MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)

MATHEMATICS

 Complex AnalysisPaper: 1.3
Time : Two hours

Answer any five questions.
All questions carry equal marks
Symbols/Notations used have their usual meaning.

1. (a) Define a curve in a complex plane.
(b) Let $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ be defined in an open region R. If $f(z)$ is holomorphic in R then prove that $u_{x}=v_{y}, u_{y}=-v_{x}$ hold in R. Hence prove that if $\mathrm{f}(\mathrm{z})$ is holomorphic in R and $\mathrm{f}^{\prime}(\mathrm{z})=0$ in R then $f(z)$ is constant in R.
2. (a) Evaluate $\int_{\Gamma} z^{3} d z$, where $\Gamma=\mathrm{L}(0,1)+\mathrm{L}(1,2+\mathrm{i})+$ $\mathrm{L}(2+\mathrm{i}, \mathrm{i})$. Here $\mathrm{L}(\mathrm{a}, \mathrm{b})$ is a line joining the points $\mathrm{z}=\mathrm{a}$ and $\mathrm{z}=\mathrm{b}$.
(b) If $\mathrm{f}(\mathrm{z})$ is holomorphic in a simply connected open region R and Γ is a rectifiable closed curve contained in R then prove that $\oint_{\Gamma} f(z) d z=0$.
3. (a) Define winding $\mathrm{W}\left(\Gamma, \mathrm{z}_{0}\right)$. Show that if Γ is a rectifiable closed Jordon curve, then either $\mathrm{W}\left(\Gamma, \mathrm{z}_{0}\right)=1$ for every $\mathrm{z}_{0} \in \mathrm{I}(\Gamma)$, or $\mathrm{W}\left(\Gamma, \mathrm{z}_{0}\right)=-1$ for every $\mathrm{z}_{0} \in(\Gamma)$.
(b) Let R be an open region and Γ be a rectifiable curve such that R and Γ are disjoint point sets. If $\mathrm{f}(\mathrm{z})$ is continuous on Γ, then prove that the function

$$
F(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\varsigma)}{\varsigma-z} d \varsigma, z \in R
$$

is holomorphic and

$$
F^{\prime}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\varsigma)}{(\varsigma-z)^{2}} d \varsigma, z \in R \quad 2+3+5
$$

7. (a) Let $f(z)$ and $g(z)$ be both holomorphic in an open region R and Γ be a rectifiable closed Jordon curve such that $\mathrm{I}(\Gamma) \cup \Gamma \subseteq$ R. If on $\Gamma, f(z) \neq 0$ and $|\mathrm{f}(\mathrm{z})|$ $>|g(z)|$, then $f(z)$ and $f(z)+g(z)$ have same number of zeros in $\mathrm{I}(\Gamma)$.
(b) Show that a polynomial of degree n has exactly n zeros in the complex plane.
8. Use the method of contour integration to prove the following results (any two)
(a) $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)} d x=\frac{\pi}{8 a^{3}}, \operatorname{Re}\{a\}>0$.
(b) $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
(c) $\int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} d x=\frac{\sqrt{\pi}}{\sqrt{2}}$.
9. (a) Let $\omega=\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ is defined in an open region R such that the partial derivatives of u and v are continuous in R and the Jacobian $\frac{\partial(u, v)}{\partial(x, y)} \neq 0$ in R. If the mapping $\omega=f(z)$ is conformal in R then prove that $f(z)$, is holomorphic in R and $f^{\prime}(z) \neq 0$ in R.
(b) Find the general bilinear transformation which maps the circle $|z|=r$ onto the circle $|\omega|=r . \quad 7+3$
10. (a) If z_{0} is an isolated essential singularity of $f(z)$, then prove that given any complex number c and any two positive numbers \in, δ however small they may be, there exists $\mathrm{z} \in \mathrm{N}^{\prime}\left(\mathrm{z}_{0}, \delta\right)$ such that $|\mathrm{f}(\mathrm{z})-\mathrm{c}|<\epsilon$.
(b) Let R be an open region and $z_{0} \in R$. Suppose $f(z)$ be holomorphic and not identically zero in $\mathrm{R}-$ $\left\{z_{0}\right\}$. If E be the set of all zeros of $f(z)$ in $R-\left\{z_{0}\right\}$ and z_{0} be a limit point of E, then z_{0} is an essential singularity of $f(z)$.
11. (a) Let $\mathrm{f}(\mathrm{z})$ be holomorphic in an annulus $\mathrm{A}\left(\mathrm{z}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}\right)$ and

$$
F(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right) n, z \in A\left(z_{0}, r_{1}, r_{2}\right) .
$$

If $\mathrm{K} \equiv \mathrm{K}\left(\mathrm{z}_{0}, \mathrm{r}\right)$ is a circle such that $\mathrm{r}_{1}<\mathrm{r}<\mathrm{r}_{2}$, and $|\mathrm{f}(\mathrm{z})|<\mathrm{M}$ on $\mathrm{K}\left(\mathrm{z}_{0}, \mathrm{r}\right)$ then prove that
$\left|a_{n}\right| \leq \frac{M}{r_{n}}, n=0, \pm 1, \pm 2 \ldots$ where M is a constant.
(b) If $f(z)$ is holomorphic and bounded in some $N^{\prime}\left(z_{0}\right)$, then z_{0} is not a singularity of $f(z)$.
(c) Let R be a bounded open region and B its boundary and $R^{*}=R \cup B$. If $f(z)$ is nonconstant and holomorphic in R and continuous in R^{*}, then prove that $|f(z)|<M$ for every $z \in R$ where $\mathrm{M}=\max _{\mathrm{z} \in \mathrm{R}^{*}}|\mathrm{f}(\mathrm{z})|$.
$3+2+5$

