BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 1st Semester) MATHEMATICS (Honours)

Discrete Mathematics - I

Paper - 5.6(b)
Time : Two hours

Use a separate answer-script for each part.
(Symbols have usual meanings, if not mentioned otherwise)

PART - I (25 marks)

Attempt the questions as follows.

1. Answer any two questions:
(a) Prove that for any graph G with six points, G or \bar{G} contains a triangle.
(b) Prove that a graph is bipartite if and only if all its cycles are even.
(c) Define n-cube. Find the number of points and lines in an n-cube.
2. Answer any three questions :
(a) If every two points of a (p,q)-graph G are joined by a unique path, then prove that G is connected and $\mathrm{p}=\mathrm{q}+1$.
(b) Define the terms coboundary and cocycle. Prove that a cocycle is just a minimal nonzero coboundary.
(c) Prove that every hamiltonian graph is 2-connected and every nonhamiltonian 2-connected graph has theta subgraph.
(d) Define eulerian graph. If the set of lines of a connected graph G can be partitioned into cycles, then prove that G is eulerian.
(e) If G is a plane (p, q)-graph with no triangle, then prove that $\mathrm{q} \leq 2 \mathrm{p}-4$. Hence show that $\mathrm{K}_{3,3}$ is non-planar.

PART - II (25 marks)

Answr any five questions.
3. How many integral solutions are there to $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}=0$ for which
(i) each $x_{i} \geq 2$?
(ii) where $x_{1} \geq 3, x_{2} \geq 2, x_{3} \geq 4, x_{4} \geq 6$ and $x_{5} \geq 0$?
4. Prove that for any set $\mathrm{A},|\mathrm{P}(\mathrm{A})|=2^{|\mathrm{A}|}$, using mathematical induction.
5. Prove the following identifies combinetorially:
(i) ${ }^{n} C_{r} \cdot{ }_{C} C_{k}={ }^{n} C_{k}{ }^{n-k} C_{r-k}$
where $\mathrm{n} \geq \mathrm{r} \geq \mathrm{k} \geq 0$.
(ii) $n_{C_{r}}={ }^{n-1} C_{r}+{ }^{n-1} C_{r-1}$
6. Find how many integers between 1 and 1,000 are not divisible by $2,3,5$ or 7 .
7. Let D_{n} be the number of derangements of $\{1,2, \ldots . n\}$. Find a general expression for D_{n}.
8. Prove the following identities
(i) $\mathrm{F}_{0}+\mathrm{F}_{2}+\mathrm{F}_{4}+\ldots+\mathrm{F}_{2 \mathrm{n}}=\mathrm{F}_{2 \mathrm{n}+1}$
(ii) $\mathrm{F}_{0}+\mathrm{F}_{1}+\mathrm{F}_{2}+\ldots+\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+2}-1$
when F_{n} represents the $\mathrm{n}^{\text {th }}$ Febonacci numbers.
9. If F_{n} satisfies the Fibonacci relation $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$ for $\mathrm{n} \geq 2$, then there are constants C and C_{2} such that

$$
F_{n}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

where the constants are completely determined by the initial conditions.

