(a) Show that for very small $p(p \le 1)$ and hence $n \le N$, $\omega(n)$ transforms into a Poisson distribution

$$\omega(n) = \frac{\lambda^n}{n!} e^{-\lambda}$$
, where $\lambda = Np$ is the mean number of events.

- (b) Show that for large N, the above expression for $\omega(n)$ leads the to Gaussian probability distributions. 7
- 11. (a) Explain the concept of phase space in classical statistics? 2
 - (b) Calculate the number of accessible microstates for a classical simple harmonic oscillator in the energy range E and $E + \delta E$. 3
 - (c) Draw the phase space diagram of the simple harmonic oscillator whose energy lies between E and $E + \delta E$. 1
 - (d) Consider a quasi-static process in which the system A, by virtue of its interaction with system A', is brought from an equilibrium state, described by energy E and an external parameter x, to an infinitesimally different equilibrium state described by E+dE and x+dx. What is the resultant change in the number of states Ω accessible to A? Hence show

that using first law of thermodynamics, $ds = \frac{dQ}{T}$, where symbols have their usual meaning. 4

Ex/UG/SC/CORE/PHY/TH/09/2019

BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester)

PHYSICS

Mathematical Methods - III and Statistical Mechanics - I Paper : CORE - 9

Time : Two hours

Full Marks : 50

Use separate answer scripts for each group.

GROUP - A (25 marks) (Mathematical Methods - III) Answer any *five* questions.

- 1. Starting from the fact that the volume of a D-dimensional hypershere is proportional to the D-th power of its radius, find the exact expression for the volume. 5
- 2. Show that

$$\int_0^{\pi/2} \cos^{2m-1}\theta \sin^{2n-1}\theta \,d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}$$

- 3. Find the expression for the divergence $(\vec{\nabla})$ operator in terms of the generalized curvilinear coordinates q_1 in three dimensions. 5
- 4. Show that the norm of a well-behaved function is the same as the norm of its Fourier transform. 5

(Turn Over)

- 5. Find the Fourier series expansion of the function f(x) given as f(x) = 0, for $-\pi \le x \le 0$ and f(x) = x for $0 \le x \le \pi$, and hence show that $\frac{\pi^2}{8} = 1 + 1/9 + 1/25 + \dots$ 5
- 6. Show that the differential equation $6x^2y^n + x(1+6x)y' + y = 0$, (where primes denote derivative with respect to x) has two independent series solutions [you need not find the full series solutions]. 5

GROUP - B

(Statistical Mechanics - I) Answer *q.no.* 7 and any *two* from the rest.

7. Consider a paramagnetic material consisting of a volume V of N non-interacting spin-1 particles with

magnetic dipole moment $\vec{\mu} = \frac{\mu}{\hbar}\vec{S}, S_z = m\hbar, m = 0, \pm 1$ that

are located in a magnetic field $\vec{B} = B_0 \vec{z}$ at temperature T.

- (a) Write the partition function in terms of $c = \mu H_0$
- (b) Compute the average spin $< S_z > 3+2$
- 8. Consider system A and A⁷ are initially sperately in equilibrium and isolated from each other. Now systems are brought into contact with each other and allow only thermal interaction between them. Use microcanonical ensemble to

- (a) establish the statistical defination of temperature and entropy. 4
- (b) show that heat flows from a system at higher temperature to a system at lower temperature. 3
- (c) show that total entropy of the composite system always increases. 3
- 9. (a) Starting from the general expression for entropy $(S = -k < ln P_r >)$, derive the expression for entropy of a canonical ensemble. 3
 - (b) A gas of N indistinguishable classical non-interacting atoms is held in a neutral atom trap by a potential of

the form V(r) = ar where $r = \sqrt{x^2 + y^2 + z^2}$. The gas is in thermal equilibrium at a temperature T. Find the single particle partition function Z_1 for a trapped atom. (Hint : In spherical coordinates the volume element dxdydz is replaced by $r^2 drsin\theta d\theta d\phi$.

 $\int_0^\infty x^2 e^{-x} dx = 2$). Find the entropy of the gas in terms of N, k and Z₁(T, a). 4+3

10. The probability, $\omega(n)$, that an event charaterized by a probability p occurs n times in N trial, was shown to be given by the distribution

$$\omega(n) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

(Turn Over)