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Use a separate answer-script for each part.
(Symbols have usual meanings, if not mentioned otherwise)

PART - I (25 marks)
Attempt the questions as follows.

1. Answer any two questions : 5x2=10

(a) Prove that for any graph G with six points, G or G

contains a triangle.

(b) Prove that a graph  is bipartite if and only if all its

cycles are even.

(c) Define n-cube. Find the number of points and lines in

an n-cube.

2. Answer any three questions : 5x3=15

(a) If every two points of a (p,q)-graph G are joined by a

unique path, then prove that G is connected and

p = q + 1.

(Turn over)



(b) Define the terms coboundary and cocycle. Prove that

a cocycle is just a minimal nonzero coboundary.

(c) Prove that every hamiltonian graph is 2-connected

and every nonhamiltonian 2-connected graph has theta

subgraph.

(d) Define eulerian graph. If the set of lines of a connected

graph G can be partitioned into cycles, then prove

that G is eulerian.

(e) If G is a plane (p,q)-graph with no triangle, then prove

that q  2p – 4. Hence show that K
3,3

 is non-planar.

PART - II (25 marks)

Answr any five questions.

3. How many integral solutions are there to
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4. Prove that for any set A, | P(A) | = 2|A |, using mathematical

induction.

5. Prove the following identifies combinetorially :
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6. Find how many integers between 1 and 1,000 are not

divisible by 2, 3, 5 or 7.

7. Let D
n
 be the number of derangements of {1,2, ... . n}.

Find a general expression for D
n
.

8. Prove the following identities
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when F
n
 represents the nth Febonacci numbers.

9. If F
n
 satisfies the Fibonacci relation F
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n–1
 + F

n–2
 for

n  2, then there are constants C and C
2
 such that
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where the constants are completely determined by the

initial conditions.
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