MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)
MATHEMATICS
Differential Geometry
Unit - 1.5
Time : Two hours
Symbols/Notations have their usual meanings.
All questions carry equal marks.
Answer any five questions.

1. (a) Find the cylindrical coordinates and spherical coordinates of the point whose rectangular Cartesian coordinate is $(1, \sqrt{3}, 1)$.
(b) Let $\mathrm{A}=(2,1,1)$ be a contravariant vector in a coordinate system $\left(\mathrm{x}^{1}, \mathrm{x}^{2}, \mathrm{x}^{3}\right)$ of \mathbb{R}^{3}. Find its components in the coordinate system $\left(\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}\right)$.
(c) Where $\quad \bar{x}^{1}=3 x^{1}-3 x^{2}+2 x^{3}, \quad \bar{x}^{2}=2 x^{2}+3 x^{3}$, $\bar{x}^{3}=x^{1}+x^{2}+2 x^{3}$, Prove that $\left\{\begin{array}{c}\mathrm{h} \\ \mathrm{ij}\end{array}\right\}=\left\{\begin{array}{c}\mathrm{h} \\ \mathrm{ji}\end{array}\right\} . \quad 2$
2. (a) Assume that $X(i, j) B^{j}=C_{i}$ holds, where B^{i} is an arbitrary contravariant vector and C_{i} is a covariant vector. Show that $X(i, j)$ is a tensor. What is its type? $\quad 3+1$
(b) In V^{2}, find the quantities g^{ij}, if $\mathrm{g}_{\mathrm{ij}}=\mathrm{i}+\mathrm{j}$. $\quad 2$
(c) When is a vector in a Riemannian space said to be a unit vector? Check whether the contravariant vector with components $(1,0,0, \sqrt{2} / c)$ is a unit vector or not in a space with line element $\mathrm{ds}^{2}=-(\mathrm{dx})^{1}-\left(\mathrm{dx}^{2}\right)^{2}-\left(\mathrm{dx}^{3}\right)^{2}+\mathrm{c}^{2}\left(\mathrm{dx}^{4}\right)^{2}, \mathrm{c}$ being a constant.
$1+3$
3. (a) Show that $A^{i}, i=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(A^{i} \sqrt{g}\right), \mathrm{g}=\left|\mathrm{g}_{\mathrm{ij}}\right| \neq 0$. What is the geometrical interpretation of $\mathrm{A}^{\mathrm{i}}, \mathrm{i} .6$
(b) Define curvature tensor on a Riemannian manifold. State and prove first Bianchi's identity regarding the curvature tensor.
4. (a) Find the curvature at any point of the curve $C: x^{1}=a, x^{2}=t, x^{3}=c t$, where $d s^{2}=\left(d x^{1}\right)^{2}+\left(x^{1}\right)^{2}$ $\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}, a, c$ are nonzero constants.
(b) Define Bertrand mates in a space. Prove that for Bertrand mates the curvature k and torsion τ are related by $\mathrm{ak}+\mathrm{b} \tau=1$, whre a, b are nonzero constants.
5. (a) Prove that the necessary and sufficient condition for a given curve to be a helix is that the ratio of the curvature to the torsion is constant.
(b) Find the differential equation of the geodesic on a surface with metric

$$
\begin{equation*}
\mathrm{ds}^{2}=(\mathrm{du})^{2}+\left(v^{2}-\mathrm{u}^{2}\right)(\mathrm{d} v)^{2} \tag{5}
\end{equation*}
$$

6. (a) Prove that at each non-umbilical point of a surface there exist two mutually orthogonal directions for which the normal curvature attains its extreme values.
$6+4$
(b) Find the equation for the principal curvatures of the surface for the right helicoid.
7. (a) Prove that $a^{\alpha \beta} c_{\alpha \beta}=4 H^{2}-2 K$.
(b) Find the mean curvature of the right helicoid and explain the result by geometrical interpretation.
(c) Write the relation between space unit tangent vecor and surface unit tangent vector.

