BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 1st Semester)

MATHEMATICS (Honours)

Paper - 5.1

(Numerical Methods)

Full Marks: 50

Time: Two Hours

The figures in the margin indicate full marks
Use a separate Answer script for each part
(Symbols have their usual meaning)
(Part - I)

(Part – I) (30 Marks)

Answer any THREE questions from the following:

- 1. (a) State and prove sufficient condition of convergence of fixed-point iteration method and hence show that the root obtained is unique.
 - (b) Find the rate of convergence of the iteration scheme

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, \quad n = 0,1,2,\dots$$

(c) Determine the values of a, b, c such that the formula

$$\int_{0}^{h} f(x)dx = h[af(0) + bf\left(\frac{4h}{3}\right) + cf(h)]$$

is exact for polynomial of as high order as possible.

[(3+2)+2+3]

- 2. (a) Derive Hermite's interpolation formula.
 - (b) Prove that $\mu\delta \equiv \frac{\nabla + \Delta}{2}$.
 - (c) Determine the step size h and the number of points n to be used in the tabulation of $f(x) = \cos x$ in the interval [1, 2] so that the error in quadratic interpolation will be less than or equal to 5×10^{-6} .
- 3. (a) Establish Newton-Cotes' quadrature formula to evaluate $\int_a^b f(x)dx$ and hence derive Simpson's 1/3 rule.

(b) If
$$\alpha$$
, β are the roots of $x^2 + ax + b = 0$, show that the iteration $x_{n+1} = -\left(\frac{ax_n^{1} + b}{x_n}\right)$ will converge to α when $|\alpha| > |\beta|$. [(4+3)+3]

4. (a) From the following table

х	-1	1	2	3	4	5	7
f(x)	1	I	16	81	256	625	2401

find the value of f'(3) using Richardson's extrapolation.

- (b) Compute the relative error in computing $y = x^3 + 3x^2 x$ for $x = \sqrt{2}$, taking $\sqrt{2} = 1.414$
- (c) Distinguish between round-off and chopping errors with an example. [5+3+2]

Use a separate Answer script for each Group

Part II

(20 Marks)

Answer any TWO questions

Symbols and notations have their usual meaning

All questions are of equal marks

- 5. Describe Gauss Jacobi's method of solving a system of linear algebraic equations and prove its convergence. (10)
- 6. Obtain a quadratic polynomial approximation of the function $f(x) = x^3 + 5$ in [0, 1] using least square approximation. (10)
- 7. Apply Modified Euler method to solve the following differential equation to find y(0.1) correct up to two decimal places taking h = .05.

$$\frac{dy}{dx} = 5xy, \ 0 < x < 1, \ y(0) = 1. \tag{10}$$