BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)
MATHEMATICS (HONOURS)
Differential Geometry
Paper : 6.5(b)
Time : Two hours
(Symbols/Notation have their usual meaning)
Answer any five questions.

1. (a) Define equivalent paths. Prove that path equivalency is an equivalence relation.
(b) Check whether the paths defined by $\vec{r}=\left(u, \sin u, e^{u}\right),-\infty<u<\infty$ and $\vec{r}=(\log v, \sin (\log v), v)$, $0<\nu<\infty$ are equivalent or not.
(c) Prove that $(\vec{a} \times \vec{b}) \cdot\{(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})\}=(\vec{a} \cdot(\vec{b} \times \vec{c}))^{2} \cdot 3$
2. Establish Serret-Frenet formulae for a space curve with their geometrical significance.
3. (a) Show that $\frac{d \vec{r}}{d s} \cdot\left(\frac{d^{2} \vec{r}}{d s^{2}} \times \frac{d^{3} \vec{r}}{d s^{3}}\right)=\frac{\tau}{\rho^{2}}$, where τ is the torsion and ρ is radius of curvature of the space curve $\vec{r}=r(s)$.
(b) Prove that a plane curve is entirely determined by the function $\mathrm{k}=\mathrm{k}(\mathrm{s})$, apart from a rigid motion and the curve may be determined by quadrature.

6
4. (a) Define helix. Prove that for a helix the ratio of curvature and torsion is constant.

4
(b) Prove that for Bertrand mates the relation between curvature and torsion satisfy the relation $\mathrm{ak}+\mathrm{b} \tau=1$, where a, b are constants.
5. (a) Find the parametric curves on the surface $\vec{r}=(u \cos v, u \sin v, b v)$, b being a constant. Also identify the surface.

4
(b) For the space curve $x=3 \cos t, y=3 \sin t, z=4 t$, find unit tangent vector, principal normal vector, binormal vector, curvature and torsion. Also determine the nature of the curve.
6
6. (a) For a surface $\vec{r}=(c \sin u \cos v, c \sin u \sin v, c \cos u)$ c being a constant, find the first fundamental form, angle between the parametric curves and unit normal vector \vec{H}. 5
(b) Also find the value of $d \vec{r} \cdot d \vec{H}$ and explain its geometrical significance.
7. (a) If the first fundamental form of a surface is $\mathrm{ds}^{2}=\left(1+\mathrm{u}^{2}\right) \mathrm{du}^{2}+2 u v$ dudv $+\left(1+v^{2}\right) \mathrm{dv}^{2}$, prove that the angle between the parametric curves is

$$
\tan ^{-1} \frac{\left(1+u^{2}+v^{2}\right)^{1 / 2}}{u v}
$$

(b) Find the area enclosed by the parametric curves on a surface $r=(u \cos v, u \sin v, 4 u)$ for $\mathrm{u}=2$ to $\mathrm{u}=3$ and $\mathrm{v}=0$ to $v=\pi / 6$.

