Ex./FM/5.4/39/2019

13. Let f(x) be Riemann integrable, 2π periodic function and

$$f(x) \sim \sum_{n=\infty}^{\infty} c_n e^{inx}$$
. Then prove that

(i)
$$\lim_{N\to 0} \frac{1}{2\pi} \int_{\pi}^{\pi} |f(x) - S_N(f; x)|^2 dx = 0$$

(ii)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |C_n|^2$$
 3+2

14. Let $f: [-\pi, \pi] \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} Cos x, 0 \le x \le \pi \\ -Cos x, -\pi \le x \le 0 \end{cases}$$

obtain the Fourier series for the function f(x). Hence find the sum of the series

$$\frac{2}{13} - \frac{6}{57} + \dots$$

what is the value of the Fourier series at x = 0? $2^{1}/_{2} + 1^{1}/_{2} + 1$

BACHELOR OF SCIENCE EXAMINATION, 2019 (3rd Year, 1st Semester) MATHEMATICS (HONOURS)

Analysis - III

Paper - 5.4

Time: Two hours Full Marks: 50

Symbols/Notations have their usual meaning.

PART - I (25 marks)

Answer any *five* questions.

1. Let X denote the set of all sequences of real numbers. Define $d: X \times X \to R$ by

$$d(\tilde{x}, \tilde{y}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\left| x_n - y_n \right|}{1 + \left| x_n - y_n \right|}$$

for all $\tilde{x} = \{x_n\}$ and $\tilde{y} = \{y_n\}$ in X. Show that d is a metric on X.

- (a) Define distance between two sets and diameter of a set in a metric space (X,d).
 - (b) Prove that dist (x, A) = 0 if and only if $x \in \overline{A}$. 2+3
- 3. (a) Define nowhere dense subset in a metric space. Give an example of it.

(Turn over)

- (b) Prove that in a metric space (X,d), a subset A of X is nowhere dense iff every non empty open set U in X contains a non empty open set V such that $V \cap A = \emptyset$. 2+3
- 4. State and prove Baire's Category theorem. 5
- 5. Show that a mapping $f:(X,d) \to (Y,\rho)$ is continuous on X if and only if $\overline{f}^{1}(G)$ is open in X, for all open subset G of Y. 5
- 6. State Banach contraction principle theorem. Let $X = \{x \text{ is real } : x \ge 1\}$ and let a mapping $T : X \to X$ be defined by $T(x) = \frac{1}{2}x + \frac{1}{x}$, $\forall x \in X$.

Then show that T is a contraction mapping and find the unique fixed point of T in X, with respect to usual metric. 2+3

7. Prove that every closed interval of reals is a compact set. 5

PART - II (25 marks) Answer any *five* questions.

8. Let $EC\mathbb{R}$. Show that a sequence of functions $\{f_n(x)\}$; $f_n : E \to \mathbb{R}$ is uniformly convergent on E if and only if for every $\epsilon > 0$, \exists a positive integer 'p' such that $|f_n(x) - f_m(x)| < \epsilon$, \forall $x \in E$ and \forall $m, n \ge p$.

9. Let a series of functions $\sum_{k=1}^{\infty} U_k(x)$ converge uniformly to a sum function f(x) in [a,b] and each $U_k(x)$ is continuous in [a,b]. For each $x \in [a,b]$ define

$$g_n(x) = \sum_{k=1}^n \int_a^x U_k(t) dt$$

Show that $g_n(x)$ converges iniformly to g(x) in [a,b]. 5

- 10. Prove that a power series $\sum an x^n$ with radius of convergence ' ρ ', converges absolutely and uniformly on $[a,b] \subset (-\rho,\rho).5$
- 11. (a) Let $\{f_n\}$ be a sequence of continuous real-valued functions converging uniformly to 'f' on a set $E(C\mathbb{R})$. If $x_n \to x$ then show that

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

(b) Examine uniform convergence of the following infinite series:

$$\sum_{n=1}^{\infty} \frac{2^n \ x^{2n-1}}{1+x^{2n}}$$

12. Let 'f' be a bounded improper integrable function on $[0,2\pi]$ and let 'a' be a point of Lipschitz continuity of f. Then show that the Fourier series of 'f' is convergent at x = a with sum f(a). State the sumfunction at a point of discontinuity. 4+1