(b) Define a quadratic form on a vector space V over a field F. Prove that every real inner product defines a quadratic form. Also prove that such a quadratic form is positive definite.
(c) Let A be an nxn matrix over $\mathrm{F}(=\mathbb{R}$ or $\mathbb{C})$ such that its columns are orthonormal with respect to the standard inner product of F^{n}. Prove that its rows are also orthonormal. Hence prove that $\mathrm{A}^{*} \mathrm{~A}=\mathrm{I}_{\mathrm{n}}$ implies that $\mathrm{AA}^{*}=\mathrm{I}_{\mathrm{n}}$.

$$
2+4+4
$$

7. (a) Let A and B be nxn matrices over a field F. Prove that if $I-A B$ is invertible then $I-B A$ is invertible and $(\mathrm{I}-\mathrm{BA})^{-1}=\mathrm{I}+\mathrm{B}(\mathrm{I}-\mathrm{AB})^{-1} \mathrm{~A}$. Hence or ohterwise prove that λ is an eigenvalue of $A B$ iff it is an eigenvalue of $B A$.
(b) Let V, W be two finite dimensional vector spaces over a field F and $\mathrm{T}_{1}: \mathrm{V} \rightarrow \mathrm{V}, \mathrm{T}_{2}: \mathrm{W} \rightarrow \mathrm{W}$ be two linear operators with minimal polynomials $x^{2}-5 x+6$ and $x^{3}-2 x^{2}+x-2$ respectively. Let $\mathrm{T}: \mathrm{V} \oplus \mathrm{W} \rightarrow \mathrm{V} \oplus \mathrm{W}$ be defined by $\mathrm{T}(v+\omega)=\mathrm{T}_{1}(v)+\mathrm{T}_{2}(\omega)$ for all $v \in \mathrm{~V}$, for all $\omega \in \mathrm{W}$. Prove that V and W are invariant under T . Also find the minimal polynomial of T .

BACHELOR OF SCIENCE EXAMINATION, 2019

(3rd Year, 1st Semester) MATHEMATICS (Honours)

```
Paper - 5.3
```

Algebra - III
Time : Two hours
Full Marks : 50

Answer Q.No. 1 and any four from the rest.

1. Answer any five questions :
$2 \times 5=10$
(a) Suppose A is a 3×3 real matrix which is not similar to a triangular matrix over \mathbb{R}. Then the degree of the minimal polynomial for A is of degree 3 - Justify.
(b) Suppose T is a diagonalizable linear operator on an n dimensional vector space V such that T has a cyclic vector. Then all the eigenvalues of T are distinct - Justify.
(c) Geometric multiplicity of the eigenvalue of a nonzero nilpotent operator T on an n -dimensional vector space V cannot be n - Justify.
(d) Suppose $<,>: \mathbb{R}^{2} \mathrm{x} \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $<\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)>:=3 \mathrm{x}_{1} \mathrm{y}_{1}+2 \mathrm{x}_{1} \mathrm{y}_{2}+4 \mathrm{x}_{2} \mathrm{y}_{1}+6 \mathrm{x}_{2} \mathrm{y}_{2}$. Which condition(s) for $<,>$ to be an inner product is (are) lacking?
(e) Let F be a field and m, n be two positive integers. Let T : $\mathrm{F}^{\mathrm{n}} \rightarrow \mathrm{F}^{\mathrm{m}}$ be a linear oeprator. If T is onto then $\mathrm{m} \geq \mathrm{n}$ implies $\mathrm{m}=\mathrm{n}$. - Justify.
(f) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2} \otimes$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integers. If A has eigenvalues then they are integers. - Justify.
(g) Determine the sign of the quadratic form
$q(x, y, z)=x^{2}+4 x y+4 y z+5 y^{2}+6 z^{2}$ on \mathbb{R}^{3}.
2. (a) State (proof is not required) three necessary and sufficient conditions for a linear operator on a finite dimensional vector space to be diagonalizable.
(b) Prove that a linear transformation is (i) $1-1$ iff it maps any linearly independent set to a linearly independent set, (ii) onto iff it maps any spanning set to a spanning set.
(c) Prove that two finite dimensional vector spaces over the same field are isomorphic iff they are of same dimension.
(d) Prove that every one dimensional T-invariant subspace (T is a linear transformation) is an eigenspace of T .

$$
2+5+2+1
$$

3. (a) Let $A \in M_{m \times n}(F)$ (F is a field and m, n are integers). Prove that there exists a linear transformation from F^{n} to F^{m} whose matrix with respect to the standard ordered bases is A .
(b) Let V be a vector space over a field F . What is the canonical mapping from V to $\mathrm{V}^{* *}$. Is it a linear transformation? Is it 1-1? Justify your answer.
(c) Trace of an $n x n$ square matrix over a field F is a linear functional on F^{n}. - Justify.
4. (a) There exist nonsimilar matrices having the same minimal polynomial $\mathrm{m}(\mathrm{x})$ and the same characteristic polynomial $\mathrm{f}(\mathrm{x})$. - Justify.
(b) If two 3×3 matrices over the same field have the same minimal polynomial $\mathrm{m}(\mathrm{x})$ and the same characteristic polynomial $\mathrm{f}(\mathrm{x})$ then they cannot be nonsimilar. - Justify.
(c) Find the matrix of the differentiation operator D on the vector space V of all real polynomials of degree less then or equal to 4 with respect to the canonical basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ Find also the Jordon form of D. $3+3+4$
5. (a) Give example of two nonsimilar 4×4 real matrices having two eigenvalues ± 1 over \mathbb{R} and four eigenvalues $\pm 1, \pm \mathrm{i}$ over \mathbb{C}.
(b) Suppose T is a linear operator on a finite dimensional vector space V over a field F. Suppose rank T^{2} and rank T are the same. Prove that $\operatorname{ImT} \cap \operatorname{Ker~} T=\{0\}$. $5+5$
6. (a) 0 and 1 are the only possible eigenvalues of an idempotent operator. Give an example to illustrate that the converse is not true.
