b) Using the Great Orthogonality Theorem prove that the Vectors whose components are the characters of two different Irreducible Representations are orthogonal. 3
9. Mention the Schoenflies Symbol of Cube. Identify all symmetry operations and the Stereogram. Why cube is a Platonic Solid? 5
10. a) Defive Projection Operation assuming a set of orthonormal functions. $2 \frac{1}{2}$
b) Find out the SALCs for hydrogen 1 s orbitals in $\mathrm{H}_{2} \mathrm{O}$.

M. Sc. Chemistry Examination, 2019

(1st Semester)

Theoretical Chemistry

Paper - I

Time : Two hours
Full Marks : 50
(25 marks for each unit)
Use a separate answerscript for each unit.

UNIT - 1011

1. Answer any two :
a) Prove that a projection operator, $\hat{\mathrm{P}}_{\mathrm{i}}=\left|\phi_{\mathrm{i}}><\phi_{\mathrm{i}}\right|$ is a hermitian operator.
b) Determine the eigenvalue of the commutator $[\hat{p}, \hat{q}]$, where \hat{p} and \hat{q} represent the momentum and co-ordinate operators.
c) Show that the spherical harmonics $\mathrm{Y}_{l, \mathrm{~m}_{l}}(\theta, \phi)$ are eigenfunctions of $\left(\widehat{l_{x^{2}}}+\widehat{l_{y^{2}}}\right)$. Evaluate the eigenvalues.
2. What are stationary states? Show that a quantum mechanical system which does not experience any time-dependent external force, the wavefunction $\psi(\mathrm{x}, \mathrm{t})$ remains stationary.
3. Answer any one:
a) A step-up angular momentum operator $\left(\widehat{l_{+}}\right)$is defined as follows.

$$
\widehat{l_{+}} \mathrm{Y}_{l, m_{l}}=\mathrm{C}_{l, m_{l}+1}
$$

Using the properties of angular momentum operators and spherical harmonics, find out the expression of C in terms of quantum numbers l and m_{l}.
b) Find out the expressions of quantum mechanical average values of x^{2} and p_{x}^{2} for the first excited state of one dimensional Harmonic Oscillator and show that it supports Heisenberg Uncertainty principle.
4. a) Construct the singlet excited state wavefunction of $\mathrm{He}\left(1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1}\right)$ in the form of a Slater Determinant
$1 \frac{1}{2}$
b) Apply ladder operators for the spin of an electron to construct Pauli spin matrices : \mathbf{S}_{x} and \mathbf{S}_{y}.2
c) Forn numbers of indistinguishable microscopic particles, it is required that the wavefunctions must be either symmetric or antisymmetric with respect to every possible interchange of two particles - Justify the statement.$2 \frac{1}{2}$

UNIT - 1012

Answer anyfive questions

5. a) 'Wave functions serve as bases of irreducible representation' - prove it considering three sets of p-wave functions of central nitrogen atom in NH_{3}
b) Prove that the representation of a direct product Γ_{AB}, will contain the totally symmetric representation only if the irreducible $\Gamma_{\mathrm{A}}=$ the irreducible Γ_{B}.
6. a) Prove that $\mathrm{a}_{\mathrm{i}}=1 / \mathrm{h}\left[\Sigma \chi(\mathrm{R}) \chi_{\mathrm{i}}(\mathrm{R})\right]$ (symbols have usual meanings).
b) In NH_{3} molecule all three $\sigma_{v} \mathrm{~s}$ are equivalent whereas in $\mathrm{H}_{2} \mathrm{O}$ molecule, two $\sigma_{v} \mathrm{~s}$ are different. - Explain
7. a) What is meant by character of a Representation? Why is it preferred to describe a Representation than the matrices constituting the Representation?
b) Find out the matrix Representation for $\mathrm{C}_{3}(\mathrm{Z})$ symmetry element.
8. a) State the Great Orthogonality Theorem and meaning of the symbols.
