7. a) i) Find all possible Jordan canonical forms of a real square matrix of order 3 having eigen values 5,5,5.
ii) Determine all possible Jordan canonical forms for a 5×5 matrix whose minimal polynomial is $(x-2)^{2}$.
$3+2$
b) Find the Jordan canonical form of the real matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & -2 \\
0 & 7 & -4 \\
0 & 9 & -5
\end{array}\right)
$$

M. Sc. Mathematics Examination, 2019

(1st Year, 2nd Semester)

Mathematics

Algebra
Unit - 2.1
Time : Two hours
Full Marks : 50

Answer any five questions.
$10 \times 5=50$

1. a) What do you mean by field extension? Show that every field F is either an extension of \mathbb{Q} or an extension of \mathbb{Z} for some prime p.
$1+4$
b) i) Let F be a field and a, b be two elements of a field containing F. Suppose that a and b are algebraicover F of degree m and n respectively such that ged $(\mathrm{m}, \mathrm{n})=1$. Show that $[F(a, b): F]=m n$.
ii) With proper justification give an example to show that the above result in (i) need not be true if m and n are not relatively prime.
$3+2$
2. a) i) Find the degree of the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2})$ over \mathbb{Q}. Is it a simple extension? Justify your answer.
ii) Find the degree of the splitting field of $x^{p}-1$ over \mathbb{Q}, where p is prime.
$(2+1)+2$
b) Let K be a field and $\mathrm{f}(\mathrm{x})$ be a non constant polynomial in $\mathrm{K}[\mathrm{x}]$. Show that there is a field extension F of K such that $f(x)$ has a root α in F. 5
3. a) i) Let $\mathrm{p}(\mathrm{x})$ be an irreducible polynomial over a field F and be the formal derivative of $p(x)$. Show that $p(x)$ is seperable if and only if $\mathrm{p}^{\prime}(\mathrm{x}) \neq 0$.
ii) Show that $\mathrm{x}^{4}+\mathrm{x}^{2}+[1]$ is seperable over $\mathbb{Z}_{2} .3+2$
b) Let $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$ be a field of order p^{n}. Show that the mapping $\mathrm{f}: \operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right) \rightarrow \mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}^{\mathrm{p}}$ is an antomorphism. Hence conclude that every finite field is a perfect field.

3+2
4. a) Prove that every element in a finite field can be written as the sum of two squares.

5
b) i) Let $\mathrm{K} \subseteq \mathrm{L} \subseteq \mathrm{F}$ be a chain of fields. Suppose that F / K is a normal extension, show that F / L is a normal extension. Is L/K a normal extension? Justify your answer.
ii) Show that $\mathbb{Q}(\sqrt{2})$ is a normal extension of \mathbb{Q} but $\mathbb{Q}(\sqrt{3})$ is not a normal extension of \mathbb{Q}.
$3+2$
5. a) Show that
i) the regular hexagon is constructible by straightedge and compassonly.
ii) it is impossible to trisect an angle of 60° by straightedge and compassonly.
$2+3$
b) i) Find the Galosis group of the field extension \mathbb{C} / \mathbb{R}.
ii) Show that the Galosis group of the polynomial $f(x)=x^{5}-25 x+5$ over \mathbb{Q} is S_{5}. Hence conclude that the equation $\mathrm{f}(\mathrm{x})=0$ is not solvable by radicals.
$2+3$
6. a) i) Let v be a finite dimensional vector space over a field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator such that $\mathrm{T}^{3}=\mathrm{T}$. Is P triangularizable ? Is T diagonalizable ? Justify your answer.
ii) Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator. Show that if T is not trangularizable over \mathbb{R} then T is diagnalizable over \mathbb{C}.
b) Let $\mathrm{A}=\left(\begin{array}{ccc}3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ccc}3 & -2 & -2 \\ 1 & 0 & -2 \\ 3 & -3 & -1\end{array}\right)$

Are A and B simultaneously diagonalizable over \mathbb{R} ? Justify your answer.

