Ex/Unit-2.2/2019

M. Sc. MATHEMATICS EXAMINATION, 2019

(1st Year, 2nd Semester)

MATHEMATICS

TOPOLOGY

UNIT - 2.2

Time : Two hours

Full Marks : 50

Answer Question No. 1 and any three from rest

- 1. On an infinite set X, define a topology z so that X has no limit point and also define a topology τ_1 so that every point of X is a limit point of X. 2
- 2. a) Define a neighborhood operator v on X. Show that given a neighborhood operator v on X, ther exists a topology z on X such that v(x) coincides with N_x = the system of all neighborhoods of x. 8
 - b) Prove that $f:(X,\tau) \to (Y,\tau')$, where (X, z) and (Y,τ') are topological spaces, is continuous iff for any $B \subset Y$, $f^{-1}(\overline{B}) \supset \overline{f^{-1}(B)}$.
 - c) Let (x, τ) be a topological space and $Y \subset X$. Define the subspace topology τ_y . Prove that for any set $S \subset Y$, $\overline{S} \tau_y = \overline{S}_{\tau} \cap Y$. 5

- 3. a) Prove that an infinite Havsdorff topological spae contains an infinite sequence of pairwise disjoint open sets. 6
 - b) Prove that a topological space is completely normal iff every subspace of it, is normal.
 6
 - c) Prove that every second countable topological space is Lindeloff. 4
- a) Prove that the union of a family of connected subsets in a topological space, none of which are separated is also connected.
 - b) Prove that every continuous function f: [0, 1] → [0, 1] must have a fixed point.
 - c) Give an example of a topological space which is connected but not path-connected.3
 - d) Prove that the components in a topological space are closed and pairwise disjoint.3
- 5. a) State and prove Alexander Subbase Theorem. 3
 - b) Use it to prove that arbitary product of compact spaces endowed with product topology is also compact. 7
 - c) Prove that a topological space (x,τ) is countably compact iff every infinite sequence in x has a cluster point.

6. a) For any transfinite cardinal number α , prove that

i) $\alpha + n = \alpha$ ii) $\alpha + \alpha = \alpha$ 3+6

b) Define an ordinal number. prove that for any two ordinal numbers and either $\beta < \nu$ or $\beta = \nu$ or $\beta > \nu$. 7