M. Sc. Chemistry Examination, 2019

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XIII-I

Time : Two hours

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - I - 4131

- Find out the splitting of ${}^{3}F$ state under D_{4h} Symmetry. 1.
- 2. Evaluate the symmetries of IR and Raman vibrations of H₂O.
- 3. Determine the spin-allowed and spin-forbidden transitions for the polarized crystal spectrum of K₃[Cr(C₂O₄)₃]. [Where ${}^{4}A_{2}$ is the ground state and ${}^{4}A_{1}$, ${}^{4}A_{2}$ and ${}^{4}E$ are the excited states] 6
- 4. Construct the spin orbit coupling correlation diagram for square planer Ag(II) complexes.
- 5. $[VF_6]^{3-}$, which has absorption bands at 14,800 and 23,250 cm⁻¹, plus a third band in the ultraviolet. Calculate Δ_0 and B. 3

 $A_1 | 1$

 $B_1 | 1$

B₂

1 A_2

1

				•	
	E	2C ₄ (z)	$C_2(z)$	2C'2	2C"2
A ₁	1	1	1	1	1
A ₂	1	1	1	-1	-1
B ₁	1	-1	1	1	-1
B ₂	1	-1	1	-1	1
E	2	0	-2	0	0

Character table for D₄

Character table for D₃ point group

	E	2C ₃ (z)	3C'2		
\mathbf{A}_{1}	1	1	1		$x^{2}+y^{2}, z^{2}$
A_2	1	1	-1	z, R _z	
E	2	-1	0	(\mathbf{x},\mathbf{y}) $(\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$	$(x^2-y^2, xy) (xz, yz)$

Partial Character table for O

Character table for C2, point group

1

-1

-1

1

 $\mathbf{E} \left[\mathbf{C}_{2} \left(z \right) \right] \boldsymbol{\sigma}_{y}(\mathbf{x} z) \left[\boldsymbol{\sigma}_{y}(\mathbf{y} z) \right]$

1

-1

1

-1

1

1

-1

-1

linear,

rotations

z R_z

x, R_v

y, R_x

0	E	8C ₃	6C'2
A ₂	1	1	-1
T ₁	3	0	-1
T ₂	3	0	1

Full Marks: 50

quadratic

 x^2, y^2, z^2

xy

xz

yz

6

5

5

				RC ₂	2RC'2	2RC"2	R	2RC₄
	D'_4	Ε	2C_4	C2	2C'2	2C"2		
Γ ₁	Α'	1	.1	1	1	1	1	1
Γ ₂	A′ ₂	1	1	1	-1	-1	1	1
Г ₃	В′ ₁	1	-1	1	1	-1	1	-1
Γ4	B′2	1	-1	1	-1	1	1	-1
$\Gamma_{_{5}}$	Ε′ ₁	2	0	-2	0	0	2	0
Г ₆	E′ ₂	2	√2	0	0	0	-2	-√2
Г ₇	Ε′ ₃	2	-√2	0	0	0	-2	√2

Character Table of D4'

d² Tanabe-Sugano Diagram

Characters of the matrix representatives $D_{\rm J}$ or $D_{\rm s}$ for half-integral J or S						
	E	C ₂	C ₃	C ₄		
α	0	π	2π/3	π/2		
D	2	0	1 (<i>J</i> = ½, 7/2)	√2 (J = ½, 9/2)		
	+1		-1 (<i>J</i> = 3/2, 9/2)	0 (<i>J</i> = 3/2, 7/2)		
			0 (<i>J</i> = 5/2, 11/2)	-√2 (J =5/2, 13/2)		
J = 1/2	2	0	1	√2		
J = 3/2	4	0	-1	0		
J = 5/2	6	0	0	-√2		

Characters of the matrix representatives D_J or D_s for half-integral J or S

[3]

UNIT - I - 4132

- a) Group theoretically determine the LGOs for NH₃ by means of projection operator method and depict the individual LGOs.
 3+2
 - b) Write down the Mulliken symbol of the valence AOs of N atom in NH_3 and draw a qualitative molecular orbital energy level diagram of NH_3 molecule considering with and without s-p mixing (Character table of C_{3v} point group may be consulted). 2+6
 - c) Draw the Walsh diagram for AH_2 molecule considering two limiting geometries viz. linear and angular and hence predict the geometry of BeH_2^+ and BH_2 in their ground and first excited states. 6
 - d) Explain any two of the followings :
 - (i) Electronegativity of gold ($x_{Au} = 2.54$ in Pauling scale) is copmparable to that of iodine ($x_1 = 2.66$).
 - (ii) Sixth period elements usually show two units below the respective group valence.
 - (iii) In transition metal-dihydrogen chemistry, metal-hydride description becomes more significant down the group.

C _{3V}	Е	2C ₃	$3\sigma_{\nu}$
A ₁	1	1	1
A_2	1	1	-1
Е	2	-1	0
$\Gamma_{r.v.x.}$	3	0	1

Character table for C_{3V} point group