B. Sc. Mathematics Examination, 2019

(2nd Year, 2nd Semester)

Mathematics (Honours)

Core-10

Ring Theory and Linear Algebra-II

Time: Two hours
Full Marks : 50
Use a separate Answer-Script for each part
(25 marks for each part)
PART - I
(Answer any five questions) $\quad 5 \times 5=25$

1. Let R be a commutative ring with identify. Show that $\mathrm{R}[\mathrm{x}] /\langle\mathrm{x}\rangle \cong \mathrm{R}$. Hence conclude that $\langle\mathrm{x}\rangle$ is a prime ideal of $\mathbb{Z}[x]$ but $\langle x\rangle$ is not a maximal ideal of $\mathbb{Z}[x]$. $3+2$
2. Show that in an integral domain every prime element is irreducible. Is integral domain necessary in the above result? Justify your answer.
3. Define Euclidean domain. Show that every Euclidean domain is a principal ideal domain.$2+3$
4. i) Let F be a field and $f(x), g(x) \in F[x]$ such that $f(a)=g(a)$ for all $\mathrm{a} \in \mathrm{F}$. Is $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$? Justify your answer.
ii) With proper justification given an example to show that subring of a principal ideal domain (PID) need not be a principal ideal domain (PID)
iii) Is $\mathbb{Z}_{\mathrm{n}}[\mathrm{x}]$ a PID for every n ? Justify your answer.

$$
2+2+1
$$

5. Define unique factorization domain (UFD). Let \mathbb{R} be a UFD and P be a prime ideal of \mathbb{R}. Is \mathbb{R} / P a UFD ? Justify your answer. $2+3$
6. Let F be a field and $f(x) \in F[x]$ such that degree of $f(x)$ be 3 . Show that $\mathrm{f}(\mathrm{x})$ is irreducible over F if and only if $\mathrm{f}(\mathrm{x})$ has no root in F. Does the above result hold for polynomials of degree more than 3 ? Justify your answer.

3+1
7. State Eisenstein criterion for irreducibility of a polynomial. Is Eisenstein criterion necessary for irreducibility of a polynomial? Is the polynomial $x^{3}-3|23| 2 x+|23| 23$ irreducible in $\mathrm{f}[\mathrm{x}]$? Justify your answer. $\quad 2+2+1$

PART - II

(Attempt question No. \boldsymbol{I} and any three from the rest.)

1. State whether the following statement is true or false. $1 \times 7=7$
a) For any linear operator Ton a finite dimensional inner product space $(\mathrm{r},<\cdot, \cdot>)$, we have $\left(\mathrm{T}^{*}\right)^{*}=\mathrm{T}$
b) Every non-null finite dimensional inner product space has an orthogonal basis.
c) Every linear transformation is a linear
d) Every finite dimensional vector space V functional isomorphic to $\mathrm{V}^{* *}$, its doulde dual.
e) Every square matrix is similar to a Jordan Block matrix.
f) The Gram^{-}Schmidt orthogonalisation process allows us to construct an orthonormal set from an arbitrary set of vectors.
g) If a linear operator is diagnolisable, every generalised eigen vector must necessarily be an eigenvector.
2. Let M be a subspace of a finite dimensional vector space $\mathrm{v}(\mathrm{f})$. Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right\}$ be a basis for v such that $\mathrm{M}=$ span $\left\{{\underset{\sim}{x}}_{1},{\underset{\sim}{x}}_{2}, \cdots,{\underset{\sim}{x}}_{m}\right\} \mathrm{m}<\mathrm{n} \quad$ Let $M^{0} ;\{f: v \rightarrow \mathfrak{I} \mid f(\underset{\sim}{x})=O \forall \underset{\sim}{x} \varepsilon M$ and f is linear $\}$ be the annihilator ofM. Prove that,
$M^{O}=\operatorname{span}\left\{\mathrm{f}_{\mathrm{m}+1}, \ldots, \mathrm{f}_{\mathrm{n}}\right.$) where $\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}\right\}$ is the dual basis corresponding to the basis In other words, prove that

$$
\operatorname{dim}(\mathrm{v})=\operatorname{dim}(\mathrm{M})+\operatorname{dim}\left(\mathrm{M}^{\mathrm{O}}\right)=\operatorname{dim}\left(\mathrm{v}^{\prime}\right)
$$

where v^{\prime} is the dual of $\mathrm{r}(\mathrm{f})$.
6
3. a) $\left[\begin{array}{ccc}3 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}-7 & 8 & 2 \\ -4 & 5 & 1 \\ -23 & +21 & 7\end{array}\right]$

For both of the above matrices, find the Jordan form. Is the Jordan form of these matrices unique?

In each of the above cases, if A is the given matrix and J is its Jordan matrix, find an invertible matrix P such that

$$
\begin{equation*}
\mathrm{P}^{-1} \mathrm{AP}=\mathrm{J} \tag{6}
\end{equation*}
$$

4. Fir each of the following vector spaces v, linear transformations T and vectors Z . Find an ordered basis for the T-cyclic subspace generated by the vector Z.
a) $\mathrm{V}=\mathrm{P}_{3}(\mathbb{R}), \mathrm{T}\left(\mathrm{f}(\mathrm{x})=\mathrm{f}^{\prime \prime}(\mathrm{x}), \quad \forall \mathrm{f} \varepsilon \mathrm{P}_{3}(\mathbb{R}) \mathrm{z}=\mathrm{x}^{3}\right.$.

$$
Z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) 6
$$

b) $V=M_{2 \times x}(\mathbb{R}), T(A)=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) \mathrm{A}, \forall A \varepsilon \mathrm{M}_{2 \times 2}(\mathbb{R})$ 6
5. Let $\mathrm{r}=$ and define $<\mathrm{A}, \mathrm{B}>=$ true $\left(\mathrm{B}^{*} . \mathrm{A}\right)$ Prove that $<$.,. $>$ is an inner product on and calculate $\|A\|,\|B\|$ and $M_{m \times n}(\mathfrak{J})$, and $<\mathrm{A}, \mathrm{B}>$ if $\mathrm{A}=\left(\begin{array}{cc}1 & 2+\mathrm{i} \\ 3 & \mathrm{i}\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}1+\mathrm{i} & 0 \\ \mathrm{i} & -\mathrm{i}\end{array}\right)$
6. Let T be a linear operator on a finite dimensional inner product space. Suppose the characteristic polynimoal of T splits. Prove that three exists an orthonormal basis β of r such that the matrix $[\mathrm{T}]_{\beta}$ is upper triangular.

6
7. In each of the following, find the orthogonal projection of the vector u on the given subspace w of the inner product space r.
a) $\mathrm{r}=\mathbb{R}^{2}, \mathrm{u}=(2,6), \mathrm{W}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=4 \infty\}$
b) $\mathrm{r}=\mathrm{P}(\mathbb{R})$ with the inner product

$$
\begin{aligned}
& <f, g>=\int_{0}^{1} f(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{u}(\mathrm{t})=4+3 \mathrm{t}-2 \mathrm{t}^{2} \text { andW }=\mathrm{P}_{1}(\mathbb{R})
\end{aligned}
$$

