MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)
MATHEMATICS
Real Analysis
Paper: 1.2
Time : Two hours
Full Marks : 50

Answer q.no. $\mathbf{1}$ and any three from the rest.

1. Give an example of a continuous function which is not a function of bounded variation.
2. (a) Prove that the Lebesgue outer measure of an interval is equal to its length.
(b) Define a Lebesgue measurable set. If E and F are Lebesgue measurable show that $\mathrm{E}-\mathrm{F}$ and $\mathrm{E} \cup \mathrm{F}$ are also so.
$1+4$
(c) If $E \subset[0,1\rangle$ and $x \in[0,1\rangle$ then prove that $E \dot{+} x$ is measurable if E is so with

$$
\begin{equation*}
\mu(E \dot{+} x)=\mu(E\rangle \tag{4}
\end{equation*}
$$

3. (a) Define a ring R. For a class of sets E if $R(E)$ is the ring generated by E then prove that $R(E)$ is countable if E is countable.
(b) Is the above result true for the σ-ring generated by E? Justify your answer.
(c) If f is measurable and $f=g$ a.e. then prove that g is also mesurable.
(d) If $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ in (m) and $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{g}$ in (m) then show that $f=g$ a.e.
4. (a) Give two examples to show that in general convergence in measure does not imply pointwise convergence the converse is also not ture. 6
(b) State and prove Egoroff's Theorem. 10
5. (a) Prove that a bounded function f defined on a measurable set E of finite measure is Lebesgue integrable on E iff f is measurable.

7
(b) For a sequence of non-negative measurable functions $\left\{f_{n}\right\}_{n}$ defined on a measurable set E show that $\int_{E} \sum_{n} f_{n} d \mu=\sum_{n} \int_{E} f_{n} d \mu$.

4
(c) For a function f defined on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{a}<\mathrm{c}<\mathrm{b}$, prove that f is a function of bounded variation on $[a, b]$ iff f is a function of bounded variation on $[\mathrm{a}, \mathrm{c}]$ and $[\mathrm{c}, \mathrm{b}]$ and $\underset{\mathrm{a}}{\mathrm{b}} / f=\underset{\mathrm{a}}{\mathrm{c}} f+\underset{\mathrm{c}}{\mathrm{b}} f$.
6. (a) State and prove Dominated Convergence Theorem.
(b) Let fbe a non-negative function which is Lebesgue integrable on a measurable set E . Then prove that for $\in>0$ there is a $\delta>0$ such that for every set $\mathrm{A} \subset \mathrm{E}$ with $\mu(\mathrm{A})<\delta$, we have $\int_{A} f d \mu<\epsilon . \quad 5$
(c) Let fbe Lebesgue integrable on $[\mathrm{a}, \mathrm{b}]$. Then prove that $\int_{A}^{x} f(t) d t=0$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ iff $\mathrm{f}=0$ a.e. on $[\mathrm{a}, \mathrm{b}]$.

