BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)
MATHEMATICS (SUBSIDIARY)
Paper: 12.S
Time : Two hours
Full Marks : 50
Figures in the margin indicate full marks. Symbols and Notations have their usual meanings.

PART - I (30 marks)

Answer any two questions.

1. (a) Form a PDE by eliminating the arbitrary constants a, b and c from

$$
(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}
$$

(b) Let z be a function of two independent variables x and y; and u, v are two given functions of x, y and z connected by the relation $f(u, v)=0$. where f is arbitrary. By eliminating the arbitrary function f , form a PDE.
(c) By eliminating the arbitrary function f and g form a PDE from

$$
z=y f(x)+x g(y)
$$

(d) Solve the PDE :

$$
y^{2} p-x y q=x(z-2 y) \quad 3+4+4+4
$$

2. (a) Solve the PDE :

$$
(y+z) p-(z+x) q=x-y
$$

(b) Solve : $\left(D^{2}-D D^{\prime}\right) z=\cos x \cos 2 y$.
(c) Find the half range cosine series expansion for the function $f(x)=x^{2}$ in the range $0 \leq x \leq \pi . \quad 4+5+6$
3. (a) Obtain a Fourier series representation for the function $f(x)=|x|$ in $-\pi<x<\pi$ and deduce that

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .=\frac{\pi^{2}}{8}
$$

(b) Solve: $\frac{\partial^{2} z}{\partial x^{2}}=z=0$, given that when $\mathrm{x}=0, \mathrm{z}=\mathrm{e}^{\mathrm{y}}$ and $\frac{\partial z}{\partial x}=1$. $10+5$

PART - II (20 marks)

Answer any two questions.
4. (a) Show that $L\left\{\mathrm{e}^{-\mathrm{at}} \mathrm{f}(\mathrm{t})\right\}=\mathrm{F}(\mathrm{p}+\mathrm{a})$,
where $\mathrm{L}\{\mathrm{f}(\mathrm{t}) ; \mathrm{p}\}=\mathrm{F}(\mathrm{p})$.
Hence find $L\left\{e^{-3 t}(2 \cos 5 t-3 \sin 5 t)\right\}$.
(b) If $\mathrm{L}\{\mathrm{f}(\mathrm{t}) ; \mathrm{p}\}=\mathrm{F}(\mathrm{p})$, then show that
$L\{f(a t) ; p\}=\frac{1}{a} F(p / a)$.
Hence find $L\left\{\frac{\sin a t}{t}\right\}$, given that $L\left\{\frac{\sin t}{t} ; p\right\},=\tan ^{-1}\left(\frac{1}{p}\right)$.
5. (a) Show that $L \int_{0}^{t} f(t) d t=\frac{F(p)}{p}$, given that
$\mathrm{L}\{\mathrm{ft}) ; \mathrm{p}\}=\mathrm{F}(\mathrm{p})$. Hence evaluate $L \int_{0}^{t} e^{-t} \cos t d t$.
(b) Evaluate : $L^{-1}\left\{\log \frac{p^{2}+1}{p(p+1)}\right\}$
6. (a) Using convolution theorem, evaluate $L^{-1}\left\{\frac{1}{p\left(p^{2}+4\right)}\right\}$.
(b) Solve : $y^{\prime \prime}(t)+y(t)=t, y(0)=1, y^{\prime}(0)=-2 . \quad 4+6$

