(b) In a dynamical system with two degrees of freedom, the K. E. and P. E. are given by where
$T=\frac{\dot{q}_{1}^{2}}{2\left(a+\dot{b} q_{2}\right)}+\frac{1}{2} q_{2}^{2} \dot{q}_{2}^{2}, V=c+d q_{2}$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are constants. Show that the value of q_{2} in terms of time is given by the equation of the form

$$
\left(\mathrm{q}_{2}-\mathrm{k}\right)\left(\mathrm{q}_{2}+2 \mathrm{k}\right)^{2}=\mathrm{h}\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

with h, k and t_{0} as constants.
7. (a) Establish Hamilton's principle from D'Alembent's principle.
(b) Two heavy uniform rods AB and AC each of mass M and length 2a are hinged at A and placed symmetrically over a smooth cylinder of radius ' c ' whose axis is horizontal. If they are slightly and symmetrically displaced from the position of equilibrium, show that the time of small oscillation is

$$
2 \pi \sqrt{\frac{a \sin \alpha}{3 g}\left(\frac{1+3 \sin ^{2} \alpha}{1+2 \sin ^{2} \alpha}\right)}
$$

where $\cos ^{3} \alpha=\mathrm{c} \sin \alpha$.

MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)
MATHEMATICS
General Mechanics

Unit - 1.4

Time : Two hours
Full Marks : 50

The figures in the margin indicate full marks
(Symbols have their usual meaning)
Answer any five questions.

1. (a) State the Lioville's form for a dynamical system.
(b) The K. E. and P. E. of a particle moving in a plane are given by

$$
2 T=\dot{x}^{2}+\dot{y}^{2}, V(r)=-\frac{\mu}{r}-\frac{\mu^{1}}{r^{1}}
$$

where r, r^{1} are the distances of the particle from the points ($\mathrm{c}, 0$) and ($-\mathrm{c}, 0$) respectively. Show that the problem can be formulated in Lioville's form.
2. Show that the K. E. of a moving system can be expressed as

$$
T=\frac{1}{2} \sum_{i, j} a_{i j} \dot{q} \dot{q} \dot{q} j+\sum_{i} b_{i} \dot{q} \dot{q}+C
$$

If for a scleronomic system $T^{\prime}(q, p)$ is what T becomes when expressed in terms of variables q and p, then prove that
(i) $\dot{q} i=\frac{\partial T^{\prime}}{\partial p i}$
(ii) $\frac{\partial T}{\partial q i}+\frac{\partial T^{\prime}}{\partial q i}=0$
(iii) T^{\prime} is a homogeneous quadratic in p 's.
(iv) $T+T^{\prime}=\sum p_{i} \dot{q}_{i}$.
(v) $2 \mathrm{~T}^{\prime}+\frac{\mathrm{D}}{\nabla}=0$ where $\Delta=\operatorname{det}\left(\mathrm{a}_{\mathrm{ij}}\right)$ and

$$
\mathrm{D}=\left|\begin{array}{c}
\mathrm{a}_{11} \ldots \ldots . \mathrm{a}_{1 \mathrm{n}} \mathrm{p}_{1} \\
\mathrm{a}_{21} \ldots \ldots . \mathrm{a}_{2 \mathrm{n}} \mathrm{p}_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
\mathrm{a}_{\mathrm{n} 1} \ldots \ldots . \mathrm{a}_{\mathrm{nn}} \mathrm{p}_{\mathrm{n}} \\
\mathrm{p}_{1} \ldots \ldots \ldots . \mathrm{p}_{\mathrm{n}} 0
\end{array}\right|
$$

3. (a) Define action of a mechanical system. State and prove principle of least action.
(b) What do you mean by Legendre's dual transformation?
(c) Derive Hamilton-Jacobi partial differential equation.
4. (a) Define canonical transformation. Show that Poisson bracket remains invariant under canonical transformation.
(b) Show that the transformation

$$
Q=\sqrt{q} \cos p, P=\sqrt{q} \sin p
$$

represents a canonical transformation Hence evaluate the new Hamiltonian of the system for which

$$
\begin{equation*}
T=\frac{1}{2} m \dot{q}^{2}, V=\frac{1}{2} k q^{2} \tag{1+4}
\end{equation*}
$$

5. (a) Show that $J_{1}=\int_{S_{2}} \sum d q_{i} d p_{i}$, is invariant under canonical transformation where S_{2} is a 2 D surface in phase space.
(b) Establish Euler's dynamical equations from the principle of angular momentrum. $5+5$
6. (a) Establish Earth's rotation using Foucault's pendulum.
