Unit - 3 (15 marks)

Answer any three questions.
9. Apply the method of bisection to find the positive root of the equation $\mathrm{x}^{3}-\mathrm{x}-1=0$ correct upto two significant digits. 5
10. Find the positive root of the equation $3 x-\cos x-1=0$ by Newton-Raphson method correct upto three significant digits.
11. Solve the system of equations by Gauss elimination method:

$$
\begin{align*}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \tag{5}\\
& x+4 y+9 z=16
\end{align*}
$$

12. Solve the system of equations by Gauss-Jordan method :

$$
\begin{align*}
& 10 x+y+z=12 \\
& x+10 y+z=12 \tag{5}\\
& x+y+10 z=12
\end{align*}
$$

13. Use Simpson's one-third rule and Trapezoidal rule to evaluate $\int_{0}^{6} \frac{d x}{(1+x)^{2}}$, taking six equal sub-intervals, correct to three decimal places. 5

Inter B. Sc. Examination, 2019

(2nd year, 1st Semester)
GE-3 (Mathematics-II)

Mathematics-II

Time: Two hours
Full Marks : 50
(Notations/symbols have their usual meaning)

Unit - 1 (15 marks)

Answer any three questions.

1. a) Find $\bmod z$ and $\operatorname{amp} z$ (principal amplitude),

$$
\text { where } \mathrm{z}=1+\cos 2 \theta+\mathrm{i} \sin 2 \theta \frac{\pi}{2}<\theta<\pi
$$

b) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^{4}=10$.
2. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $\mathrm{t}^{4}+\mathrm{t}^{2}+1=0$ and n is a positive integer, then show that

$$
\begin{equation*}
\alpha^{2 n}+\beta^{2 n}+\gamma^{2 n}+\delta^{2 n}=4 \cos \left(\frac{2 n \pi}{3}\right) \tag{5}
\end{equation*}
$$

3. Solve the equation by Ferrari's method

$$
\begin{equation*}
x^{4}-10 x^{3}+35 x^{2}-50 x+24=0 \tag{5}
\end{equation*}
$$

4. a) The root 8 of the equation $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0(\mathrm{r} \neq 0)$ are α, β, γ. Find the equation where roots are

$$
\begin{equation*}
\alpha-\frac{\beta \gamma}{\alpha}, \beta-\frac{\gamma \alpha}{\beta}, \gamma-\frac{\alpha \beta}{\gamma} \tag{1}
\end{equation*}
$$

b) If $A=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$, show that $A^{2}-2 A+I_{2}=O_{2}$.

Hence find $A^{n}, n \in N$.
5. Find the eigenvalues and eigenvectos of the matrix

$$
A=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right)
$$

Unit - 2 (20 marks)

Answer anytwo questions.
6. a) By eliminating the arbitry constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=1$, form a PDE.
b) Form a PDE by eliminating the arbitrary function f from

$$
f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0 .
$$

c) Define with an exmaple the complete integral of a PDE.
d) Solve the PDE :

$$
\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z
$$

$$
2+3+2+3
$$

7. a) Solve: $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=e^{2 x-y}$.
b) By the method of separation of variables, solve the PDE:

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}
$$

satisfying $u(x, 0)=6 \mathrm{e}^{-3 \mathrm{x}}$
8. a) Solve the following ODE by reducing it to an exact differential equation:

$$
\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0
$$

b) Solve:

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=4 \mathrm{x}-2 \mathrm{y}, \frac{\mathrm{dy}}{\mathrm{dt}}=5 \mathrm{x}+2 \mathrm{y}
$$

[Turn over

