Ex:B.SC/PHY/32/H14/GR-A/79/2019

- (b) Why does a free neutron does not decay into an electron and a positron?
- (c) Check if the following reaction are allowed or forbidden in strong interaction.

(i)
$$\pi^- + n \to \sum_{-}^{-} + K^0$$

(ii)
$$\pi^- + p \to \wedge^0 + K^0$$
 2+1+2

- 10. (a) Which are the properties, of the solids, that change from normal to superconducting state?
 - (b) 'Zero resistance and perfect diamagnetism are two independent criteria for superconductivity'–Explain the statement.
- 11. (a) What is cooper pair?
 - (b) Calculate the current flowing through a Josephson's junction when dc source is applied to it. 1+4
- 12. (a) Below 10K, what are the important cryogenic temperatures? What is λ point?
 - (b) What are the special properties of superfluid Helium? 3+2

FINAL B.Sc. EXAMINATION, 2019

(3rd Year, 2nd Semester)

PHYSICS (HONOURS)

Paper: HO-14

Time: Two hours Full Marks: 50

Use separate answer-script for each group.

GROUP - A

(Electronics Devices and Circuit II)
Answer *q.no. 5* and any *three* from the rest. 7x3+4

- 1. (a) Draw the circuit diagram of a two stage RC coupled transistor amplifier and obtain expression for the voltage gain of this amplifier in low frequency range.
 - (b) The mid-frequency gain of an amplifier is 120. Find its lower half power frequency if at frequency 100 Hz, the gain falls to 60.
- 2. (a) Draw a circuit diagram of Class A direct coupled power amplifier and show its maximum efficiency is 25%.
 - (b) Mid frequency gain and bandwidth of an amplifier are 100 and 20 KHz respectively. What would be the new bandwidth if negative feedback of feedback ratio $\beta = 0.02$ is introduced? 5+2

- 3. (a) A n-channel JFET has $I_{DSS} = 12$ mA. If the transconductance gm at $V_{GS} = 0$ is 4 millimho, find the pinch-off voltage.
 - (b) The amplifier circuit uses a n-channel FET with $V_p = -2V$ and $I_{DSS} = 10$ mA. Given $V_{DD} = 20V$, $R_1 = 12$ M Ω , $R_2 = 8$ M Ω , $R_D = 1$ K Ω and $R_S = 2k$. Calculate the drain current (I_D) .

2+5

- 4. (a) State and explain Barkhausen crierion for sustained oscillation.
 - (b) Draw a circuit diagram of a Hartley oscillator and calculate its frequency of oscillation. 2+5
- 5. Write short note (any *two*):

2x2 = 4

- (a) Emitter follower
- (b) Advantages of negative feedback
- (c) Crystal Oscillator

GROUP - B (25 marks) Answer any *five* questions.

- 6. The most successful postdictions between theory and observations of cosmic abundances that we probably do know, correspond a great deal about the state of the Universe during the era spaning 1 to 1000 sec. With the help of Wagonar diagram, briefly describe how the abundances of light elements produce during cosmic nucleosynthesis in this era.
- 7. (a) Write down the names of the elementary particles such as Quarks, Leptons, and Mediators in Standard Model. Listed them in terms of Bosons and Fermions?
 - (b) Explain the CPT violation (if any) with an example. 3+2
- (a) Which particles correspond to quarks compositions und and udd? Write down the quarks compositions of the (∑⁺,∑⁻,∑⁻) particles.
 - (b) The decay $\sum_{i=0}^{\infty} 0 \to 0$ is observed in nature whereas apparently similar decay $\sum_{i=0}^{\infty} 0 \to 0$ is never observed. Why? $\sum_{i=0}^{\infty} 1+2+2$
- 9. (a) A hadron is symbolized by Ω^- . What are its spin, parity, isospin, strengness, and hypercharge? Is it a boson or a fermion?