13. If $\phi(x)=f(x)+f(1-x), x \in[0,1]$ and $f^{\prime \prime}(x)<0$, for all $x \in[0,1]$. Show that $\varphi(x)$ is increasing on $\left[0, \frac{1}{2}\right]$ and decreasing on $\left[\frac{1}{2}, 1\right]$.

INTER BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 1st Semester)

MATHEMATICS (HONOURS)

Theory of Real Functions

Paper : CORE-5
Time : Two hours
Full Marks : 50
14. (a) If $f(x)=\tan x$, then show that

$$
f^{n}(0)-{ }^{n}{ }_{c_{2}} f^{n-2}(0)+{ }_{c_{4}} f^{n-4}(0)-\ldots . .=\sin n \pi / 2
$$

(b) If $\phi(x)$ is a polynomial in x and λ is a real number, then prove that \exists a root of $\phi^{\prime}(x)+\lambda \varphi(x)=0$, between any pair of roots of $\phi(x)=0 . \quad 2 \frac{1}{2}+2^{1 / 2}$

Answer any five questions.
Each question carry five marks

1. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be continuous on R and let $G=\{x \in R: f(x)>0\}, F=\{x \in R: f(x)=0\}$. Then show that G is open and F is closed in R.
2. Let $f, g: R \rightarrow R$ be continuous on R and D be a dense subset of R. If $f(x)=g(x) \forall x \in D$ then show that $f=g$ on R.
3. In the following either give an example of a continuous function f such that $f(S)=T$ or explain why there can be no such f
(i) $\mathrm{S}=(0,1), \mathrm{T}=[0,1]$;
(ii) $\mathrm{S}=(0,1), \mathrm{T}=(1,2) \mathrm{U}(2,3)$;
4. Prove that if a function $\mathrm{f}: \mathrm{S} \subset \mathrm{R} \rightarrow \mathrm{R}$ is uniformly continuous then for every pair of sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in S with $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$
we have $\lim _{\mathrm{n} \rightarrow \infty}\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{y}_{\mathrm{n}} \mathrm{n}\right)\right)=0$.
Hence show that $f: R \rightarrow R$ defined by $f(x)=x^{2}$, $\forall x \in R$ is not uniformly continuous on R.
5. Let D_{f} denote the set of discontinuities of a monotone increasing or decreasing function defined on an interval I. Show that f can't have discontinuities of the 2nd kind and D_{f} is countable.
6. Let $\mathrm{f}: \mathrm{K} \subset \mathrm{R} \rightarrow \mathrm{R}$ be a bijective continuous function. If K is compact then show that f^{-1} is also continuous.
7. Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ be continuous on $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{b})<0$. Prove that there exists a point $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}(\mathrm{c})=0$.

GROUP - B

Answer any five questions.
8. State Rolle's theorem. What is its geometrical interpretation? Discuss applicability of Rolle's theorem to the function $f(x)=\cos \frac{1}{x}$ in $[-1,1]$. 5
9. We have the Mean value theorem $f(x+h)=f(x)+h f^{\prime}$ $(x+\theta h)$, where $0<\theta<1$. Determine θ as a function of x and h where
(i) $f(x)=x^{2}$ and (ii) $f(x)=e^{x}$.
10. Evaluate
(i) $\lim _{x \rightarrow 0}\left(\frac{\operatorname{Sin} x}{x}\right)^{\frac{1}{x^{2}}}$
(ii) Find a and b such that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1 \tag{5}
\end{equation*}
$$

11. (a) Is mean value theorem applicable for the function

$$
f(x)=4-(6-x)^{2 / 3} \text { in }[5,7] .
$$

(b) Use mean value theorem of appropriate order to prove that $\operatorname{Sin} x>x-\frac{x^{3}}{3!}$.
12. Suppose $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ be a differential function. Let a $<\mathrm{c}<\mathrm{d}<\mathrm{b}$. If $\mathrm{f}^{\prime}(\mathrm{c})<0$ and $\mathrm{f}^{\prime}(\mathrm{d})>0$, then show that there exists a point $\xi \in(\mathrm{c}, \mathrm{d})$ such that $\mathrm{f}^{\prime}(\xi)=0 . \quad 5$

