Ex:MATH/H/32/6.5/B/86/2019

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)

MATHEMATICS (HONOURS)

Differential Geometry

Paper : 6.5(b)

Time : Two hours

Full Marks : 50

(Symbols/Notation have their usual meaning) Answer any *five* questions.

- 1. (a) Define equivalent paths. Prove that path equivalency is an equivalence relation. 1+4
 - (b) Check whether the paths defined by

 $\vec{r} = (u, \sin u, e^u), -\infty < u < \infty \text{ and } \vec{r} = (\log v, \sin(\log v), v),$ $0 < v < \infty \text{ are equivalent or not.}$

(c) Prove that $(\vec{a} \times \vec{b}) \cdot \{ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) \} = (\vec{a} \cdot (\vec{b} \times \vec{c}))^2$. 3

2. Establish Serret-Frenet formulae for a space curve with their geometrical significance. 10

3. (a) Show that
$$\frac{d\vec{r}}{ds} \cdot \left(\frac{d^2\vec{r}}{ds^2} \times \frac{d^3\vec{r}}{ds^3}\right) = \frac{\tau}{\rho^2}$$
, where τ is the

torsion and ρ is radius of curvature of the space curve $\vec{r} = r(s)$.

(Turn Over)

- (b) Prove that a plane curve is entirely determined by the function k = k(s), apart from a rigid motion and the curve may be determined by quadrature. 6
- 4. (a) Define helix. Prove that for a helix the ratio of curvature and torsion is constant.
 - (b) Prove that for Bertrand mates the relation between curvature and torsion satisfy the relation $ak + b\tau = 1$, where a, b are constants. 6
- 5. (a) Find the parametric curves on the surface $\vec{r} = (u\cos v, u\sin v, bv)$, b being a constant. Also identify the surface. 4
 - (b) For the space curve $x = 3 \cos t$, $y = 3 \sin t$, z = 4t, find unit tangent vector, principal normal vector, binormal vector, curvature and torsion. Also determine the nature of the curve. 6
- 6. (a) For a surface $\vec{r} = (c \sin u \cos v, c \sin u \sin v, c \cos u)$ c being a constant, find the first fundamental form, angle between the parametric curves and unit normal vector \vec{H} .
 - (b) Also find the value of $d\vec{r} \cdot d\vec{H}$ and explain its geometrical significance. 5

- (3)
- 7. (a) If the first fundamental form of a surface is $ds^2 = (1 + u^2) du^2 + 2uv dudv + (1+v^2)dv^2$, prove that the angle between the parametric curves is

$$\tan^{-1} \frac{\left(1+u^2+v^2\right)^{\frac{1}{2}}}{uv}.$$
 4

(b) Find the area enclosed by the parametric curves on a surface $r = (u \cos v, u \sin v, 4u)$ for u = 2 to u = 3and v = 0 to $v = \frac{\pi}{6}$.

