## Bachelor of Scienc Examination, 2019

(2nd Year, 1st Semester, Old Syllabus)

## Mathematics (Honours)

Differential Equation - II
Paper - 3.2
Time: Two hours
Full Marks: 50
Use a separate Answer-Script for each part

## PART - I

## ( 30 marks )

## Answer any three questions

1. a) Solve the following initial value problem using power series method:

$$
y^{\prime \prime}-x y=0
$$

where $y(1)=2$ and $y^{\prime}(1)=0$. Write first four non-zero terms of the series. Find the radius of convergence and the interval of convergence of the series.
b) Is it possible to find nontrivial solution of the first order ordinary differential equation $x^{2} y^{\prime}=y$, using power series method about $\mathrm{x}=0$ ? Justify your answer. 2
2. a) When can we apply Frobenius series method to find solution of an ordinary differential equation? Explain with example.
b) Find Frobenius series solution about $x=0$ of the differential equation

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

Write the solution in terms of elementary functions. 8
3. a) Prove that eigenfunctions of a regular Strum-Liouville problem defined as

$$
\begin{gathered}
{\left[p(x) \mathrm{v}^{\prime}(\mathrm{x})\right]^{\prime}+\mathrm{q}(\mathrm{x}) \mathrm{v}(\mathrm{x})+\lambda \mathrm{r}(\mathrm{x}) \mathrm{v}(\mathrm{x})=0, \mathrm{a}<\mathrm{x}<\mathrm{b}} \\
\alpha \mathrm{v}(\mathrm{a})+\beta \mathrm{v}^{\prime}(\mathrm{a})=0 \\
\gamma \mathrm{v}(\mathrm{~b})+\delta \mathrm{v}^{\prime}(\mathrm{b})=0,
\end{gathered}
$$

are real, where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and $p(x), q(x), r(x)$ are real functions. Also prove that eigenfunctions corresponding to two district eigenvalues are orthogonal with respect to the inner product

$$
\begin{equation*}
<\mathrm{u}, \mathrm{v}>_{\mathrm{r}}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{u}(\mathrm{x}) \mathrm{v}(\mathrm{x}) \mathrm{r}(\mathrm{x}) \mathrm{dx} \tag{6}
\end{equation*}
$$

b) Find the eigenvalues $\lambda_{n}$ and eigenfunctions $y_{n}(x)$ of the boundary value problem $y^{\prime \prime}+\lambda y=0,0<x<L$ together with boundary conditions $y(0)=y(L)$ and $y^{\prime}(0)=y^{\prime}(L)$.
b) State the convolution theorem for Laplace transform. Apply this theorem to evaluate

$$
\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{p}+1)\left(\mathrm{p}^{2}+1\right)}\right\} .
$$

8. a) Find $\mathrm{L}^{-1}\left\{\log \frac{\mathrm{p}^{2}+1}{\mathrm{p}(\mathrm{p}+1)}\right\}$.
b) Find $L\left\{t^{\alpha}\right\}$, where $t>0$ and $\alpha$ being any real number $>-1$. Hence find $L\left\{t^{-1 / 2}\right\}$.
c) Find the solution of the following initial value problem :

$$
\begin{align*}
& y^{\prime \prime}(\mathrm{t})+\mathrm{a}^{2} \mathrm{y}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \\
& \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=2
\end{align*}
$$

## PART - II

## ( 20 marks )

## Answer anytwo questions

6. a) State and prove the existence theorem of Laplace transform.
b) Solve the following simultaneous differential equations by the Laplace transform technique :

$$
\begin{aligned}
& (D-2) x+3 y=0 \\
& 2 x+(D-1) y=0
\end{aligned}
$$

where $\mathrm{D} \equiv \frac{\mathrm{d}}{\mathrm{dt}}$, x and y are both functions of t , and

$$
x(0)=8, y(0)=3
$$

7. a) If $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{p})$, then show that

$$
\int_{0}^{\infty} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}=\int_{0}^{\infty} \mathrm{F}(\mathrm{x}) \mathrm{dx} .
$$

Hence evaluate the integral

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{t}}-\mathrm{e}^{-3 \mathrm{t}}}{\mathrm{t}} \mathrm{dt} .
$$

4. a) Starting from the relation

$$
e^{\frac{1}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} \text {, prove that }
$$

$\cos (\mathrm{x} \cos \theta)=\mathrm{J}_{0}-2 \mathrm{~J}_{2} \cos 2 \theta+2 \mathrm{~J}_{4} \cos 4 \theta-\cdots$
$\sin (\mathrm{x} \cos \theta)=2 \mathrm{~J}_{1} \cos \theta-2 \mathrm{~J}_{3} \cos 3 \theta+\cdots$,
where $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is the Bessel function of first kind of order n .
b) Write first three terms of Bessel's function of first kind of order zero, $\mathrm{J}_{0}(\mathrm{x})$. Hence find a rough estimate of the first positive zero of it.
5. a) Prove that

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

where $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is the Legendre polynomial of degree n . 7
b) Find first three nonzero terms of the Fourier-Legendre series expansion of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
0, & -1<\mathrm{x}<0  \tag{3}\\
1, & 0 \leq \mathrm{x} \leq 1
\end{array}\right.
$$

