[4]

- b) Using the Great Orthogonality Theorem prove that the Vectors whose components are the characters of two different Irreducible Representations are orthogonal.
- Mention the Schoenflies Symbol of Cube. Identify all symmetry operations and the Stereogram. Why cube is a Platonic Solid?
- 10. a) Defive Projection Operation assuming a set of orthonormal functions. $2\frac{1}{2}$
 - b) Find out the SALCs for hydrogen 1s orbitals in H_2O .
 - $2\frac{1}{2}$

Ex/M.Sc/CH/1/U-1011/9/2019

M. Sc. Chemistry Examination, 2019

(1st Semester)

THEORETICAL CHEMISTRY

PAPER - I

Time : Two hours

Full Marks : 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - 1011

- 1. Answer *any two* : 3×2
 - a) Prove that a projection operator, $\hat{P}_i = |\phi_i \rangle \langle \phi_i |$ is a hermitian operator.
 - b) Determine the eigenvalue of the commutator $[\hat{p}, \hat{q}]$, where \hat{p} and \hat{q} represent the momentum and co-ordinate operators.
 - c) Show that the spherical harmonics $Y_{l, m_l}(\theta, \phi)$ are eigenfunctions of $(\widehat{l_x^2} + \widehat{l_y^2})$. Evaluate the eigenvalues.
- 2. What are stationary states ? Show that a quantum mechanical system which does not experience any time-dependent external force, the wavefunction $\psi(x,t)$ remains stationary.

7

- 3. Answer *any one* :
 - a) A step-up angular momentum operator $(\hat{l_+})$ is defined as follows.

6

$$\widehat{l_{+}} \mathbf{Y}_{l,m_{l}} = \mathbf{C} \mathbf{Y}_{l,m_{l}+1}$$

Using the properties of angular momentum operators and spherical harmonics, find out the expression of C in terms of quantum numbers l and m_l .

- b) Find out the expressions of quantum mechanical average values of x^2 and p_x^2 for the first excited state of one dimensional Harmonic Oscillator and show that it supports Heisenberg Uncertainty principle.
- 4. a) Construct the singlet excited state wavefunction of $He(1s^{1}2s^{1})$ in the form of a Slater Determinant. $1\frac{1}{2}$
 - b) Apply ladder operators for the spin of an electron to construct Pauli spin matrices : S_x and S_y . 2
 - c) For n numbers of indistinguishable microscopic particles, it is required that the wavefunctions must be either symmetric or antisymmetric with respect to every possible interchange of two particles - Justify the statement. $2\frac{1}{2}$

UNIT - 1012

Answer any five questions

- 5. a) 'Wave functions serve as bases of irreducible representation' prove it considering three sets of p-wave functions of central nitrogen atom in NH₃ $2\frac{1}{2}$
 - b) Prove that the representation of a direct product Γ_{AB} , will contain the totally symmetric representation only if the irreducible Γ_A = the irreducible Γ_B . $2\frac{1}{2}$
- 6. a) Prove that $a_i = 1/h[\Sigma \chi(R)\chi_i(R)]$ (symbols have usual meanings). 3
 - b) In NH₃ molecule all three $\sigma_v s$ are equivalent whereas in H₂O molecule, two $\sigma_v s$ are different. - Explain 2
- 7. a) What is meant by character of a Representation? Why is it preferred to describe a Representation than the matrices constituting the Representation?3
 - b) Find out the matrix Representation for $C_3(Z)$ symmetry element. 2
- 8. a) State the Great Orthogonality Theorem and meaning of the symbols. 2

[Turn over

^[2]