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Answer any five questions.

1. (a) State the Lioville’s form for a dynamical system.

(b) The K. E. and P. E. of a particle moving in a plane
are given by
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where r, r1 are the distances of the particle from
the points (c,0) and (–c,0) respectively. Show
that the problem can be formulated in Lioville’s
form. 3+7
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(b) In a dynamical system with two degrees of
freedom, the K. E. and P. E. are given by where
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where a, b, c and d are constants. Show that the
value of q

2
 in terms of time is given by the equation

of the form
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with h, k and t
0
 as constants. 5+5

7. (a) Establish Hamilton’s principle from D’Alembent’s
principle.

(b) Two heavy uniform rods AB and AC each of mass
M and length 2a are hinged at A and placed
symmetrically over a smooth cylinder of radius
‘c’ whose axis is horizontal. If they are slightly
and symmetrically displaced from the position of
equilibrium, show that the time of small oscillation
is
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where a cos3 = c sin . 5+5
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2. Show that the K. E. of a moving system can be
expressed as
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If for a scleronomic system T/(q,p) is what T becomes
when expressed in terms of variables q and p, then
prove that

(i) 
Tqi
pi




/
           (ii) 0

T T
qi qi


 
 

/

(iii) T/ is a homogeneous quadratic in p’s.
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3. (a) Define action of a mechanical system. State and
prove principle of least action.

(b) What do you mean by Legendre’s dual
transformation ?

(c) Derive Hamilton–Jacobi partial differential
equation. (1+3)+2+4

4. (a) Define canonical transformation. Show that
Poisson bracket remains invariant under canonical
transformation.

(b) Show that the transformation

os ,Q q c p P q sin p 

represents a canonical transformation Hence
evaluate the new Hamiltonian of the system for
which
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5. (a) Show that 1
2

,i iS
J d q dp  is invariant under

canonical transformation where S
2
 is a 2D surface

in phase space.

(b) Establish Euler’s dynamical equations from the
principle of angular momentrum. 5+5

6. (a) Establish Earth’s rotation using Foucault’s
pendulum.
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