- 8. Show that v(x,y) = sin x sin hy is harmonic. Find the conjugate harmonic of v. (i.e., find an analytic function f = u + iv).
- 9. (a) Prove that for the transformation $\omega = \sin z$ the parallel lines x = constants and y = constants on z-plane transforms into confocal hyperbolas and confocal ellipses respectively on ω -plane.
 - (b) Find the bilinear transformation that maps the points z=0, -i, 2i into the points $\omega = 5i$, ∞ , $-i/_{3}$ respectively. 3+2
- 10. (a) Prove that circles are invariant under the transformation $\omega = \frac{1}{z}$.
 - (b) Determine the image of |z-3|=5 under $\omega = \frac{1}{2}$. 3+2
- 11. If f(z) is a regular function, then show that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| f(z) \right|^2 = 4 \left| f'(z) \right|^2$$
 5

— X ——

Ex:MATH/H/32/6.4/86/2019

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)

MATHEMATICS (HONOURS)

Analysis - IV

Paper: 6.4

Time : Two hours

Full Marks : 50

Use a separate Answer-Script for each part.

PART - I (30 marks) Answer any *three* questions.

1. (a) Let
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$
= 0, $(x,y) = (0,0)$

Show that f is continuous at (0,0), all the directional derivatives exist at (0,0) but f is not differentiable at (0,0).

- (b) If $f : \mathbb{R}^n \to \mathbb{R}$ is such that the partial derivatives exist and are bounded in a nbd. of $\tilde{a} \in \mathbb{R}^n$ then show that f is continuous at \tilde{a} .
- 2. State and prove Implicit Function Theorem for two variables. 10

(Turn Over)

- 3. (a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\tilde{a} \in \mathbb{R}^n$ and g: $\mathbb{R}^m \to \mathbb{R}^p$ be differentiable at $\tilde{b} = f(\tilde{a}) \in \mathbb{R}^m$. Then prove that $h = g_{\circ}f : R^n \rightarrow R^p$ is differentiable at 7 $\tilde{a} \in \mathbb{R}^n$.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = (x^2, x^2+2y) and $g(x,y) = x + \cos y$. Calculate $h'(\tilde{a})$,

where
$$h = g_{\circ}f$$
 and $\tilde{a} = \left(1, -\frac{1}{2}\right)$.

(a) State and prove The Mean Value Theorem for a 4. function from R^n to R^m . 5

(b) Let

$$f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2} \quad (x, y) \neq (0, 0)$$
$$= 0 \qquad (x, y) = (0, 0)$$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$. State a sufficient condition for the equality of f_{xy} and f_{yx} at a point (a,b). 4 + 1

- 5. (a) Let $f:(\mathbb{R}^n \to \mathbb{R}^n)$ be continuous on $\overline{\mathbb{B}}$ where $B = B(\tilde{a}, r)$ and $\partial B = \overline{B} \setminus B$. Assume all the first order partial derivatives exist on B and $J_f(\tilde{x}) \neq 0 \quad \forall \tilde{x} \in B$. If $f(\tilde{x}) \neq f(\tilde{a}) \quad \forall \tilde{x} \in \partial B$ then show that $f(\tilde{a})$ is an interior point of f(B). 6
 - (b) Find the maxima and minima of the function

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20.$$
 4

PART - II (20 marks)

Answer any *four* questions.

- 6. (a) If $f(z) = \frac{z}{|z|}$ continuous at origin, which is defined for $z \neq 0$ and f(0) = 0? Justify.
 - (b) Define analytic function at a point z_0 , with an example. 3+2
- 7. Prove that if f(z) = u(x,y) + i v(x,y) is differentiable at z then at this point the first order partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$. Is the converse true? Justify.

4 + 1

(Turn Over)