M. Sc. Chemistry Examination, 2019

(2nd Semester)

Physical Chemistry
 Paper-VIII

Time : Two hours

(25 marks for each unit)

Use a separate answer script for each unit

UNIT - 2081

Answer all the questions :

1. a) What do you understand by a potential energy surface? Show a 3D diagram of such a surface together with the potential energy contour diagram for a collinear reaction $\mathrm{A}+\mathrm{BC} \rightarrow \mathrm{AB}+\mathrm{C}$. What does the minimum energy path signify? Hence comment about the "col" or "Saddle" point. $2+3+2$

OR
What is meant by the kinetic isotope effect? Based on the semiclassical treatment (in the absence of quantum-menchanical tunneling) of primary kinetic isotope effect, draw the possible potential - energy profiles for reactions of the type,

$$
\begin{aligned}
& \mathrm{RH}+\mathrm{R}^{\prime} \rightarrow \mathrm{R}+\mathrm{HR}^{\prime} \\
& \mathrm{RD}+\mathrm{R}^{\prime} \rightarrow \mathrm{R}+\mathrm{DR}^{\prime}
\end{aligned}
$$

Find out an approximate value for the semiclassical ratio of the rate constants and compare them (condiser the energy values of C - H bonds). What will happen to this ratio when effect of tunneling is considered?

$$
2+2+2 \frac{1}{2}+\frac{1}{2}
$$

b) Show that the Hammett relationships are equivalent to the existence of linear relationships between the free energies of activation for different series of reactions. Under what instances one observes a poor agreement in reference to the expected pattern? 3+2
2. a) What are the main assumptions of the conventional transition state theory (CTST) ? Derive the CTST equation for the rate constant of a bimolecular elementary reaction by treating the motion through the 'col' as a very loose vibration.
b) Based on the CTST, show that the temperature dependence of rate constant of trimolecular reaction, $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$ can be approximately expressed by $\mathrm{k} \alpha \mathrm{T}^{-3.5} \mathrm{e}^{-\mathrm{E}_{0 / \mathrm{RT}}}$. 3
c) The ionization constants of benzoic acid and p-chlorobenzoic acid in water are 6.30×10^{-5} and 1.07×10^{-4}, respectively. In 60% aqueous acetone, the alkaline hydrolysis of methyl p-chlorobenzoate is 3.95
c) Calculate the number of ways of distribition of 2 particles among 4 energy states when (i) particles are distinguishable and there is no restrction on the occupancy of the energy state (boltzons); (ii) particles are fermions and (iii) particles are bosons.

[4]

Iodine has many low lying vibrational states which are $213.3,425.39,636.27,845.93$ and $1054.38 \mathrm{~cm}^{-1}$ above the zero point energy level. Find the partition function of idoine by direct summation at 300 K . Also calculate average vibrational energy of iodine at the said temperature. $4+4$
4. Answer all :
a) If the root mean squre deviation in energy is defined as $\left(\overline{(\Delta \mathrm{E})^{2}}\right)^{\frac{1}{2}}=\left[\overline{\mathrm{E}^{2}}-\overline{\mathrm{E}}^{2}\right]^{\frac{1}{2}}$. show that $\overline{(\Delta \mathrm{E})^{2}}=\frac{1}{Z}\left(\frac{\partial^{2} Z}{\partial \beta^{2}}\right)-\frac{1}{Z^{2}}\left(\frac{\partial Z}{\partial \beta}\right)^{2}$, where Z is the partition function and $\beta=1 / \mathrm{k}_{\mathrm{B}} \mathrm{T}$

OR
The heat capacity C_{v} is defined in terms of partition function as $\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{N}}{\mathrm{K}_{\mathrm{B}} \mathrm{T}^{2}} \frac{\partial}{\partial \beta}\left(\frac{1}{\mathrm{z}} \frac{\partial \mathrm{z}}{\partial \beta}\right)$. Show that $\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{R}}=\frac{\overline{(\Delta \mathrm{E})^{2}}}{\left(\mathrm{k}_{\mathrm{B}} \mathrm{T}\right)^{2}}$.
b) Calculate the rotational partition function for HCL at $25^{\circ} \mathrm{C}$. The rotational constant of HCL is $10.59 \mathrm{~cm}^{-1}$. Also calculate the characteristic rotational temperature of HCl
times as fast as that of the unsubstituted ester. Calculate the Hammett substituent constant for the p-chloro group and the reaction constant for the hydrolysis reaction. 3

OR
Mention in brief the operational principle of continuous flow method to study the kinetics of fast reactions.

UNIT - 2082

3. Answer any two :

a) Obtain the expression of heat capacity of monatomic solid according to Einstein's model. Also find the values of limiting heat capacity as $\mathrm{T} \rightarrow 0$ and $\mathrm{T} \rightarrow \infty$.
b) Derive Langmuir adsorption isotherm using statistical mechanical approach. Calculate the configurational entropy of localized adsorption if the fraction of surface area covered is (i) $1 / 100$, (ii) $1 / 8 \quad 5+3$
c) Show that the equilibrium distribution of particles following the Fermi Dirac Statistics is given by $n_{i}=\frac{g_{i}}{e^{\alpha} e^{\beta \varepsilon_{i+1}}}$, where α, β are constants and other terms have their usual significances. Also show that for a system in which $\frac{g_{i}}{n_{i}} \gg 1$, the equilibrium distribution becomes equivalent to using Boltzmann distribution law.
[Turn over

