Ex/M.Sc/CH/3/U-3101/12/2019

M. Sc. Chemistry Examination, 2019

(3rd Semester)

Advanced General Chemistry - II

PAPER - X

Time : Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - 3101

Answer any five questions.

1. Write down the polarographic reduction wave equation. What do you mean by "log-plot analysis" in polarography? Mention the significant aspects of this 'log-plot analysis'.

1+1+3

- 2. a) Distinguish between Cathodic Stripping Voltammetry (CSV) and Anodic Stripping Voltammetry (ASV). 2
 - b) Mention the limitation(s) of conventional DC polarography.
 - c) Describe the construction of an "OTTLE". 2
- 3. Write a concise note on "Chronoamperometry". 5
- 4. a) Compare and contrast between LSV and CV. 3
 - b) How do you test for the quasi-reversibility of a redox reaction in CV? 2
- 5. Write down the working principle of a solid-state fluoride ion selective electrode. 'This electrode is limited to use over the

pH range of 0-8.5'-explain why.	3+2
---------------------------------	-----

- 6. a) Mention the principle of an ethanol sensing electrode. 3
 - b) How does a urea sensing electrode function?

2

UNIT - 3102

Answer any *five* questions.

7. a) Write the structure of the major enantiomer obtained after the following sequence of reactions, and account for your answer for the step involving enantioselectivity. $2\frac{1}{2}$

b) Why is Ti special for carrying out Sharpless asymmetric epoxidation reaction?

Write the structure of the major enantiomer obtained from the following reaction.

Me
$$\checkmark$$
 Ph $\xrightarrow{R, R - \text{DET (cat)}}_{\text{Ti}(O^{i} \text{ Pr})_{4}(cat),}$
 $\stackrel{t}{\xrightarrow{\text{BuOOH,DCM,-20^{\circ}C}}}$

Write the structure of the loaded catalyst for the above sulfoxidation reaction. $1+1+\frac{1}{2}$

[5]

b) Deduce the structure of the organic compound with the following analytical and spectral data. 3 : C = 74.98%, H = 6.86%Analysis : 176, 131 (base peak), Mass $: 1714, 1639 \text{ cm}^{-1}.$ IR_{max} ¹H-NMR : δ 1.31 (t, 3H, J = 7.1 Hz), 4.2 (q, 2H, J = 7.1 Hz), 6.43 (d, 1H, J = 15.8 Hz), 7.24–7.57 (m, 5H), 7.67 (d, 1H, J = 15.8 Hz), ¹³C-NMR : δ 14·3, 60·4, 118·4, 128·1, 128·9, 130.2, 134.5, 144.5, 166.8.

$^{13}C(\delta \text{ in ppm})$	DEPT-135	DEPT-90
14	+	NP
22	_	NP
26	_	NP
38	_	NP
128	+	+
129	+	+
133	+	+
137	NP	NP
200	NP	NP

[NP = No Peak]

- b) Explain in brief 'Gated decoupling' and 'Off-resonance decoupling' techniques and their utilities. 2
- 12. a) How will you estimate the amount of epoxide present in nanomaterials or in carbon nanotubes using ³¹P–NMR spectroscopic technique?

8. Depict the catalytic cycle for asymmetric aminohydroxylation reaction. Write the structure of a typical chiral ligand used for such reaction. With the help of a 'Mnemonic device' draw the structure of the major enantiomer of the major regioisomeric product. $1\frac{1}{2}+1+2\frac{1}{2}$

Ph
$$CO_2Me \xrightarrow{(DHQ)_2PHAL (cat)}{K_2OsO_2(OH)_4(cat)}$$

MeSO_2NCINa,MeCN-H₂O

- 9. Discuss briefly about the underlying principle involved in the "Electro spray Ionisation" with a schematic diagram. What are the advantages and disadvantages of ESI over the other ion sources? $3\frac{1}{2}+1\frac{1}{2}$
- 10. a) How is multiple charge states deconvolved into neutral mass ? Positive ion ESI spectra of hen egg white lysozyme shows multiple charge ions at m/z 1023, 1001, 1193, 1302, and 1432. Calculate the neutral mass of the sample. $1\frac{1}{2}+1\frac{1}{2}$
 - b) ¹⁵N-NMR spectroscopy exhibits negative NOE. Justify the above statement with proper reason. 2
- 11. a) An organic compound with molecular formula $C_{11}H_{14}O$, shows the following spectral data : ¹H–NMR : δ (in ppm) 7.25 - 7.82 (m), 2.82 (t), 1.84 (quin), 1.54 (sextet); 0.82 (t). ¹³C-NMR and DEPT experimental results are tabulated below. Deduce the structure of the compound with justification of data. 3

[Turn over