BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 2nd Semester)
MATHEMATICS (HONOURS)
Mathematical Modelling - II
Paper : 6.6(c)
Time : Two hours

The figures in the margin indicate full marks. (Notations/Symbols have their usual meaning)

Answer any five questions.

1. Consider the single species fishery model with harvesting as :
$\frac{d x}{d t}=r x\left(1-\frac{x}{k}\right)-h(t)$, and discuss the dynamic behaviour of the fish population described by the above model. What do you mean by biological over-exploitation? $8+2$
2. Explain the concepts of :
(i) Opportunity cost,
(ii) Externality,
(iii) Economic overfishing.
3. (a) What do you mean by interest and discount rates in resource management?
(b) Discuss the applicability of Cobb-Douglas production function in the fishery model of the
form $\frac{d x}{d t}=F(x)-h(t), t \geq 0$.
4. (a) Define the fundamental genetic matrices of crossing by two genotypes.
(b) State and prove Hardy-Weinberg law.
5. (a) Define and discuss Newton's laws of cooling.
(b) Water is heated to the boiling point temperature $100^{\circ} \mathrm{C}$. It is then removed from heat and kept in a room which is at constant temperature $60^{\circ} \mathrm{C}$. After 3 minutes, the temperature of the water is $90^{\circ} \mathrm{C}$. Find the temperature of water after 6 minutes. When will the temperature of water be $75^{\circ} \mathrm{C}$ and $61^{\circ} \mathrm{C}$? $4+6$
6. (a) Discuss the Richardson's model of two nations arms race.
(b) If the parameters of the Richardson's model are $\mathrm{k}=3$, $l=1, \alpha=4, \beta=2, g=6$ and $h=1$ then show that the defence levels of the two nations will be maintained at the armament level $(3,2)$.
7. (a) What do you mean by a free terminal-value problem in optimal control?
(b) Find the optimal control which gives an extreme value of the functional

$$
J=\int_{0}^{1} u^{2} d t
$$

where

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=u
\end{aligned}
$$

and $x_{1}(0)=1, x_{1}(1)=0, x_{2}(0)=1$ but $x_{2}(1)$ is free.

