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FUNCTIONAL ANALYSIS
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Use a separate Answer-Script for each part

PART - II

(Answer any five questions)

1. a) If  n n{x }  and n n{y }  are two sequences in an inner

product space X converging to x and y respectively, then

prove that n nx , y x, y a,n .    

b) Prove that in an innerproduct space X,
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2. a) Let X denotes the inner product space of real valued

continuous function on [0, 2 ]  with inner product defined

by  
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then prove that n n{e }  is an orthonormal sequence in X.

3+2

b) Prove that an orthonormal set in an inner product space is

linearly independent.

3. a) If M and N are closed subspaces of a Hilbert spae H

such that M N,  then prove that the subspace M + N is

closed.

b) What happens when N M  ? 4+1

4. State and prove Bessel’s inequality regarding orthonormal

sequence in a Hilbert space. 1+4

5. Define isometric operator for a Hilbert space H. Prove that a

unitary operator is isometric. Is the converse true ? Justify.

1+2+2

6. a) For an adjoint operator A on a Hilbert space, prove that

* *( A) A ,    where   is a scalar..

b) Prove that if T is any continuous linear operator on a

Hilbert space H, then T can be expressed uniquely in the

form T = A+iB, where A and B are self adjoint.
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7. a) If T is a normal operator on a Hilbert space H, then prove

that Tx =  x if and only if  *T x x   for x H   and 

is a scalar.

b) Give an example of a projection operator on a Hilbert

space.

Notations and symbols have their usual meaning.


