(a) Is the wavefunction $\Psi(x, t)$ normalised ?
(b) Find $\Psi(x, t)$.
$2^{1 / 2}+2^{1 / 2}$
14. (a) What is Parity? Find the eigen values of parity operator.
$1+1$
(b) Find $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]$ and $[\mathrm{Lx}, \mathrm{x}]$. 3

BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)

PHYSICS (HONOURS)

Paper : HO-8
Time : Two hours
Full Marks : 50

Use separate answer script for each group.
The figures in the margin indicate full marks.
GROUP - A (25 marks)
(Special Theory of Relativity) Answer any five questions.

1. (a) An observer casts a laser pulse of frequency $v=10^{15}$ Hz against a mirror, which is moving with a speed $v=5 \times 10^{7} \mathrm{~m} / \mathrm{s}$ opposite to the direction of the pulse, and whose surface is orthogonal to it. The observer then measures the frequency v of the pulse coming back after being reflected by the mirror. What is the value of v ?
(b) A galaxy in the constellation Ursa Major is receding from the earth at $15,000 \mathrm{~km} / \mathrm{s}$. If one of the characteristic wavelengths of the light the galaxy emits is 550 nm , what is the corresponding wavelength measured by astronomers on the earth ?
$3+2$
2. (a) If an electron has a speed of 99.0% that of light, what are its total energy, kinetic energy, and momentum? The rest mass energy of electron is 0.511 MeV .
(b) A body at rest spontaneously breaks up into two parts which move in opposite directions. The parts have rest masses of 3 kg and 5.33 kg and respective speeds of 0.8 c and 0.6 c . Find the rest mass of the original body.
3. A nucleus of mass m emits a gamma ray photon of frequency v Show that the loss of internal energy of the nucleus is given by

$$
\begin{equation*}
\Delta E=h v\left[1+\frac{h v}{2 m c^{2}}\right] \tag{5}
\end{equation*}
$$

4. The speed of light in still water is $\frac{c}{n}$, where the index of refraction for water is approximately $n=\frac{4}{3}$. Fizeau, in 1851, found that the speed (relative to the laboratory) of light in water moving with a speed V (relative to the laboratory) could be express as

$$
u=\frac{c}{n}+k V
$$

10. A particle of mass moving along positive direction of x axis and approach a potential barrier as shown below.

Energy of the particle E is greater than $\mathrm{V}_{0}\left(\mathrm{E}>\mathrm{V}_{0}\right)$. Show that the sum of reflection coefficient and transmission coefficient is 1 .
11. Write down Schrodinger wave equation in one dimension. What is the condition to get stationary state? Find the expression of time independent Schrodinger equation.
12. (a) Show that $<\mathrm{p}_{\mathrm{x}}>$ is real
(b) Show that $\frac{d}{d t}\langle x\rangle=\frac{\left\langle p_{x}\right\rangle}{m}$
13. A harmonic oscillator is in a state described by the wavefuncion
$\psi(x, t)=\frac{1}{2} \psi_{0}(x)+\frac{i}{2} \psi_{1}(x)+\frac{1}{\sqrt{2}} e^{i \pi / 3} \psi_{2}(x)$
where $\Psi_{n}(\mathrm{x})$ are normalised wave function.
(Turn Over)

Figure 1

GROUP - B

Answer any five questions.
8. (a) Write down uncertainty Principle of Heisenberg.
(b) What are the de Broglie wavelengths of a particle of mass 1 gm moving with velocity $300 \mathrm{~m} / \mathrm{s}$ and that of an electron moving with velocity $300 \mathrm{~m} / \mathrm{s}$. 3
9. (a) A particle of mass m is confined in a potential well given by

$$
\begin{array}{rlrl}
\mathrm{V} & =0 & 0<\mathrm{x}<0 \\
& =\alpha & \text { elsewhere. }
\end{array}
$$

$$
3+4+1
$$

Find the energy states and interprete the result. Find wave function (normalised).
where the "dragging coefficient" was measured by him to be $\mathrm{k} \approx 0.44$. Determine the value of k predicted by the Lorentz velocity transformations.
5. (a) At what velocity the relativistic kinetic energy differ from the classical energy by 10%.
(b) At what speed the kinetic energy of a particle is n times its rest energy?
(c) If the total energy of a particle is n times its rest energy, what is its momentum?
6. A particle moves with a speed of 0.8 c at an angle of 30° to the x -axis, as determined by observer O . Suppose a second observer O^{\prime} which is moving with a speed of 0.6 c along the common $\mathrm{x}-\mathrm{x}^{\prime}$. axis.
(i) What is the velocity of the particle as determined by the second observer O^{\prime} ?
(ii) How much the angle the velocity makes with x^{\prime} axis?
7. A particle with mass M and energy E decays into two identical particles. In the lab frame, they are emitted at angles 90° and ϕ as shown in Figure 1. What are the energies of the created particles?

