8. Show that $\mathrm{v}(\mathrm{x}, \mathrm{y})=-\sin \mathrm{x} \sin$ hy is harmonic. Find the conjugate harmonic of v. (i.e., find an analytic function $f=u+i v$).
9. (a) Prove that for the transformation $\omega=\sin z$ the parallel lines $\mathrm{x}=$ constants and $\mathrm{y}=$ constants on z -plane transforms into confocal hyperbolas and confocal ellipses respectively on ω-plane.
(b) Find the bilinear transformation that maps the points $z=0,-i, 2 i$ into the points $\omega=5 i, \infty,-i / 3$ respectively.
$3+2$
10. (a) Prove that circles are invariant under the transformation $\omega=\frac{1}{z}$.
(b) Determine the image of $|z-3|=5$ under $\omega=\frac{1}{2} \cdot 3+2$
11. If $f(z)$ is a regular function, then show that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)
MATHEMATICS (HONOURS)
Analysis - IV
Paper: 6.4
Time : Two hours

Use a separate Answer-Script for each part.
PART - I (30 marks)
Answer any three questions.

1. (a) Let $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}},(x, y) \neq(0,0)$

$$
=0 \quad,(x, y)=(0,0)
$$

Show that f is continuous at $(0,0)$, all the directional derivatives exist at $(0,0)$ but f is not differentiable at $(0,0)$.
(b) If $\mathrm{f}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$ is such that the partial derivatives exist and are bounded in a nbd. of $\tilde{a} \in \mathrm{R}^{\mathrm{n}}$ then show that f is continuous at \tilde{a}.
2. State and prove Implicit Function Theorem for two variables.
3. (a) Let $\mathrm{f}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ be differentiable at $\tilde{a} \in \mathrm{R}^{\mathrm{n}}$ and $\mathrm{g}: \mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{p}}$ be differentiable at $\tilde{b}=f(\tilde{a}) \in R^{m}$. Then prove that $h=g_{o f}: R^{n} \rightarrow R^{p}$ is differentiable at $\tilde{a} \in R^{n}$.

7
(b) Let $f: R^{2} \rightarrow R^{2}$ and $g: R^{2} \rightarrow R$ be defined by $f(x, y)=$ $\left(\mathrm{x}^{2}, \mathrm{x}^{2}+2 \mathrm{y}\right)$ and $\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{x}+$ cosy. Calculate $\mathrm{h}^{\prime}(\tilde{a})$, where $\mathrm{h}=\mathrm{g}_{\mathrm{o}} \mathrm{f}$ and $\tilde{a}=\left(1,-\frac{1}{2}\right)$.
4. (a) State and prove The Mean Value Theorem for a function from R^{n} to R^{m}.

5
(b) Let

$$
\begin{aligned}
f(x, y) & =x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
& (x, y) \neq(0,0) \\
& =0 \quad(x, y)=(0,0)
\end{aligned}
$$

Show that $\mathrm{f}_{\mathrm{xy}}(0,0) \neq \mathrm{f}_{\mathrm{yx}}(0,0)$. State a sufficient condition for the equality of $f_{x y}$ and $f_{y x}$ at a point (a, b). $4+1$
5. (a) Let $f:\left(R^{n} \rightarrow R^{n}\right)$ be continuous on $\overline{\mathrm{B}}$ where $\mathrm{B}=\mathrm{B}(\tilde{a}, \mathrm{r})$ and $\partial B=\bar{B} \backslash B$. Assume all the first order partial derivatives exist on B and $J_{f}(\tilde{x}) \neq 0 \quad \forall \tilde{x} \in B$. If $f(\tilde{x}) \neq f(\tilde{a}) \forall \tilde{x} \in \partial B$ then show that $f(\tilde{a})$ is an interior point of $f(B)$.
(b) Find the maxima and minima of the function

$$
\begin{equation*}
f(x, y)=x^{3}+y^{3}-3 x-12 y+20 \tag{4}
\end{equation*}
$$

PART - II (20 marks)

Answer any four questions.
6. (a) If $f(z)=\frac{z}{|z|}$ continuous at origin, which is defined for $\mathrm{z} \neq 0$ and $\mathrm{f}(0)=0$? Justify.
(b) Define analytic function at a point z_{0}, with an example.
7. Prove that if $f(z)=u(x, y)+i v(x, y)$ is differentiable at z then at this point the first order partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
Is the converse true? Justify.

