BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 1st Semester)
MATHEMATICS (Honours)

Paper - 5.5B

Number Theory
Time : Two hours

Symbols have usual meanings, if not mentioned otherwise.
Answer Q. No. 1 and any four from the rest.

1. (a) Prove that $(a, b)=(b, a)=(a,-b)=(a, b+a x)$ where x is an arbitrary integer.
(b) Prove that $42 \mid n^{7}-n$ for any integer n.
(c) Reduce the congruence $\mathrm{x}^{15}-\mathrm{x}^{10}+4 \mathrm{x}-3 \equiv 0 \bmod$ 7 to an equivalent congruence having degree without exceeding 6.
2. (a) Given integers a, b, and $m>0$, prove that the congruence $\mathrm{ax} \equiv \mathrm{b} \bmod \mathrm{m}$ has a solution if and only if $g \mid b$ where $g=(a, m)$. If this condition is met, then the solutions form an arithmetic progression with common difference form an arithmetic progression with common difference m / g, giving g solutions.
(b) Find the values of x for which both $\mathrm{x} \equiv 29 \bmod 52$ and $x \equiv 19 \bmod 72$ simultaneously hold. Justify your answer.
$6+4=10$
3. State Hensel's lemma. Using this lemma, solve the congruence $\mathrm{x}^{2}+5 \mathrm{x}+24 \equiv 0 \bmod 36 . \quad 2+8=10$
4. (a) Given a polynomial $f(x)$ with integer coefficients and a prime number p, prove that the congruence $\mathrm{f}(\mathrm{x}) \equiv 0 \bmod \mathrm{p}$ has at most n solutions, where n is the degree of the congruence.
(b) If $\mathrm{d} \mid(\mathrm{p}-1)$ for a prime number p , then prove that $x^{d} \equiv 1 \bmod p$ has exactly d solutions. $\quad 6+4=10$
5. Let $\mathrm{m}=1,2,4, \mathrm{p}^{\alpha}$, or $2 \mathrm{p}^{\alpha}$ where p is an odd prime. If $(\mathrm{a}, \mathrm{m})=1$ then prove that the congruence $\mathrm{x}^{\mathrm{n}} \equiv \mathrm{a} \bmod$ m has $(\mathrm{n}, \phi(\mathrm{m})$) solutions or no solution according as

$$
\alpha^{\phi(m) /(n, \phi(m))} \equiv 1 \bmod m
$$

or not. Hence determine the number of solutions of the congruence $\mathrm{x}^{4} \equiv 61 \bmod 117 . \quad 5+5=10$
6. (a) Given (a, p) $=1$ for an arbitrary odd prime p, consider a, $2 \mathrm{a}, 3 \mathrm{a}, \ldots,\{(\mathrm{p}-1) / 2\} \mathrm{a}$ and their least positive residues modulo p. If n denotes the number of these residues which exceed $p / 2$, then prove that
(3)

$$
\left(\frac{a}{q}\right)=(-1)^{n}
$$

(b) Show that 3 is a quadratic residue of 13 , but a quadratic nonresidue of 7 .
7. If P and Q are odd and positive such that $(\mathrm{P}, \mathrm{Q})=1$, then prove that

$$
\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{\{(P-1) / 2\}\{(Q-1) / 2\}}
$$

Decide whether the congruence $\mathrm{x}^{4} \equiv 25 \bmod 1013$ is solvable, given 1013 is prime.
$5+5=10$

