a) Let x = (x₁, x₂ ... x_n) be a random sample of size n drawn from a population with pdf/pmf f(x/θ). Let t₁(x) & t₂(x) be two statistics.

When do we say that $t_1(x)$ is more efficient than $t_2(x)$?

- b) If \underline{x} as above is a random sample from a population with mean μ , what condition must be imposed on the constants a_1, a_2, \dots, a_n so that $\sum_{i=1}^{n} a_i x_i$ is an unbiased
 - estimator for μ ?

4

10

- 5. a) What UMVUE?
 - b) State and prove Rao-Cramer Inequality. 3+7=10
- 6. In sampling from a Normal (μ, σ^2) population find the maximum likelihood estimates of μ and σ^2 . 10
- 7. State and prove NP lemma.

DACHELOR OF SCIENCE EXAMINATION, 2019	
(2nd Year, 1st Semester, Old)	
PAPER-7 STAT	
(INFERENCE – I)	
Time : Two hours	Full Marks : 50
The figures in the margin indicate full marks.	
(Symbols/Notations symbols have their usual meaning)	
At	tempt <i>any five</i> questions 5×10=50
1. a) Define an ur	nbiased estimator.
b) Prove that s population	ample mean is an unbiased estimator of the mean. State the assumptions you use in the
proof above	3+7=10
2. a) Define a suf	ficient estimator with an example.
b) State and pr	ove Neyman's Factorisation theorem.

DACHELOD OF SCIENCE EVANIMATION 2010

- 5+5=10
- 3. a) What is consistency?
 - b) Prove that if a population has finite variance, the sample mean is consistent. 3+7=10

[Turn over