Gouy chapman's diffuse double layer.

Ex/P-XIII/P/2019

approximation, show that the potential (ψ) extends upto infinity.

ii) Using the equation of the field, show that $\kappa^{-1} = \left(\frac{\in \in_0 \text{ kT}}{2C_0z^2e_0^2}\right)^{1/2} \quad \text{is the effective thickness of}$

3+3

5. Answer *any one* question:

- a) i) Derive an expression of the capacitance of an extrinsic semiconductor immersed in an electrolyte solution, as a function of potential.
 - ii) Show that the capacitance-potential profile is asymmetric for extrinsic semiconductor and symmetric for intrinsic semiconductor. $4\frac{1}{2}+2\frac{1}{2}$
- b) i) How and why do the electron bands of a p-type semiconductor immersed in an electrolyte bend?

 What is space charge region?
 - ii) Distinguish between photovoltaic and photogalvanic cells stating their mechanisms of action.4+3

M. Sc. Chemistry Examination, 2019

(4th Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XIII-P

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 4131

Answer any two questions.

- 1. a) Many electron wave functions written in Slater determinantal form satisfies the antisymmetry requirement. Justify using a 3-electron system.
 - b) Derive the analytical form of the square of the total spin angular momentum operator (\hat{S}^2) using a Slater determinantal function of a $(n_\alpha + n_\beta)$ electron system $(n_\alpha$ and n_β are the number of α and β spin electrons). 6
 - c) Find the number of possible spin multiplets of a 6 electron system using Branching rule. $1\frac{1}{2}$
 - d) Show that for an atom with two non-interacting electrons,
 the two electron wave function is the product of eigen
 functions of two single electrons.

- 2. a) What are Slater Condon rules? Derive an expression for the energy expectation value of the wave function $\psi = \frac{1}{\sqrt{2}} \left(|\overline{f_1} f_2 f_3| |f_1 \overline{f_2} f_3| \right) \text{ using Slater-Condon rules. } 6$
 - b) Show with detailed derivation that the separation between the energy levels of excited singlet and triplet states of H_2 molecule is twice the exchange integral. $6\frac{1}{2}$
- 3. a) Show that transition moment from the singlet ground state to an excited singlet state of H_2 depends on the bond length. $3\frac{1}{2}$
 - b) Using Huckel Molecular Orbital (HMO) theory, derive general expression of energy level and wave function of a cyclic conjugated polyene having N-carbon atoms
 (N may be odd or even)
 - c) Using HMO theory, calculate the energy levels for cyclopropenyle radical and butadiene. 2+2

UNIT - P - 4132

4. Answer *any three* questions:

- a) Distinguish between inner and outer potential difference of a metal solution interface. How can the Volta Potential difference between a metal and a solution be measured?

 2+4
- b) i) How does the contact adsorption influence the capacity of the interface? Derive the necessary relation and explain.
 - ii) How is the extent of contact adsorption on the surface of an electrode determined from electro-capillary measurements?
- c) i) Show that the parallel plate condenser model can explain the electro-capillary curve which is perfect parabolic in nature.
 - ii) Give salient features of the Stern model of double layer and explain the total capacity at an electrode solution interface at high and low concentrations separately.
- d) i) The potential gradient $(d\psi/dx)$ at a distance x from an electrode is given by Gouy-Chapman model as

$$\frac{d\psi}{dx} = -\left(\frac{8kTCo}{\epsilon \epsilon_0}\right)^{1/2} \sinh \frac{ze_0\psi_x}{2kT}, \text{ using low field}$$
[Turn over]