})$ and $\mathrm{r}=\mathrm{r}(\mathrm{x})$.
(ii) Use the difinition of G to prove that $\mathrm{G}(\mathrm{x}, \varepsilon)$ to prove that $\mathrm{G}(\varepsilon+0, \varepsilon)=\mathrm{G}(\varepsilon-0, \varepsilon)$.
b) Find the green's function of the following boundary value porblem
$\frac{d^{2} y}{d x^{2}}-\alpha^{2} u=f(x), 0<x<1, \alpha>0$
subject to the boundary conditions : $\mathrm{u}^{\prime}(0)=0$ and $u^{\prime}(1)=0$, where f is continuous in $[0,1] . \quad(2+1)+7$
4. a) Let f and g be two solutiuons of $\frac{d}{d t}\left[p(t) \frac{d x}{D T}\right]+\phi(T) X=0$

Where f and g have a commion zero on the interval $_{\mathrm{a}} \leq \mathrm{t} \leq \mathrm{b}, \mathrm{p}$ is differentiable in (a, b) and is continuous in $[\mathrm{a}, \mathrm{b}]$. Prove that f and g are linearly dependent on $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$.
b) If, however, f and g be two real linearly independent solutions of the above equation then show that there is precisely one zero of g between any two consecutive zeros off.
$4+6$

