Bachelor of Science Examination, 2019

(2nd Year, 2nd Semester)

Mathematics (Honours)

Paper : Core - 9 Multivariate Calculus

Time : Two hours
Full Marks : 50
The figures in the margin indicate full marks.
(Symbols / Notations have their usual meanings)
Use a separate Answer-Script for each part

PART - I

(25 Marks)

(Answer anyfive questions)

1. Show that the limit of the function $f(x, y)$ exists at the origin, but the repeated limits do not exist, where

$$
f(x, y)=\left\{\begin{array}{lll}
x \sin \frac{1}{y}+y \sin \frac{1}{x}, & \text { for } & (x, y) \neq(0,0) \\
0 & \text { for } & (x, y)=(0,0)
\end{array}\right.
$$

2. Show that the function
$f(x, y)=\left\{\begin{array}{ccc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { when } \quad(x, y) \neq(0,0) \\ 0 & \text { when } \quad(x, y)=(0,0)\end{array}\right.$
is continuous at $(0,0)$.
3. If the function $f(x, y)$ is differentiable at (a, b), then show that both the partial derivatives f_{x} and f_{y} exist at (a, b). Further show that the total differential of the function $f(x, y)$ is given by

$$
\begin{equation*}
\mathrm{df}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \mathrm{dy} . \tag{5}
\end{equation*}
$$

4. Given that $f^{\prime}(x)=\frac{1}{1+x^{2}}$ and $f(0)=0$. By the help of Jacobian, show that

$$
\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})=\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{y}}{1-\mathrm{xy}}\right)
$$

5. Using Lagrange's multiplier method, show that the largest rectangle with a given perimeter is a square. 5
6. If $\vec{a}, \vec{b}, \vec{c}$ be any three non-coplanar vectors, then show that any vector $\overrightarrow{\mathrm{r}}$ can be expressed as
the transformation $x=(u+v) / 4$ and $y=(v-3 u) / 4$. 5
7. Evaluate the line integral

$$
\int_{C} x d x+\left(x^{3}+3 x y^{2}\right) d y
$$

(a) directly (b) using Green's Theorem, where C is the closed curve consisting of the line from $(-2,0)$ to $(2,0)$ and the arc of the semicircle $y=\sqrt{4-x^{2}}$ from $(2,0)$ to $(-2,0)$. 5
14. Find the value of surface integral

$$
\iint_{S} A \cdot n d S,
$$

where S is the closed surface consisting of the planes $\mathrm{z}=0$, $\mathrm{z}=3$ and the surface of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=4$. 5

PART - II

(25 Marks)

(Symbols/Notations have their usual meanings.)
(Attempt any five questions)
8. Find the volume of the solid in the first octant bounded by the cylinder $\mathrm{z}=16-\mathrm{x}^{2}$ and the plane $\mathrm{y}=5$. 5
9. Evaluate

$$
\iint_{\mathrm{D}} \mathrm{y}^{3} \mathrm{dA}
$$

where D is the triangular region with vertices $(1,1),(0,2)$ and (3,2).

5
10. Change the order of integration and hence evaluate

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y}} d x d y
$$

11. A lamina occupies the part of the disk $\mathrm{x}^{2}+\mathrm{y}^{2} \leq 1$ in the first quadrant. Find its centre of mass if the density at any point is proportional to the square of its distance from the origin. 5
12. Find the image of the parallelogram R with vertices at $\mathrm{A}(-1,3), \mathrm{B}(1,-3), \mathrm{C}(3,-1)$ and $\mathrm{D}(1,5)$ in xy - plane under

$$
\overrightarrow{\mathrm{r}}=\frac{[\overrightarrow{\mathrm{r}} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{c}}]}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}}]} \overrightarrow{\mathrm{a}}+\frac{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{r}} \overrightarrow{\mathrm{c}}]}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}}]} \overrightarrow{\mathrm{b}}+\frac{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{r}}]}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}]} \overrightarrow{\mathrm{c}} .
$$

7. If ϕ and ψ are scalar functions of x, y and z possessing first and second order partial derivatives, then prove that

$$
\nabla^{2}(\phi \psi)=\phi \nabla^{2} \psi+2 \nabla \phi \cdot \nabla \psi+\psi \nabla^{2} \phi .
$$

