6. (a) Construct a DFA that accepts the regular expression $10+(0+11) 0^{*} 1$.
(b) Define a finite state machine (FSM). Design a FSM that adds two binary numbers of the form $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}}$ and $\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{k}}$.

7+(2+3)
7. (a) Prove that every regular language is a context free language, but its converse is not true.
(b) Prove that the languages $\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{m}} \mid \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}$ and $L_{2}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mid \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}$ on $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ are context-free languages. Show that $L=L_{1} \cap L_{2}$ is not a context-free language. $5+(4+3)$

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)

MATHEMATICS (HONOURS)
Discrete Mathematics - II
Paper : 6.6(b)
Time : Two hours
The figures in the margin indicate full marks. Symbols/Notations have their usual meanings.

Answer q.no. 1 and any four from the rest.

1. State the pumping lemma for context free languages. 2
2. Define a deterministic finite automaton (DFA) M and the language $\mathrm{L}(\mathrm{M})$ accepted by the DFAM. State and prove the pumping lemma for regular languages. $2+2+(2+6)$
3. (a) Let M be the DFA whose state transition diagram is shown in the following figure :

(Turn Over)
(i) Construct the transition table of M.
(ii) Which of the strings baba, baab, and abaab, are accepted by M ?
(iii) Find L(M).
(b) Show that the language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ over $\Sigma=\{a, b\}$ is not a regular language. $\quad(1+2+5)+4$
4. (a) Let $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$ be the non deterministic finite automaton (NDFA) such that $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma=\{a, b\}$,
$F=\left\{q_{2}\right)$, the initial state is q_{0}, and δ is given by

δ	a	b
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	ϕ	$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$
q_{2}	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	ϕ

(i) Draw the transition diagram of M .
(ii) Which of the strings aba, bbb, bba, and abb are accepted by M ?
(iii) Find L(M)
(iv) Find the corresponding DFA of M.
(b) Let M be a DFA and let G_{m} be its transition diagram. Then for any two states q_{i} and q_{j}, and a string $\omega \in \Sigma^{*}$, prove that $\delta^{*}\left(q_{i}, \omega\right)=q_{j}$, if and only if there is a directed walk P in G_{M} with the label ω from q_{i} to q_{j} where Σ is the input alphabet and δ^{*} is the extended transition function.
$(1+2+3+2)+4$
5. (a) Let P and Q be two regular expressions over Σ. If P does not contain the empty word λ, then show that the equation in R :

$$
\mathrm{R}=\mathrm{Q}+\mathrm{RP}
$$

has a unique solution. What is the unique solution?
(b) Construct a regular expression recognized by the transition diagram of an NDFA given below :

$(5+1)+6$

