Ex/P-XV-O/2019

b) Write a brief account of *any two* of the following:

 $1\frac{1}{2} \times 2$

- i) Glutathione
- ii) Near UV-CD
- iii) β -bend structure.

M. Sc. Chemistry Examination, 2019

(4th Semester)

ORGANIC CHEMISTRY SPECIAL

PAPER - XV-O

Time: Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - O - 4151

Answer any five questions:

- 1. a) Utilizing any one IAD-technique synthesize β -D-Manp- $(1 \rightarrow 6)$ α -D-Glcp-1-OMe. 5
 - b) Using a common building block synthesize

c) Carry out the following transformations:

[Turn over

- 3. a) i) What are ' ϕ ' and ' ψ ' of polypeptide chain?
- ii) Polyglycine, a simple polypeptide, can form a helix with $\phi = -80^{\circ}$ and $\psi = +150^{\circ}$. From the Ramachandran plot, describe this helix with respect to number of residues per turn and handedness.
- b) How are helics formed? $1\frac{1}{2}$
- c) What is a motif? Describe the formation of different motifs in a protein. $2\frac{1}{2}$
- 4. a) What are the amide-I and amide-II bonds of a protein in FTIR spectroscopy? Show the application of these bonds in the prediction of different secondary structural 1+2
- b) i) What is 'molten-globule' state of a protein? Mention the significance of it.
- ii) What is protein misfolding?
- 5. a) Collagen triple helix is very stable and has large tensile strength though it contains repeating -Gly-Pro-Hyp-

triplets.

Explain the formation and stability of this triple helix. 3

[Turn over

HO HO (ii)

d) Utilizing a Nature's chiral pool in each case synthesise :

 $\frac{7}{1}$ 7

- I) S-epichlorohydrin
- II) L-glyceraldehyde 2+2
- ii) Define RRT for Gas liquid chromatographic analysis.
- e) i) Identify the oligosaccharide (Os, equiv wt 355) which furnishes the following results:
- $\bullet~\mbox{NaBH}_4$ reduction followed by hydrolysis of Os yields
- D-GlcUA & D-galactitol in the mole ratio 1 : 1.
- A methyl glycoside of Os on Periodate oxidation reduces 3 moles of the oxidant with simultaneous liberation of HCO₂H per equivalent.

UNIT - O - 4152

2. a) The following reagents are often used in protein chemistry:

Urea, β -mercaptoethanol, HCO₃H, Ph-N = C = S, 6N HCl, Trypsin.

Which one is best suited for accomplishing each of the following tasks?

- Reversible denaturation of a protein devoid of S-S-bonds.
- ii) Cleavage of peptide bonds on the carboxyl site of methionine.
- iii) Determination of the amino acid sequence of a small peptide.
- iv) Hydrolysis of a protein for the determination of amino acid composition.
- b) Discuss briefly the experimental approach for the determination of the positions of -S-S-bonds in a protein.

2

- c) What are homologous proteins? What are the conservative substitutions in a homologous protein? 2
- d) Write the name and structure of a rare amino acid of protein.

- Smith degradation of the above oxidation product yields glyceric acid and D-threitol.
- ii) Assign the peaks at m/e 129 and 87 appearing after GC-MS of 1, 5-di-O-acetyl-2, 3, 4, 6 tetra-O-methylglucitol.
- f) i) Depict the mechanistic pathway of an O-glycosylation reaction proceeding via *in-situ*-anomerisation. What is the requirement in respect of the glycosyl donor? What is the major anomer obtained via this pathway for D-mannose-based donor? $2\frac{1}{2}$
 - ii) Write the IUPAC name of A.

$$CO_2Me$$
 BnO
 BnO
 BnO
 BnO

Α

iii) How is D-glucose converted to the corresponding 2-deoxy sugar? $1\frac{1}{2}$