BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)

MATHEMATICS (HONOURS)

Discrete Mathematics - II

Paper : 6.6(b)

Time : Two hours

Full Marks : 50

The figures in the margin indicate full marks. Symbols/Notations have their usual meanings.

Answer *q.no.1* and any *four* from the rest.

- 1. State the pumping lemma for context free languages. 2
- 2. Define a deterministic finite automaton (DFA) M and the language L(M) accepted by the DFAM. State and prove the pumping lemma for regular languages. 2+2+(2+6)
- 3. (a) Let M be the DFA whose state transition diagram is shown in the following figure :

- 6. (a) Construct a DFA that accepts the regular expression $10+(0+11)0^*1$.
 - (b) Define a finite state machine (FSM). Design a FSM that adds two binary numbers of the form $x_1 x_2 \dots x_k$ and $y_1 y_2 \dots y_k$. 7+(2+3)
- (a) Prove that every regular language is a context free language, but its converse is not true.
 - (b) Prove that the languages $L_1 = \{a^n b^n c^m | n \ge 0, m \ge 0\}$ and $L_2 = \{a^n b^m c^m | n \ge 0, m \ge 0\}$ on $\Sigma = \{a, b, c\}$ are context-free languages. Show that $L = L_1 \cap L_2$ is not a context-free language. 5+(4+3)

(Turn Over)

- (i) Construct the transition table of M.
- (ii) Which of the strings baba, baab, and abaab, are accepted by M?

(iii) Find L(M).

- (b) Show that the language $L = \{a^n b^n | n \ge 0\}$ over $\Sigma = \{a, b\}$ is not a regular language. (1+2+5)+4
- 4. (a) Let $M = (Q, \Sigma, q_0, \delta, F)$ be the non deterministic finite automaton (NDFA) such that $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\},$
 - $F = \{q_2\}$, the initial state is q_0 , and δ is given by

δ	а	b
q ₀	$\{q_{0}^{}, q_{2}^{}\}$	$\{q_0\}$
q ₁	φ	$\{\boldsymbol{q}_0, \boldsymbol{q}_2\}$
q ₂	$\{q_1, q_2\}$	φ

(i) Draw the transition diagram of M.

(ii) Which of the strings aba, bbb, bba, and abb are accepted by M ?

(iii) Find L(M)

(iv) Find the corresponding DFA of M.

- (b) Let M be a DFA and let G_{M} be its transition diagram. Then for any two states q_i and q_j , and a string $\omega \in \Sigma^*$, prove that $\delta^*(q_i, \omega) = q_j$, if and only if there is a directed walk P in G_{M} with the label ω from q_i to q_j where Σ is the input alphabet and δ^* is the extended transition function. (1+2+3+2)+4
- (a) Let P and Q be two regular expressions over Σ. If P does not contain the empty word λ, then show that the equation in R :

R = Q + RP

has a unique solution. What is the unique solution?

(b) Construct a regular expression recognized by the transition diagram of an NDFA given below :

(5+1)+6

(Turn Over)