Ex./M.SC/M/1.1/32/2019

MASTER OF SCIENCE EXAMINATION, 2019

(1st Year, 1st Semester)

MATHEMATICS

Algebra - I Paper : 1.1

Time : Two hours

Full Marks : 50

Use a separate Answer-Script for each part.

PART - I (25 marks)

Unexplained symbols and notations have their usual meanings. Answer *q.no. 1* and any *three* from the rest.

- 1. Answer any *five* questions : 5x2=10
 - (a) Suppose p be a prime integer and n>1 be any integer. Then no group of order pⁿ is simple Explain.
 - (b) For $n \ge 5$, S_n is not solvable Explain.
 - (c) Suppose G be non commutative group of order p^3 , p be a prime. Find |Z(G)|.
 - (d) There is no simple group of order 56 Justify.
 - (e) Any group of order 35 is solvable Explain.

(Turn over)

- (f) Suppose G be a group and $f : G \to G$ be an isomorphism defined by $f(a) = a^n$, $\forall a \in G$ and n be integer. Then show that $a^{n-1} Z(G)$, $\forall a \in G$.
- 2. Let G be a finite commutative group of order n. If m is a positive divisor of n then show that G has a subgroup of order m.

Is the above result true for any finite group ? Justify your answer. 3+2

- Define group action. Let G be a finite group. Let H be a subgroup of G of index p, smallest prime dividing the order of G. Show that H is normal subgroup of G.
- 4. Define solvable group. Suppose G be a group. Prove that G is solvable iff there is a positive integer m such that $G^{(m)} = \{e\}$. 2+3
- 5. State Sylow's Third theorem. If there exists an epimorphism of a finite group G onto the group \mathbb{Z}_8 , then show that G has normal subgroups of index 4 and 2.

13. Define quotient module. Let R be a ring with identity and A, B be two submodules of an R-module M such

that A
$$\subseteq$$
 B. Show that $\frac{M_A}{B_A} \cong M_B$. 2+3

14. Define free module. Give an example to show that(i) submodule of a free module need not be a free module. (ii) a torsion free module need not be free module.

____ X ____

- (ii) non zero elements a and b for which gcd(a,b) = 1but no α , β exist in $\mathbb{Z}\left[\sqrt{-6}\right]$ such that $a\alpha + b\beta = 1$. 1+2+2
- 10. Show that x^2+1 is irreducible in $\mathbb{R}[x]$ and $\frac{\mathbb{R}[x]}{\langle x^2+1 \rangle} \cong \mathbb{C} \text{ where } \mathbb{C} \text{ is the field of complex}$ numbers. 1+4
- 11. Show that an Artinian integral domain is a field. Let R be a commutative ring with identity such that R is Artinian. Is every prime ideal of R a maximal ideal of R? Justify your answer. 3+2

GROUP - B (10 marks) Answer any *two* questions.

- 12. (i) Let R be a commutative ring with identity. Let M be an R module and L, L¹, N, N¹ be submodules of M such that $M = L \oplus L^1 = N \oplus N^1$. Give an example to show that L = N but $L^1 \neq N^1$.
 - (ii) Let R be a ring with identity 1 and e be a central idempotent in R. If M is an R-module then show that $M = eM \oplus (1-e)M$. 3+2

6. Suppose G is a group of order pqr, where p, q, r are primes with p > q > r. Show that G is solvable. 5

PART - II (25 marks)

GROUP - A (15 marks) Answer any *three* questions. 3x5=15

- 7. Let R be a commutative ring with identity and I be a prime ideal of R. Show that I[x] is a prime ideal of R[x]. Is I[x] a maximal ideal of R[x] if I is a maximal ideal of R? Justify your answer. 3+2
- 8. Let R be a PID and P∈R. Show that p is an irreducible element of R if and only if p is a prime element of R. Is the element 5 irreducible in Z[i]? Justify your answer.
- 9. Prove that Z[√-6] is not a unique factorization domain (UFD). Find examples of each of the following in Z[√-6].
 (i) an irreducible element that is not prime