13. Define unique factorization domain (UFD). Note that $5=(2+\mathrm{i})(2-\mathrm{i})=(1+2 \mathrm{i})(1-2 \mathrm{i}) \in \mathbb{Z}[\mathrm{i}]$. Does this contradicts that $\mathbb{Z}[i]$ is a UFD ? Justify your answer, Hence conclude that 5 is not prime in $\mathbb{Z}[i]$. $2+2+1$
14. (i) Let $f(x)=x^{3}+x^{2}+x+1$ and $g(x)=x^{3}+1$ be two polynomials in $\mathrm{Q}[\mathrm{x}]$. Find $\operatorname{gcd}(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}))$ and $\operatorname{lcm}(f(x), g(x))$.
(ii) Show that the polynomial $\mathrm{x}^{3}+8 \mathrm{ix}^{2}-6 \mathrm{x}-1+3 \mathrm{i}$ is irreducible in $(\mathbb{Z}[\mathrm{i}])[\mathrm{x}]$. $2+3$

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)
MATHEMATICS (HONOURS)
Algebra - IV
Paper: 6.3
Time : Two hours

Use a separate Answer-Script for each part.
PART - I (25 marks)
Answer any five questions.

1. Define the group of automorphisms of a group G. Find the group of automorphisms of a finite cyclic group of order n .
2. Show that in a group G of order 49 , any normal subgroup of order 7 must lie in the center of G.
3. Let G be a finite group and $\mathrm{T}: \mathrm{G} \rightarrow \mathrm{G}$ be a fixed point free automorphism $\left(T(x)=x \Rightarrow x=e_{G}\right)$. Show that if T^{2} is the identity map on G , then G is abelian.
4. Define the conjugacy relation and conjugacy classes $C_{x}(x \in G)$ of a finite group G. Prove that the number of elements of C_{x} is same as the index of the normalizer of x in G.
5. Let G be a finite group of order n and p be a prime number such that p^{m} divides n , where m is a natural number. Then show that G has a subgroup of order p^{m}.

5
6. Define elementary divisors of a finite abelian group. Find all elementary divisors of the group $\mathbb{Z}_{20} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{50}$, where \mathbb{Z}_{n} denotes the group of integers moduls n. 5
7. Let G be an abelian group. Prove that G has a finite basis if and only if G is isomorphic to a direct sum of finite copies of the group of integers.

PART - II (25 marks)

Answer any five questions.
8. Let R be a commutative ring with identity and N be the set of all nilpotent elements of R . Show that N is an ideal of R and the quotient ring R / N has no non zero nilpotent elements. Is commutativity of R essential ? Justify your answer.
$2+2+1$
9. Let R and R^{1} be two commutative rings with identity $\left.\right|_{R}$ and $\left.\right|_{R} 1$ respectively. If $f: R \rightarrow R^{1}$ be a non zero ring
homomorphism and R^{1} is an integral domain then show that $f\left(\left.\right|_{R}\right)=\left.\right|_{R^{1}}$. Give an example to show that the above result does not hold if R^{1} has divisor of zero. $3+2$
10. (i) Show that a polynomial in $\mathbb{Z}_{2}[x]$ has a factor ($x-[1]$) if and only if it has even number of non zero coefficients.
(ii) Let F be a field. Is $\mathrm{F}[\mathrm{x}]$ a field ? Justify your answer.
(iii) What is the quotient field of a finite integral domain?
$2+2+1$
11. (a) Define maximal ideal and prime ideal of a commutative ring with identity.
(b) Let R be a commutative ring with identity such that for every $\mathrm{x}(\in \mathrm{R})$ satisfies $\mathrm{x}^{\mathrm{n}}=\mathrm{x}$ for some $\mathrm{n}>1$. Show that every prime ideal of R is a maximal ideal of R. $2+3$
12. (a) Give an example to show that in a Euchidean Domain (ED), the quotient and remainder are not unique.
(b) Define Principal Ideal Domain (PID). Let R be a PID and P be a prime ideal of R. Is R/P a PID ? Justify your answer.
$2+(1+2)$

