11. Find the radius of convergence of following power series :
i) $\quad \sum_{n=1}^{\infty} n^{3} x^{3}$
ii) $\quad \sum_{n=0}^{\infty} \frac{2^{n}}{n^{2}} x^{n}$.
12. Let $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}},-1<\mathrm{x}<1$. If $\sum_{\mathrm{n}=0}^{\infty} \mathrm{c}_{\mathrm{n}}$ is convergent then show that $\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} c_{n}$. Give an example to show that $\lim _{x \rightarrow 1} f(x)$ may not exist if $\sum_{n=0}^{\infty} C_{n}$ is not convergent.
13. i) Find the Fourier series of the function $f(x)=\cos x+\sin 2 x$ in $[-\pi, \pi]$.
ii) Give an example of a function f for which the Fourier series at a point may fail to coincide with the functional value at that point.
14. Use the Fourier series for $f(x)=|x|$ in $[-\pi, \pi]$ to find the sum of

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots
$$

B.Sc. Mathematics Examination, 2019

(2nd Year, 2nd Semester)

Mathematics (Honours)

Core - 8

Riemann Integration \& Series of Functions

Time : Two hours
Full Marks : 50

PART - I

Symbols / Notations have their usual meanings.

(Answer any four questions)

1. Why do you assume that a function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ is bounded for its Riemann integrability on $[\mathrm{a}, \mathrm{b}]$? If $\mathrm{P}_{1}, \mathrm{P}_{2}$ are any two partitions of $[a, b]$, then show that

$$
\begin{equation*}
\mathrm{S}_{*}\left(\mathrm{f}, \mathrm{P}_{1}\right) \leq \mathrm{S}^{*}\left(\mathrm{f}, \mathrm{P}_{2}\right) . \tag{5}
\end{equation*}
$$

2. Suppose a function f be bounded and integrable on $[\mathrm{a}, \mathrm{b}]$, then prove that the function F defined as $F(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b$, is continuous on $[a, b]$. Further if f is continuous at any print c in $[\mathrm{a}, \mathrm{b}$], then prove that F is derivable at C and $\mathrm{F}^{\prime}(\mathrm{c})=\mathrm{f}(\mathrm{c})$.
3. What is an improper integral? Test the convergence of
i) $\int_{0}^{1} x^{n-1} \log x d x$
ii) $\int_{0}^{1} \mathrm{x}^{-3 / 2} \operatorname{Sin} \frac{1}{\mathrm{x}} \mathrm{dx}$
4. If f be bounded and Riemann Integrable in $[\mathrm{a}, \mathrm{b}]$, then prove that $|\mathrm{f}|$ is also bounded and Riemann integrable in $[\mathrm{a}, \mathrm{b}]$ and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

Is the converse of the above statement true? Justify your answer.
5. Prove that $B(m, n)=\frac{\sqrt{(m)} \cdot \sqrt{(n)}}{\Gamma(m+n)}, m>0, n>0$ and hence evaluate $\sqrt{\left(\frac{1}{2}\right)}$.
6. If the function $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{n}}$, $\mathrm{a}^{\mathrm{n}+1}<\mathrm{x} \leq \mathrm{a}^{\mathrm{n}}$, for $\mathrm{n}=0,1,2, \ldots$ and $\mathrm{f}(0)=0$,
where $0<\mathrm{a}<1$
Is f Riemann integrable on $[0,1]$?

PART - II

(Answer any six questions)
(Each question carry five marks)
$5 \times 6=30$
7. Let $\left\{f_{n}\right\}$ be a sequence of functions, continuous on a compact set E such that $f_{n} \rightarrow f$ pointwise on E. If $f_{n}(x) \geq f_{n+1}(x)$ for $n=1,2, \ldots$ and for every $x \in E$ then show that $f_{n} \rightarrow f$ uniformly.
8. State Weierstrass's M-test for the uniform convergence of series of functions and use it to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}$ is uniforly convergent.
9. Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ be a continuous function such that

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{x}^{\mathrm{n}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=0, \quad \forall \mathrm{n}=0,1,2,3 \cdots
$$

Then show that $\mathrm{f}=0$.
10. Let $\left\{f_{n}\right\}$ be a sequence of functions on $[0, \infty)$ defined as follows:

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{1}{\mathrm{n}} \exp ^{-\mathrm{nx}}
$$

Then show that $\left\{f_{n}\right\}$ converges uniformly on $[0, \infty)$.

