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BACHELOR OF SCIENCE EXAMINATION, 2019

(2nd Year, 2nd Semester, Old Syllabus)

MATHEMATICS (SUBSIDIARY)

Paper : 12.S

Time : Two hours Full Marks : 50

Figures in the margin indicate full marks.
Symbols and Notations have their usual meanings.

PART - I (30 marks)
Answer any two questions.

1. (a) Form a PDE by eliminating the arbitrary constants a,
b and c from

(x– a)2 + (y – b)2 + z2 = c2

(b) Let z be a function of two independent variables
x and y; and u, v are two given functions of x, y and
z connected by the relation f(u,v) = 0. where f is
arbitrary. By eliminating the arbitrary function f, form
a PDE.

(c) By eliminating the arbitrary function f and g form a
PDE from

z = yf(x) +x g(y).
(d) Solve the PDE :

y2p – xyq = x(z –2y) 3+4+4+4

(Turn Over)



(2) (3)

2. (a) Solve the PDE :
(y + z)p – (z+ x)q = x – y

(b) Solve : (D2 – DD/)z = cos x cos 2y.

(c) Find the half range cosine series expansion for the
function f(x) = x2 in the range 0  x . 4+5+6

3. (a) Obtain a Fourier series representation for the function
f(x) = | x | in – < x < and deduce that
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PART - II (20 marks)

Answer any two questions.

4. (a) Show that L{e–at f(t)} = F(p +a),

where L{f(t); p}= F(p).

Hence find   3 2cos5 3sin 5tL e t t  .

(b) If L{f(t); p} = F(p), then show that
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(b) Evaluate : 
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6. (a) Using convolution theorem, evaluate 1
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(b) Solve : y//(t) + y(t) = t, y(0) =1, y/(0) = –2. 4+6
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