BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)
MATHEMATICS (HONOURS)
Vector Calculus
Paper: 4.1
Time : Two hours
Symbols and Notations have their usual meanings.
Answer any five questions.

1. (a) If \bar{a} and \bar{b} be two non-collinear vectors such that $\overline{\mathrm{a}}=\overline{\mathrm{c}}+\overline{\mathrm{d}}$, where $\overline{\mathrm{c}}$ is parallel to $\overline{\mathrm{b}}$ and $\overline{\mathrm{d}}$ is perpendicular to \bar{b}. Obtain expressions for \bar{c} and \bar{d} in terms $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$.
(b) Show that

$$
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\left|\begin{array}{ll}
\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{a}} \cdot \overline{\mathrm{~d}} \\
\overline{\mathrm{~b}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{~b}} \cdot \overline{\mathrm{~d}}
\end{array}\right|
$$

(c) Prove that

$$
[\bar{p} \bar{q} \bar{r}][\bar{a} \bar{b} \bar{c}]=\left|\begin{array}{ccc}
\bar{p} \cdot \bar{a} & \bar{p} \cdot \bar{b} & \bar{p} \cdot \bar{c} \\
\bar{q} \cdot \bar{a} & \bar{q} \cdot \bar{b} & \bar{q} \cdot \bar{c} \\
\bar{r} \cdot \bar{a} & \bar{r} \cdot \bar{b} & \bar{r} \cdot \bar{c}
\end{array}\right| \quad 3+3+4
$$

(2)
2. (a) Prove that

$$
\bar{a} \cdot \bar{\nabla}\left(\bar{b} \cdot \bar{\nabla} \frac{1}{r}\right)=\frac{3(\bar{a} \cdot \bar{r})(\bar{b} \cdot \bar{r})}{r^{5}}-\frac{\bar{a} \cdot \bar{b}}{r^{3}}
$$

(b) Prove that the vector

$$
\bar{F}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+\left(3 x z^{2}+2\right) \hat{k}
$$

is irrotational. Find the scalar potential ϕ for \bar{F} such that $\bar{F}=\bar{\nabla} \phi$.
3. (a) Find the equations for tangent plane and normal line to the surface $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ at the point $(2,-1,5)$. 5
(b) If $u=3 x^{2} y$ and $v=x z^{2}-2 y$.

Evaluate $\bar{\nabla}(\bar{\nabla} u . \bar{\nabla} v)$.
4. Verify divergency theorem for $\bar{F}=2 x^{2} \hat{i}-y^{2} \hat{j}+4 x z \hat{k}$, taken over the region S in the first octant bounded by $\mathrm{y}^{2}+\mathrm{z}^{2}=9$ and $\mathrm{x}=0, \mathrm{x}=2$.
5. (a) State and prove Stoke's theorem.
(b) Show that Green's second identity can be written as
(3)
$\int_{v}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v=\int_{S}\left(\phi \frac{\partial \psi}{\partial \eta}-\psi \frac{\partial \phi}{\partial n}\right) d s$
6. (a) Show that under a rotation of rectangular axes the origin remaining the same, the vector differential operator $\bar{\nabla}$ remains invariant.
(b) Show that the necessary and sufficient condition that $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\omega(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be functionally related through the equation $\mathrm{F}(\mathrm{u}, \mathrm{v}, \omega)=0$, is $[\bar{\nabla} u \bar{\nabla} v \bar{\nabla} \omega]=0$.
7. (a) Show that the Frenet-Serret formulas can be written in the form $\frac{d \hat{t}}{d s}=\bar{\omega} \times \bar{z}, \frac{d \bar{n}}{d s}=\bar{\omega} \times \bar{n}, \frac{d \bar{b}}{d s}=\bar{\omega} \times \bar{b}$.

Also determine $\bar{\omega}$.
(b) If the n -th derivative of $\bar{r} \omega . r$. to S is given by $\bar{r}^{n}=a_{n} \bar{t}+b_{n} \bar{n}+c_{n} \bar{b}$

Establish the following
$a_{n+1}=a_{n}^{\prime}-k b_{n}, b_{n+1}=b_{n}^{\prime}+k a_{n}-\tau c_{n}$, $c_{n+1}=c_{n}^{\prime}+\tau b_{n}$.

