Ex/P-XV-I/2019

M. Sc. Chemistry Examination, 2019

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XV-I

Time : Two hours

Full Marks : 50

(25 Marks for each Unit)

Use a separate answerscript for each unit.

UNIT – I - 4151

Answer question *no. 1* and *any four* from the rest :

1. Answer *any five* :

- a) What is the role of Na^+ and K^+ ions in animal cells ?
- b) What do you mean by active transport?
- c) What is the role of structure specific recognition protein in DNA?
- d) What are chlorins systems ? Give one example.
- e) Show hydrogen bonding interactions between thymine and adenine bases.
- f) Why copper deficiency causes anaemia?
- 2. a) Discuss mechanism of anticancer activity of Cis-platin. 2
 - b) What are the different possible ways of metal complex binding with DNA?

[Turn over

- c) What do you mean by LD_{50} and LD_{90} values ? Compare these values in case of NH_3 and alicyclic amines. 2
- 3. a) Schematically represent the role of photosystem I and photosystem II in photosynthesis. 2+2
 - b) How water reduces photosystem II in presence of tetranuclar Mn(II) protein? 1
- 4. a) What are the intermediate compounds formed during catalysis by peroxidase?
 - b) How the main intermediate compound in peroxidase differ from active site structure of Mb? 2
 - c) Schematically represent push-pull mechanism for peroxidase.

2

- 5. a) Draw active site structure of carbonic anhydrase (CA) and discuss plausible catalytic cycle for CA. 1+2
 - b) pK_a value of CA is close to 7.0 whereas pK_a value of $[Zn(OH_2)_6]^{2+}$ is about 9.0 explain. 1
 - c) Why sulfonamides are used in the treatment of glaucoma? 1
- 6. a) Ascorbic acid oxisase and plastocyanin are what type of proteins?
 - b) Draw active site structure of Ascorbic acid oxisase. 2
 - c) Show selective transport of mono and divalent ions by the tartarato crown ether. 2

- 9. a) "Emission lifetime of Pyrene is 1.8×10^{-3} s which is much longer than Fluorescence life time (ns) but λ_{em} is the fluorescence wavelength." Explain with plausible mechanism.
 - b) "Benzoic acid is less acidic while phenol is more acidic at excited state." Explain.

Or

c) What happens when DNA is irradiated with UV light? 3+2

- g) "Upon light irradiation *trans*-rich isomer $[Cr(NH_3)_4(H_2O)Cl]^{2+}$ (where H₂O and Cl are in trans configuration) is formed from aqueous solution of $[Cr(NH_3)_5Cl]^{2+}$ while thermal reaction shows scrambling of isomers." Explain.
- 8. a) Account on the quenching mechanism at different concentration of Quencher [Q] added to the solution of fluorophore. Also determine $\varphi_F^0 / \varphi_F^Q$ (where φ_F^0 refers to in absence of Quencher and φ_F^Q refers to in presence of Quencher).
 - b) "A molecule 'M' is irradiated and mixed with a second molecule 'X' to synthesise [M⁺X⁻] while no such reaction is observed upon warming the mixture, in this case." Draw the state diagram of the process and explain.
 - c) How does life time (τ) is related with intensity of emission? Is there any effect of $M^{n+}(3d)$ on the value of τ of an organic fluorogenic ligand coordinated to the metal ion?

Or

d) Write a short note on *(any one)* 'Design of Anion sensor' or 'Application of fluorescence technique in food quality control.' 4+3+3

UNIT – I- 4152

- 7. Answer the following questions (*any five*): $2 \times 5 = 10$
 - a) "7-Hydroxy-4-methylcoumarin and Fluorescein are pH sensitive." Are they following same mechanistic approach ? Explain.
 - b) "Photoaquation of [Cr(NH₃)₅(NCS)]Cl₂ in slightly acidic medium is accelerated by 100 times upon addition of biacetyl." Explain.
 - c) What happens when a solution of $K_2C_2O_4$ is added to coulometrically oxidized $[Ru(bpy)_3]^{2+}$ solution at 1.26 V in acetonitrile? Write plausible mechanism of the reaction.
 - d) "4-N, N-Dimethylbenzonitrile in hexane and in tetrahydrofuran is irradiated with UV light." Draw the emission spectrum and explain the difference, if any.
 - e) Upon addition of 4-N, N-diethylaniline to anthracene solution a new broad emission band at longer wavelength (585 nm) region to free anthracene (λ_{em} , 420 nm) is observed. The band intensity increases with increasing concentration of 4-N, N-diethylaniline but decreases on adding acid. Explain.
 - f) What happens when aqueous solution of K₃[Cr(CN)₆] and [Ru(bpy)₃]Cl₂ is irradiated with light of 450 nm. Explain your observation.