## M. Sc. Mathematics Examination, 2019

(1st Year, 2nd Semester)

## **MATHEMATICS**

## MECHANICS OF CONTINUA

**UNIT - 2.4** 

Time: Two hours Full Marks: 50

The figure in the margin indicate full marks

Symbols have their usual meanings

Answer any five questions:

- 1. a) Deduce Cauchy's formula involving the stren vector components and stren tensor components.
  - b) If the state of stress at any point of a body be given by

$$T_{xx} = y^2 + ()(x^2 - y^2),$$

$$T_{yy}=x^2+()(y^2-x^2)$$

$$T_{zz}=x^2+y^2$$

$$Tyz = T_{zx} = 0 \text{ and } Txy = f(x, y)$$

Determine the expresion for  $T_{xy}$  in order that the stren distribution is in equilibrium in the absence of body forces.

5+5

2. Define principal stress abd principal strain directions. Show that all the three principal stren value are real and, if they

[ Turn over

[ 3 ]

are distinct then show that the corresponding principal stress direction are mutually perpendicular. 10

3. a) Show that the fundamental meadure of deformation of a body at a point (x, y, z) is given by

$$2(E_{xx}dx^2 + E_{yy}dy^2 + E_{zz}dz^2 + 2E_{zy}dxdy + 2E_{yz}dydz +$$

 $+2E_{xx} dz dx$ , Where Eij (i, j=x, y, z) are Lagrangian Finite strain tensor at (x, y, z).

Whay do you mean by infinitesimal strain? Deduce the exprenians for eij (i.j=x,y, z) for infinite simal strain components.

b) The diaplacement in an elastic solid in given by

$$x_x = a(x+2y+3z), x_y = a(-2x+y)$$

$$u_z = a(x + 4y + 2z)$$
, Where a is a small quantity

Find the infinitesimal strain tensor and the cubical dilatation. 6+4

- 4. a) Give the geometrical interpretation of longitudinal strains.
  - b) What do you mean by volumatric strain? Show that the Volumetric strain is equal to the sum of the three longitudinal strains.

    5+5
- 5. Derive the stress equation of motion of a contineum, appling

the principle of linear momentum, stence deduce the Euler's equation of motion for a perfect fluid. 10

6. Deduce the Navier-stokes equation of motion of a () compressible fluid in the following form :

$$\frac{\overrightarrow{\partial q}}{\partial t} - \left[ \vec{q} \times \text{curl} \vec{q} \right] = \vec{F} - \text{grad} Q + \frac{4}{3} \delta \text{ grad div } \vec{q} - \delta \text{ ceerl ceerl } \vec{q}$$

10

7. By applying the principle of angular momentum, show that the stress tensor is symmetric.