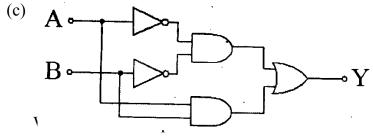
BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)

PHYSICS (SUBSIDIARY)

Paper: SO-8

Time: Two hours Full Marks: 50


The figures in the margin indicate full marks.

Answer any four questions.

- 1. (a) Convert the decimal number 17.375 to its binary equivalent and the binary number 11.1101 to its decimal equivalent.
 - (b) Add the binary numbers 1001 and 110.
 - (c) Prove the Boolean identity $\overline{A.B} = \overline{A} + \overline{B}$
 - (d) Simplify the expression $\overline{AB} + \overline{A} + AB$

 $4+2^{1}/_{2}+4+2$

- 2. (a) Design an AND gate with the help of diodes.
 - (b) Show that NOR gate is an universal gate.

(Turn Over)

- (d) Define low pass and high pass filter. $3+3+3+3\frac{1}{2}$
- 3. (a) State the characteristics of an ideal OP-AMP.
 - (b) Explain the concept of virtual ground in an OP-AMP.
 - (c) Draw the circuit diagram of an inverting amplifier using an OP-AMP and find out an expression for the voltage gain of this amplifier.
 - (d) In an OP-AMP inverting amplifier, the input and feedback resistances are 10 K Ω and 50 K Ω , respectively. If the input voltage is 1.0 V, find out the output voltage. $2^{1}/_{2}+2+5+3$
- 4. (a) How the depletion region is formed in p-n junction? Explain the variation of its width with biasing.
 - (b) Show that a full-wave rectifier is more efficient than a half-wave rectifier.
 - (c) Explain how a Zener diode maintains a constant voltage across a load. $4+5^{1}/_{2}+3$
- 5. (a) Draw the circuit diagram of a transistor operating in a common base configuration and sketch its input and output characteristic curves indicating different regions.
 - (b) Find out its expression for voltage gain in terms of current gain, input resistance and the load resistance.

- (c) The constant α of a transistor is 0.95. What would be the change in the collector current corresponding to a change of 0.4 mA in the base current in common emitter amplifier?

 5+4+3¹/₂
- 6. (a) Explain with the help of a block diagram the working principle of feedback amplifier. What are the advantages of negative feedback?
 - (b) What kind of feedback is used in oscillator circuit? Explain the basic criterion to be fulfilled in the feedback circuit for the oscillation to sustain.
 - (c) The voltage gain of a transistor amplifier is 50. If the amplifier is provided with 10% negative feedback, calculate its voltage gain. $4+\frac{1}{2}4+4$

____ X ____