Ex/Unit-2.3/2019

M. Sc. MATHEMATICS EXAMINATION, 2019

(1st Year, 2nd Semester)

MATHEMATICS

FUNCTIONAL ANALYSIS

UNIT - 2.3

Time : Two hours

Full Marks : 50

(25 marks for each part)

Use a separate Answer-Script for each part

PART - I

Answer Q. No. 1 and any four from rest.

(Unexplained symbols and Notations have their usual meaning)

- 1. Justify any five of the following : $1 \times 5=5$
 - a) Every reflexive space is a Banach space.
 - b) $C_{O}^{**} = I_{\infty}$ implies that C_{O} is not reflexive.
 - c) The identity operator on an infinite dimensional normed linear space is not compact.
 - d) Let M be a normed linear space and N a closed subspace of M. Then the canonical linear transformation.

 $T: M \rightarrow M/N, V \rightarrow v+n$, is bounded with $||T|| \le 1$.

- e) The geometric dual and the algebraic dual of a finite dimensional normed linear space are equal.
- f) There exist linear operator on a normed linear space which has spectral value but does not have any eigenvalue.
- 2. State and prove Riesz Lemma. 1+4
- 3. a) Prove that if the closed unit ball in a normed linear space N is compact then N is finite dimensional.
 - b) State Open Mapping theorem. 4+1
- 4. a) Using open mapping theorem prove that if N_1 and N_2 are banach spaces then the invrse of a bijective continuous linear transformation $T: N_1 \rightarrow N_2$ is continuous.
 - b) State Hahn Banach Theorem for normed linear spaces. Prove that if N is a non zero normed linear space and $v(\neq 0) \in N$ then these exists a bounded linear functional $f \in N^*$ such that f(v) = ||v|| and ||f|| = 1. 2+3
- 5. Let N be a real or complex vector space. Then prove that for two norms. $\|\cdot\|_1$ and $\|\cdot\|_2$ on N the following are equivalent.
 - i) $\|\cdot\|_1$ and $\|\cdot\|_2$ generate the same topology.
 - ii) these exist $k_1 > 0$, $k_2 > 0$ such that $k_1 ||v||_1 \le ||v||_2 \le k_2 ||v_1||$ for all $v \in N$. 5

- 6. State Uniform Boundedness principle. Prove that a non empty subset X of a normed linear space N is bounded if and only if f(X) is a bounded set of scalars (real or complex numbers) for all $f \in N^*$. 1+4
- 7. Let N be a normed linear space and T: N → N be a linear transformation. Define the transpose T' of T. Prove that T'(N*) ⊆ N* if and only if T is continuous. In that case if the restriction of T' to N* is denoted by T* then prove that ||T|| = ||T*||.