Ex/M.Sc/CH/1/U-1041/9/2019

M. Sc. Chemistry Examination, 2019

(1st Semester)
 Physical Chemistry
 Paper-IV

Time: Two hours
Full Marks : 50
(25 marks for each unit)
Use a separate answerscript for each unit.

UNIT - 1041

1. Answer any one question :
a) Define fugacity (f) of a gas and derive its relation with observed pressure (P) in terms of compressibility factor (Z).
b) Define osmotic coefficient of a solution (ϕ). How is it used to express chemical potential of solvent in a binary solution ? Derive a relation between mole fraction scale activity coefficient of solute, γ_{2} and ϕ.
2. Answer any two questions :
a) i) Define partial molar volume. Does its value depend on composition of solution?
ii) A person attemprs to prepare 100 mL of some drink by mixing 30 mL ethanol with 70 mL water. Does he succeed? If not, what volumes should have been
[Turn over
mixed in order to arrive at a mixture of the same strength but of required volume?
Given : Partial molar volumes of ethanol and water at this composition are 53.6 and $18.0 \mathrm{~mL} \mathrm{~mol}^{-1}$ respectively. Mass densities of ethanol and water are 0.785 and $1.0 \mathrm{~g} \mathrm{~mL}^{-1}$.
iii) Calculate the mole fraction scale activity coefficients of Zn^{2+} ion, Cl^{-}ion and ZnCl_{2} in $1 \times 10^{-3} \mathrm{M} \mathrm{ZnCl}_{2}$ (aq) solution at $25^{\circ} \mathrm{C}$. Given : A of water at $25^{\circ} \mathrm{C}$ is $0.51 \mathrm{M}^{-1 / 2}$. 3
b) i) Show that partial molar volume of the solute in a binary solution is $\mathrm{V}_{2, \mathrm{~m}}=\frac{1}{\rho}\left(\mathrm{M}_{2}-\mathrm{V} \frac{\mathrm{d} \rho}{\mathrm{dm}_{2}}\right)$; V is total volume of solution, ρ is its mass density, M_{2} is molar mass of solute and m_{2} is molality of solute in solution. 5
ii) The literalized Boltzmann-Poisson equation, considering ionic atmosphere theory of DebyeHuckel, for dilute ionic solution is,
$\frac{1}{\mathrm{r}^{2}}-\frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r}^{2} \frac{\mathrm{~d} \phi}{\mathrm{dr}}\right)=\left(\frac{1}{\varepsilon \mathrm{k}_{\mathrm{B}} \mathrm{T}} \sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}(0) \mathrm{Z}_{\mathrm{i}}^{2} \mathrm{e}^{2}\right) \phi(\mathrm{r}) ;$
(symbols have their usual meanings).
Find expression of $\phi(\mathrm{r})$.
3. Answer any one question :
a) i) Calculate the difference in the Born's values of Gibbs free energy of solvation of I^{-}ion, when the dielectric constant is changed from 40 to 80 at $25^{\circ} \mathrm{C}$, given the radius of I^{-}ion is 220 pm . Given that electronic charge, $\mathrm{e}=4.802 \times 10^{-10}$ esu.
ii) Find out the radius of ion from the following data : $\lambda^{0}\left(\mathrm{ClO}_{4}^{-}\right)=54 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$, co efficient of viscosity of water $=0.893 \mathrm{cP}$ at $20^{\circ} \mathrm{C}$.
b) i) Derive an expression of 'Walden product' relating equivalent conductance and radius of moving ion. $2 \frac{1}{2}$
ii) State the significance of 'Walden product' in the study of conductance of electrolyte solution. $2 \frac{1}{2}$

UNIT - 1042

3. Answer any two questions:
a) i) How do you obtain the enthalpy change for ionsolvent interaction following Born's model? 4
ii) Distinguish between primary and secondary solvation of an ion in solution. 2
iii) Discuss the principle of determination of primary solvation number of an ion by any suitable method. 4
b) i) What are the conditions of ion-pair formation in Bjerrum's model ? Obtain an expression of critical distance for Bjerrum's ion pair formation and then derive ion-pair formation constant of an electrolyte in solution.
$2+2+3$
ii) Discuss qualitatively the role of relaxation and electrophoretic effects on the conductance of ions in solution.
c) i) Distinguish between conventional and absolute mobility. 2
ii) State Fick's first law of diffusion. Define diffusion coefficient. Obtain its unit from the law. $2+1+1$
iii) Prove that the diffusion co-efficient,

$$
D_{i}=\operatorname{BRT}\left(1+\frac{d \ln f_{i}}{d \ln C_{i}}\right)
$$

where the terms bear usual significance.
When does diffusion co-efficient become independent of concentration? $3+1$
c) i) Calculate most probable radius of the ionic atmosphere, considering Debye-Huckel theory, for a 0.1 M solution of $1: 1$ true electrolyte at $27^{\circ} \mathrm{C}$. The relative permittivity of solvent is 40 at $27^{\circ} \mathrm{C}$ and charge of proton is $1.62 \times 10^{-19} \mathrm{C}$.
ii) Derive Robinson-Stokes equation for concentrated ionic solution.

