MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)
MATHEMATICS
Algebra - I
Paper: 1.1
Time : Two hours

Use a separate Answer-Script for each part.

PART - I (25 marks)

Unexplained symbols and notations have their usual meanings.
Answer q.no. 1 and any three from the rest.

1. Answer any five questions :
$5 \times 2=10$
(a) Suppose p be a prime integer and $\mathrm{n}>1$ be any integer. Then no group of order p^{n} is simple Explain.
(b) For $\mathrm{n} \geq 5, \mathrm{~S}_{\mathrm{n}}$ is not solvable - Explain.
(c) Suppose G be non commutative group of order p^{3}, p be a prime. Find $|\mathrm{Z}(\mathrm{G})|$.
(d) There is no simple group of order 56 - Justify.
(e) Any group of order 35 is solvable - Explain.
(f) Suppose G be a group and f: G \rightarrow be an isomorphism defined by $f(a)=a^{n}, \forall a \in G$ and n be integer. Then show that $\mathrm{a}^{\mathrm{n}-1} \mathrm{Z}(\mathrm{G}), \forall \mathrm{a} \in \mathrm{G}$.
2. Let G be a finite commutative group of order n . If m is a positive divisor of n then show that G has a subgroup of order m .
Is the above result true for any finite group? Justify your answer. 3+2
3. Define group action. Let G be a finite group. Let H be a subgroup of G of index p, smallest prime dividing the order of G . Show that H is normal subgroup of G . $2+3$
4. Define solvable group. Suppose G be a group. Prove that G is solvable iff there is a positive integer m such that $\mathrm{G}^{(\mathrm{m})}=\{\mathrm{e}\}$.
$2+3$
5. State Sylow's Third theorem. If there exists an epimorphism of a finite group G onto the group \mathbb{Z}_{8}, then show that G has normal subgroups of index 4 and 2.
6. Define quotient module. Let R be a ring with identity and A, B be two submodules of an R -module M such that $\mathrm{A} \subseteq \mathrm{B}$. Show that $M / A / B / A \cong M / B$.
7. Define free module. Give an example to show that (i) submodule of a free module need not be a free module. (ii) a torsion free module need not be free module.
$1+2+2$
(ii) non zero elements a and b for which $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ but no α, β exist in $\mathbb{Z}[\sqrt{-6}]$ such that $\mathrm{a} \alpha+\mathrm{b} \beta=1$. $1+2+2$
8. Show that $\mathrm{x}^{2}+1$ is irreducible in $\mathbb{R}[x]$ and $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$ where \mathbb{C} is the field of complex numbers.
$1+4$
9. Show that an Artinian integral domain is a field. Let R be a commutative ring with identity such that R is Artinian. Is every prime ideal of R a maximal ideal of R ? Justify your answer.
$3+2$

GROUP - B (10 marks)
Answer any $\boldsymbol{t} \boldsymbol{w} \boldsymbol{w}$ questions.
12. (i) Let R be a commutative ring with identity. Let M be an R module and $\mathrm{L}, \mathrm{L}^{1}, \mathrm{~N}, \mathrm{~N}^{1}$ be submodules of M such that $M=L \oplus L^{1}=N \oplus N^{1}$. Give an example to show that $\mathrm{L}=\mathrm{N}$ but $\mathrm{L}^{1} \neq \mathrm{N}^{1}$.
(ii) Let R be a ring with identity 1 and e be a central idempotent in R . If M is an R -module then show that $\mathrm{M}=\mathrm{eM} \oplus(1-\mathrm{e}) \mathrm{M}$. $3+2$
6. Suppose G is a group of order pqr , where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are primes with $\mathrm{p}>\mathrm{q}>\mathrm{r}$. Show that G is solvable.

```
        PART - II (25 marks)
            GROUP - A (15 marks)
Answer any three questions. 3x5=15
```

7. Let R be a commutative ring with identity and I be a prime ideal of R. Show that $I[x]$ is a prime ideal of $R[x]$. Is $I[x]$ a maximal ideal of $R[x]$ if I is a maximal ideal of R ? Justify your answer. $3+2$
8. Let R be a PID and $P \in R$. Show that p is an irreducible element of R if and only if p is a prime element of R. Is the element 5 irreducible in $\mathbb{Z}[i]$? Justify your answer.
$4+1$
9. Prove that $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain (UFD). Find examples of each of the following in $\mathbb{Z}[\sqrt{-6}]$.
(i) an irreducible element that is not prime
