9. Derive Euler's equation for extreming the functional $I=[y(x)]=\int_{x_{0}}^{x_{1}} F(x, y, y 1) d x$ with boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$.

BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)
MATHEMATICS (HONOURS)
Differential Equations - III
Paper: 4.2
Time : Two hours

Symbols and Notations have their usual meanings. The figures in the margin indicate full marks.

PART - I (25 marks)

Answer any two questions from q.no. 1-3 and any one question from the rest.

1. (a) Define a second order semilinear and quasilinear PDE in two independent variables x and y. Write down their general forms, with one example, in each case.
(b) Form a PDE by eliminating the arbitrary constants a, b and c from $\mathrm{Z}=\mathrm{a}(\mathrm{x}+\mathrm{y})+\mathrm{b}(\mathrm{x}-\mathrm{y})+\mathrm{abt}+\mathrm{c}$.
(c) Solve the PDE

$$
\mathrm{r}-4 \mathrm{~s}+4 \mathrm{t}=\mathrm{e}^{2 \mathrm{x}+\mathrm{y}}
$$

$$
(2+2)+2+4
$$

2. (a) Define complete integral and singular integral of a PDE.
(b) Find the complete integral and singular integral of the PDE
$2 x z-p x^{2}-2 q x y+p q=0$
(c) Solve the PDE
$x_{1} p_{1}^{2}+x_{2} p_{2}^{2}-x_{3} p_{3}^{2}=0$
by Jacobi's method.
3. (a) Find the solution of a PDE of the form

$$
\mathrm{f}_{1}(\mathrm{x}, \mathrm{p})=\mathrm{f}_{2}(\mathrm{y}, \mathrm{q})
$$

Hence find the complete integral of the PDE

$$
\mathrm{p}^{2} \mathrm{q}^{2}+\mathrm{x}^{2} \mathrm{y}^{2}=\mathrm{x}^{2} \mathrm{q}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

(b) Solve the PDE

$$
\frac{y-z}{y z} p+\frac{z-x}{z x} q=\frac{x-y}{x y}
$$

4. (a) Classify the following PDEs :
(i) $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$.
(ii) $y u_{x x}+(x+y) u_{x y}+x u_{y y}=0$.
(b) Form a PDE by eliminating the arbitrary function f from

$$
\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)=0 \quad 2+3
$$

5. Solve the PDE: $\left(D+D^{\prime}\right)^{2} z=e^{x-y}$

PART - II (25 marks)
Answer q.no. 6 and any two from the rest.
6. (a) State Jacabi equation for determining the extremals of the functional $I[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{1}\right) d x$.
(b) Derive the transversality condition for the variational problem $I[y(x), Z(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y, z, y^{1}, z^{1}\right) d x$, $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}, \mathrm{y}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1}, \mathrm{z}\left(\mathrm{x}_{0}\right)=\mathrm{z}_{0}, \mathrm{z}\left(\mathrm{x}_{1}\right)=\mathrm{z}_{1}$, where the boundary point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ is fixed while the other boundary point ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) moves along the curves $y=\phi(x), z=\Psi(x)$.
$1+8$
7. Test for an extremum of the functional

$$
\begin{align*}
& I[y(x)]=\int_{\log \pi}^{\log a}\left(e^{-x} y^{1^{2}}-e^{x} y^{2}\right) d x \text { with } \\
& y(\log \pi)=y(\log a)=0, a>\pi \tag{8}
\end{align*}
$$

8. Find the curves on which the following functional attain extremum $I=\int_{-3}^{3} y^{1^{2}} d x, y(-3)=y(3)=1$, subject to the condition that the admissible curve cannot pass inside the area bounded by the circle $x^{2}+y^{2}=5$.
