M. Sc. Chemistry Examination, 2019

(4th Semester)

ORGANIC CHEMISTRY SPECIAL

PAPER - XIII-O

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - O - 4131

- a) The somo energy of a radical determines its properties as electrophilic and/or nucleophilic. Explain your answer.
 - b) Discuss the mechanism of the following transformation.

 $\begin{array}{c} Br \\ CN \\ \hline C_6H_6, \ reflux \end{array}$

c) Predict the product of the following reactions and explain with probable mechanism (any two).

 $2\frac{1}{2} \times 2$

2

i) OMe

i)
$$HClO_4, CHCl_3$$
ii) $Cat. H_2/Pd-C$
iii) Et_3OBF_4, Et_2O

iii)

Rh₂(OAc)₄, DCM
reflux

iii)

Ph

$$Et_3B/O_2 \text{ (trace)}$$
H₂O

[Turn over

d) Ascertain the structure of the products $\mathbf{A} - \mathbf{C}$ and suggest plausible mechanism in each step. $2\frac{1}{2}$

e) Identify the products in the following reaction and explain their formations.

$$(CH_3)_3 C - HgCl + OOOO$$

2. Draw the structure of the product(s) with proper stereochemistry of the following reactions and explain with mechanism (any five): $2\frac{1}{2} \times 5$

$$f) \qquad \stackrel{RO}{\underset{\text{NH}}{\underset{\text{NH}}{\underset{\text{NH}}{\text{NMe}_2}}}} \qquad \qquad \stackrel{i) \ \text{Hg(OCOCF}_3)_2, \, \text{THF, rt}}{\underset{\text{iii)} \ \text{NaBH}_4}{\underset{\text{iii)} \ \text{O}_2/\text{DMF}/\Delta}}} \rightarrow$$

UNIT - O - 4132

3. a) The rates of acetolysis of the following reaction, give a linear plot against σ with a ρ value of -1.00. Predict the product with mechanism.

$$\begin{array}{ccc}
O & CH_3 & AcONa \\
O & X & AcOH
\end{array}$$

If the carbonyl oxygen of substituted benzoyloxy group is labelled with 18 O, and the reaction product after acetolysis is reduced with LiAlH₄, the *trans*-1, 2,—cyclohexanediol retain 50% of the labelled 18 O – explain. 1+1+2

b) Write down Yukawa-Tsuno equation for the base-catalysed hydrolysis of the compound $\bf D$ in 60% aqueous dioxane at 30°C. This reaction exhibits 'r = 0.5' and ' $\rho = + 3.52$ '. Explain the mechanism.

$$X \longrightarrow O - SiEt_3$$

$$D$$
1+2

c) Explain ρ value of the following reaction.

i)
$$NMe_2$$
 OMe OMe NO_2 $OOMe$ $OOMe$

[Turn over

1 + 1

ii)
$$CH_2 - O - C - CH_3$$
 CH_2OH $\rho = +0.47 (60\% \text{ aq acetone, } 25^{\circ}C)$

$$X$$

$$X$$

$$X$$

$$X$$

$$CH_2OH$$

$$+ CH_3COO^{\odot}$$

d) Predict the mechanism of the following reaction and identify the rate determining step (rds) for each substituent.

- 4. a) What is halogen bonding explain with a suitable example.
 - b) Write down the interaction (s) between the following molecules.

2

c) Predict the product(s) (E - H) in the following reactions.

Compound **H** is a preorganized macrocyclic receptor for chloride ion. Write down the noncovalent interactions present between compound **H** and Cl⁻. What type of spectroscopic technique(s) can be utilized to identify the above noncovalent interaction(s)? $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1 + 1$

d) The binding constant of host molecule \mathbf{I} is greater than that of the host molecule \mathbf{J} for the guest

molecule
$$-$$
 explain. 2

e) Give one example of 'Rotaxane' which can behave like a pH-driven cable car, and explain the mechanism.