(ii) Show that $\rho=\frac{\left(k^{1}\right)^{2}}{h}+h$

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)

MATHEMATICS (HONOURS)
Mechanics - IV
Paper: 6.5(a)
Time : Two hours

The figures in the margin indicate full marks. Notations and Symbols have their usual meaning.

1. Answer any five questions : $8 \times 5=40$
(a) A fine uniform circular tube is held in a vertical plane and contains two liquids of densities ρ and $\rho^{1}\left(\rho>\rho^{1}\right)$ which subtend angles 2θ and $2 \theta^{1}$ at the centre. If the radius passing through the surface of separation makes an angle α with the vertical then show that

$$
\rho \sin \theta \sin (\theta+\alpha)=\rho^{1} \sin \theta^{1} \sin \left(\theta^{1}-\alpha\right)
$$

(b) ABC is a triangle immersed vertically in water with C in the surface and the sides AC, BC equally inclined to the surface. Prove that the vertical through C divides the triangle into two others, the thrusts on which are in the ratio

$$
b^{3}+3 a b^{2}: a^{3}+3 a^{2} b
$$

(c) A quadrilateral is immersed in water with two angular points in the surface and the other two at depths ' a ' and ' b '. If α and β are the depths below the surface of its centre of gravity and centre of pressure respectively, show that

$$
6 \alpha \beta+a b=3 \alpha(a+b)
$$

(d) A hemispherical bowl is filled with water and two vertical planes are drawn through its central radius, cutting off a semi-lune of the surface. If 2α be the angle between the planes, prove that the angle which the resultant pressure on the surface makes with the vertical is $\tan ^{-1}\left(\sin \alpha /{ }_{\alpha}\right)$.
(e) A heavy uniform rod of small cross-section can turn freely in a vertical plane about a hinge placed at a quarter of the length of the rod from one extremity and at a height one-eighth of the length above the surface of a liquid. If d_{1} and $d_{2}\left(>d_{1}\right)$ be the densities of the rod and the liquid, show that the rod rests at an inclination to the vertical equal to

$$
\cos ^{-1} \frac{1}{2} \sqrt{\frac{d_{2}}{9 d_{2}-8 d_{1}}}
$$

(f) A closed circular cylinder is just filled with water, and rotates about its axis which is vertical. If the total thrust on the bottom is n times that on the top, then
the angular velocity is $\frac{2}{d} \sqrt{\frac{g h}{n-1}}$, where h is the height and d is the radius of the cylinder.
(g) A hollowcone whose weight is half that of the water it can contain, floats in water in stable equilibrium with its axis vertical and vertex downwards. Prove that if α be the semi-vertical angle of the cone,

$$
\cos ^{6} \alpha<\frac{729}{1024}
$$

2. Answer any one question.
(a) (i) A given mass of liquid is in equilibrium under the action of a system of conservation forces. Write down the pressure equation at a point. Show that the surfaces of equi-pressure, equi-density and equi-density energy coincide.
(ii) If a given volume of liquid is at rest under forces whose components per unit mass are $y(a-z)$, $x(a-z), x y$, then show that the density will be proportional to $\frac{1}{x y(a-z)}$.
(b) (i) Show that the tangent plane at any point on the surface of buoyancy is parallel to the corresponding position of the plane of floatation.
