MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)

MATHEMATICS

Real Analysis

Paper : 1.2

Time: Two hours Full Marks: 50

Answer *q.no.* 1 and any *three* from the rest.

- 1. Give an example of a continuous function which is not a function of bounded variation 2
- 2. (a) Prove that the Lebesgue outer measure of an interval is equal to its length.
 - (b) Define a Lebesgue measurable set. If E and F are Lebesgue measurable show that E-F and $E \cup F$ are also so.
 - (c) If $E \subset [0,1)$ and $x \in [0,1)$ then prove that $E \dotplus x$ is measurable if E is so with

$$\mu(E \dotplus x) = \mu(E)$$

3. (a) Define a ring R. For a class of sets E if R(E) is the ring generated by E then prove that R(E) is countable if E is countable.

(Turn over)

- (b) Is the above result true for the σ -ring generated by E? Justify your answer.
- (c) If f is measurable and f = g a.e. then prove that g is also mesurable.
- (d) If $f_n \to f$ in m and $f_n \to g$ in m then show that f = g a.e.
- 4. (a) Give two examples to show that in general convergence in measure does not imply pointwise convergence the converse is also not ture.
 - (b) State and prove Egoroff's Theorem. 10
- 5. (a) Prove that a bounded function f defined on a measurable set E of finite measure is Lebesgue integrable on E iff f is measurable.
 - (b) For a sequence of non-negative measurable functions $\{f_n\}_n$ defined on a measurable set E show that $\int_E \sum_n f_n d\mu = \sum_n \int_E f_n d\mu$.
 - (c) For a function f defined on [a,b] and a < c < b, prove that f is a function of bounded variation on [a,b] iff f is a function of bounded variation on

[a,c] and [c,b] and
$$a$$
 $f = c f + b f$.

- 6. (a) State and prove Dominated Convergence Theorem.
 - (b) Let f be a non-negative function which is Lebesgue integrable on a measurable set E. Then prove that for \in > 0 there is a δ > 0 such that for every set $A \subset E$ with $\mu(A) < \delta$, we have $\int_A f d\mu < \in$. 5
 - (c) Let f be Lebesgue integrable on [a,b]. Then prove that $\int_A^x f(t)dt = 0$ for all $x \in [a,b]$ iff f = 0 a.e. on [a,b].

