Ex/UG/Sc./Core/Math/TH/10/2019

B. Sc. MATHEMATICS EXAMINATION, 2019

(2nd Year, 2nd Semester)

MATHEMATICS (HONOURS)

Core - 10

RING THEORY AND LINEAR ALGEBRA-II

Time : Two hours

Full Marks : 50

Use a separate Answer-Script for each part

(25 marks for each part)

PART - I

(Answer *any five* questions) 5×5=25

- 1. Let R be a commutative ring with identify. Show that $\frac{R[x]}{\langle x \rangle} \cong R$. Hence conclude that $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$ but $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$. 3+2
- Show that in an integral domain every prime element is irreducible. Is integral domain necessary in the above result? Justify your answer. 3+2
- Define Euclidean domain. Show that every Euclidean domain is a principal ideal domain.
 2+3
- 4. i) Let F be a field and $f(x), g(x) \in F[x]$ such that f(a) = g(a)for all $a \in F$. Is f(x) = g(x)? Justify your answer.

- ii) With proper justification given an example to show that subring of a principal ideal domain (PID) need not be a principal ideal domain (PID)
- iii) Is $\mathbb{Z}_n[x]$ a PID for every n? Justify your answer.

2+2+1

- 5. Define unique factorization domain (UFD). Let \mathbb{R} be a UFD and P be a prime ideal of \mathbb{R} . Is \mathbb{R} /P a UFD ? Justify your answer. 2+3
- 6. Let F be a field and f(x) ∈ F[x] such that degree of f(x) be 3. Show that f(x) is irreducible over F if and only if f(x) has no root in F. Does the above result hold for polynomials of degree more than 3 ? Justify your answer. 3+1
- 7. State Eisenstein criterion for irreducibility of a polynomial. Is Eisenstein criterion necessary for irreducibility of a polynomial ? Is the polynomial x³-3|23|2x+|23|23 irreducible in f[x]? Justify your answer. 2+2+1

PART - II

(Attempt question No. 1 and any three from the rest.)

- 1. State whether the following statement is true or false. $1 \times 7 = 7$
 - a) For any linear operator Ton a finite dimensional inner product space $(r, <\cdot, \cdot >)$, we have $(T^*)^* = T$
 - b) Every non-null finite dimensional inner product space has an orthogonal basis.
 - c) Every linear transformation is a linear
 - d) Every finite dimensional vector space V functional isomorphic to V^{**} , its doulde dual.
 - e) Every square matrix is similar to a Jordan Block matrix.
 - f) The Gram⁻ Schmidt orthogonalisation process allows us to construct an orthonormal set from an arbitrary set of vectors.
 - g) If a linear operator is diagnolisable, every generalised eigen vector must necessarily be an eigenvector.
- 2. Let M be a subspace of a finite dimensional vector space v(f). Let $\{x_1, x_2, \dots, x_n\}$ be a basis for v such that M = span $\{x_1, x_2, \dots, x_m\}m < n$ Let $M^o; \{f : v \to \Im \mid f(x) = O \forall x \in M \text{ and } f \text{ is linear}\}$ be the annihilator of M. Prove that,

 M^{O} = span { f_{m+1} , ..., f_{n} } where { f_{1} , ..., f_{n} } is the dual basis corresponding to the basis In other words, prove that

$$dim(v) = dim(M) + dim(M^{O}) = dim(v'),$$

where v' is the dual of r(f).

6

3. a)
$$\begin{bmatrix} 3 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$$

b)
$$\begin{bmatrix} -7 & 8 & 2 \\ -4 & 5 & 1 \\ -23 & +21 & 7 \end{bmatrix}$$

For both of the above matrices, find the Jordan form. Is the Jordan form of these matrices unique?

In each of the above cases, if A is the given matrix and J is its Jordan matrix, find an invertible matrix P such that

$$P^{-1} AP = J$$

4. Fir each of the following vector spaces v, linear transformations T and vectors Z. Find an ordered basis for the T-cyclic subspace generated by the vector Z.

a)
$$V = P_3(\mathbb{R}), T(f(x) = f''(x), \forall f \in P_3(\mathbb{R}) = x^3.$$

$$Z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} 6$$

b)
$$V = M_{2 \times x}(\mathbb{R}), T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A, \forall A \in M_{2 \times 2}(\mathbb{R})$$
 6

5. Let r = and define <A, B> = true (B*.A) Prove that < . , .> is an inner product on and calculate ||A||, ||B|| and $M_{m \times n}(\mathfrak{I})$,

and
$$<$$
 A, B $>$ if A = $\begin{pmatrix} 1 & 2+i \\ 3 & i \end{pmatrix}$, B = $\begin{pmatrix} 1+i & 0 \\ i & -i \end{pmatrix}$

- 6. Let T be a linear operator on a finite dimensional inner product space. Suppose the characteristic polynimoal of T splits. Prove that three exists an orthonormal basis β of r such that the matrix [T]_β is upper triangular.
- In each of the following, find the orthogonal projection of the vector u on the given subspace w of the inner product space r.
 - a) $r = \mathbb{R}^2$, u = (2,6), $W = \{(x,y) | y = 4\infty\}$
 - b) $r = P(\mathbb{R})$ with the inner product

$$\langle f,g \rangle = \int_{0}^{l} f(t) g(t) dt.$$

u(t)=4+3t-2t² andW = P₁(\mathbb{R}).